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Abstract. A translation surface in 3-dimensional Euclidean space is a sur-
face that can be constructed as the sum of two regular curves α and β.
Recently, the minimal translation surfaces were characterized in terms
of the curvature and the torsion of the generating curves. In this paper,
we characterize all translation surfaces with constant and non-zero mean
curvature by proving that: The only translation surface in 3-dimensional
Euclidean space R

3 with constant and non-zero mean curvature H is the
circular cylinder of radius 1

2|H| .
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1. Introduction and statement of main result

The surfaces of our study have their origin in G. Darboux’ classical text [1],
where the so-called “surfaces définies pour des propertiés cinématiques” are
considered; they are referred to as Darboux surfaces in the literature. A Dar-
boux surface is defined kinematically as the movement of a curve by a uni-
parametric family of rigid motions of R3. Hence, a parameterization of such a
surface is Ψ(s, t) = A(t)α(s) + β(t), where α and β are two space curves and
A(t) is an orthogonal matrix. In this paper we consider the case with A(t) the
identity. More precisely, we give the following definition.

Definition 1.1. A surface S ⊂ R
3 is called translation surface, if it can, locally,

be constructed as the sum Ψ(s, t) = α(s) + β(t) of two space curves α : I ⊂
R → R

3 and β : J ⊂ R → R
3. If α and β are plane curves lying on orthogonal

planes, the surface is called translation surface of plane type.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-021-00601-7&domain=pdf
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The curves α and β are called the generating curves of S. The terminology
“translation surface” is due to the fact that the surface S is obtained by the
translation of α along β (or vice versa because the roles of α and β are inter-
changeable). In particular, all parametric curves s = const. are congruent by
translations (similarly for parametric curves t = const.).

It is natural to ask for a classification of translation surfaces in R
3, beyond

translation surfaces of plane type, under some conditions on their curvatures.
Recently, in collaboration with R. López [4] we completely classified all trans-
lation surfaces with constant Gaussian curvature K, proving that the only
ones are cylindrical surfaces, and thus K must be zero. In [11], R. López and
O. Perdomo characterized all minimal translation surfaces in R

3 in terms of
the curvature and torsion of the generating curves. Finally, in [5] jointly with
R. López we offer an alternative approach to the study and construction of
minimal translation surfaces. Consequently, it is natural to ask the following
question.

Problem. Which surfaces in the Euclidean space R
3 with constant and non-

zero mean curvature are sums of two space curves?

The only known translation surface in R
3 with constant mean curvature H �= 0,

is the circular cylinder of radius 1
2|H| . A surface z = f(x)+ g(y) can be viewed

as the sum of the plane curves x �→ (x, 0, f(x)) and y �→ (0, y, g(y)). Moreover,
every translation surface S of plane type (see Definition 1.1) can be viewed as
a surface of the above form. The following result was proved by Liu [7]: Let S
be a translation surface z = f(x)+ g(y) with constant mean curvature H �= 0.
Then, S is congruent to the following surface or part of it

z = −
√

1 + α2

2H

√
1 − 4H2x2 − αy, α ∈ R.

It is obvious that this surface is a circular cylinder of radius 1
2|H| . In [3] we

proved: Circular cylinders are the only translation surfaces of constant and
non-zero mean curvature in R

3, with a planar generating curve.

In the present paper we completely classify all translation surfaces with non-
zero and constant mean curvature in R

3 by proving the following result.

Theorem 1.1. Circular cylinders are the only translation surfaces of constant
and non-zero mean curvature in R

3.

Translation surfaces in ambient spaces besides R
3 have been studied in [6–10]

to mention just a few articles.

The paper is organized as follows: In Sect. 2, we recall some known formulas
on the local theory of curves and surfaces of R3. Then, at any point Ψ(s, t) of
S we represent the rotation of Frenet trihedrons by Euler’s angles and express
the mean curvature of S by these angles. The Proof of Theorem 1.1 is given
in Sect. 3 after some lengthy calculations.
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2. Preliminaries

A general reference on curves and surfaces is [2]. All curves and surfaces consid-
ered will be assumed to be regular and of class C∞. Let x : I = (a, b) → R

3 be
a curve parameterized by arc length s, with curvature k(s) > 0, torsion τ(s),
and oriented Frenet trihedron

(
t(s), n(s), b(s)

)
. We shall use the equations,

referred to as Frenet formulas,
⎧
⎪⎨

⎪⎩

t′ = kn

n′ = −kt + τb

b′ = −τn.

(2.1)

We have omitted the argument s for convenience; by prime (′) we denote
differentiation with respect to s.

Let α : I ⊂ R → R
3, s �→ α(s), and β : J ⊂ R → R

3, t �→ β(t), be two
curves in R

3 parameterized by arc length with curvatures kα(s), kβ(t), tor-
sions τα(s), τβ(t), and oriented Frenet trihedrons (tα(s), nα(s), bα(s)), (tβ(t),
nβ(t), bβ(t)) for every s ∈ I, t ∈ J . In order that α and β be the generating
curves of a regular translation surface S ⊂ R

3, we suppose that α′(s)×β̇(t) �= 0
for all (s, t) ∈ I × J ⊂ R

2, where × represents the vector product of R3. By
prime (′) we denote differentiation with respect to s, and by dot (˙) differen-
tiation with respect to t.

Let S = {α(s) + β(t) : s ∈ I, t ∈ J} ⊂ R
3 be the set obtained by the

sum of the curves α and β. Then, S is a regular translation surface, and
Ψ(s, t) = α(s) + β(t) is a parameterization of S.

We will now proceed to calculate the mean curvature of S. For notational
convenience, we omit the dependence of functions on s and t; it is implicitly
understood. The derivatives of order 1 of Ψ are Ψs = α′ = tα, Ψt = β̇ = tβ
with Ψs × Ψt �= 0. Let ϕ(s, t), 0 < ϕ(s, t) < π, be the angle between tα(s) and
tβ(t) at the point Ψ(s, t), that is

〈tα(s), tβ(t)〉 = cos ϕ(s, t), (2.2)

where 〈·, ·〉 stands for the usual scalar product on R
3. The coefficients of the

first fundamental form of S in the basis Ψs, Ψt are

E = 1, F = cos ϕ, G = 1,

and the unit normal vector N(s, t) at Ψ(s, t) is

N(s, t) =
tα(s) × tβ(t)

sinϕ(s, t)
.

The derivatives of order 2 of Ψ are

Ψss = t′α = kαnα, Ψst = 0, Ψtt = ṫβ = kβnβ .

Hence, the coefficients of the second fundamental form of S are

� = 〈Ψss, N〉 = −kα〈bα, tβ〉
sinϕ

, m = 〈Ψst, N〉 = 0, n = 〈Ψtt, N〉 =
kβ〈tα, bβ〉

sin ϕ
.
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Thus, from the well-known formula 2H = �G−2Fm+nE
EG−F 2 for the mean curvature

H we have
− kα〈bα, tβ〉 + kβ〈tα, bβ〉 = 2H sin3 ϕ. (2.3)

The orthogonal matrix

O =

⎛

⎝
〈tα, tβ〉 〈nα, tβ〉 〈bα, tβ〉
〈tα, nβ〉 〈nα, nβ〉 〈bα, nβ〉
〈tα, bβ〉 〈nα, bβ〉 〈bα, bβ〉

⎞

⎠

represents a rotation of the Frenet frame (tα, nα, bα) to the frame (tβ , nβ , bβ)
at the point Ψ(s, t) of S. As it is well known, any rotation can be described
by three angles, the Euler angles. There are many ways to do this. Here, we
proceed as follows. At the point Ψ(s, t): (i) we rotate the frame (tα, nα, bα)
about tα by an angle ϑ(s, t), (ii) we rotate about the new position of bα by
an angle ϕ(s, t), and thus the new position of tα coincides with tβ , (iii) finally,
we rotate about the new position of tα (that is, about tβ) by an angle ω(s, t).
The final position of (tα, nα, bα) is the frame (tβ , nβ , bβ). Therefore, we have

O =

⎛

⎝
1 0 0
0 cos ω sin ω
0 − sin ω cos ω

⎞

⎠

⎛

⎝
cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 cos ϑ sin ϑ
0 − sin ϑ cos ϑ

⎞

⎠

or
〈tα, tβ〉 = cos ϕ, 〈nα, tβ〉 = sin ϕ cos ϑ, 〈bα, tβ〉 = sinϕ sin ϑ,

〈tα, nβ〉 = − sin ϕ cos ω, 〈nα, nβ〉 = cos ϕ cos ϑ cos ω − sin ϑ sin ω,

〈bα, nβ〉 = cos ϕ sin ϑ cos ω + cos ϑ sinω, 〈tα, bβ〉 = sinϕ sin ω,

〈nα, bβ〉 = − cos ϕ cos ϑ sin ω − sinϑ cos ω, 〈bα, bβ〉 = − cos ϕ sin ϑ sin ω

+ cos ϑ cos ω.

(2.4)

Hence, relation (2.3) becomes

kβ sinω = kα sinϑ + 2H sin2 ϕ. (2.5)

For later use, we do some calculations. Differentiating 〈tα, tβ〉 = cos ϕ with
respect to s and taking into account the Frenet equations for α and (2.4), we
have

kα〈nα, tβ〉 = − sin ϕ · ϕs

or
kα sinϕ cos ϑ = − sin ϕ · ϕs,

where ϕs stands for the partial derivative ∂ϕ
∂s . So, we obtain

ϕs = −kα cos ϑ. (2.6)

Moreover, from 〈nα, tβ〉 = sinϕ cos ϑ we have

−kα〈tα, tβ〉 + τα〈bα, tβ〉 = cos ϕ cos ϑ · ϕs − sin ϕ sin ϑ · ϑs

or, in view of (2.4) and (2.6),

−kα cos ϕ + τα sinϕ sin ϑ = −kα cos ϕ cos2 ϑ − sinϕ sin ϑ · ϑs.
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In the case where sin ϑ �= 0, we have

sinϕ · ϑs = kα cos ϕ sin ϑ − τα sin ϕ. (2.7)

Differentiating 〈tα, nβ〉 = − sin ϕ cos ω with respect to s and using (2.6), we
obtain

kα(cos ϕ cos ϑ cos ω − sinϑ sin ω) = − cos ϕ cos ω(−kα cos ϑ) + sin ϕ sin ω · ωs

or, in the case where sin ω �= 0,

sinϕ · ωs = −kα sin ϑ. (2.8)

In a similar way, differentiating with respect to t, we see that

ϕt = kβ cos ω, sinϕ · ϑt = kβ sin ω, sinϕ · ωt = −kβ cos ϕ sin ω + τβ sin ϕ.
(2.9)

3. Proof of Theorem 1.1

We, firstly, recall that the parametric curves t = const. are parallel translations
and congruent to α (similarly, the parametric curves s = const. are congruent
to β). In what follows, we suppose that the translation surface S has constant
and non-zero mean curvature H.

If the curvature of a generating curve vanishes everywhere, that is, if a gen-
erating curve is a line ε, then S is cylindrical. Thus, if its mean curvature is
constant H �= 0, the section of S by a plane normal to ε is a circle of radius

1
2|H| , and S is a circular cylinder.

Moreover, if a generating curve is a plane curve, that is, if its torsion vanishes
everywhere, then, as we have proved in [3], S is also a circular cylinder.

Therefore, and since the problem is of local nature, in what follows we assume
that

kα(s) > 0 and τα(s) �= 0 (3.1)

everywhere.

We need the following auxiliary result.

Lemma 3.1. Under the above assumptions, we have

(i) sinϑ �= 0

(ii) sinω �= 0

almost everywhere in I × J .

Proof. (i) Indeed, if this were not the case, then (2.4) would yield 〈bα, tβ〉 = 0
in an open subset of I × J . Differentiating with respect to s and using
the fact that τα(s) �= 0, we obtain 〈nα, tβ〉 = 0. So tβ is parallel to
nα × bα = tα, which contradicts 0 < ϕ(s, t) < π.
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(ii) In fact, if this were not the case, then from (2.4) we would have 〈tα, bβ〉 =
0 in an open subset of I × J . Differentiating with respect to s and using
(3.1), we have 〈nα, bβ〉 = 0. So bα = tα × nα = ±bβ , from which by
differentiating with respect to s, we have τα = 0. This contradicts our
assumption (3.1). �

Obviously, given a translation surface Ψ(s, t) = α(s)+β(t) with constant non-
zero mean curvature H and a non-zero constant λ ∈ R, the surface Z(s, t) =
λΨ(s, t) is also a translation surface. The mean curvature HZ(s, t) of Z(s, t)
is the non-zero constant HZ(s, t) = H

λ ; for λ = 2H, we have HZ(s, t) = 1
2 . So,

without loss of generality, we may suppose that H = 1
2 , and this hypothesis

will be assumed without further comment. Therefore, from (2.5) we obtain

kβ sinω = kα sinϑ + sin2 ϕ. (3.2)

Differentiating (3.2) with respect to s and taking (2.6), (2.7) and (2.8) into
account, we get

kβ
cos ω

sinϕ
(−kα sin ϑ) = k′

α sinϑ + kα
cos ϑ

sinϕ
(kα cos ϕ sin ϑ − τα sinϕ)

+2 sin ϕ cos ϕ(−kα cos ϑ) (3.3)

or

−kαkβ cos ω sinϑ = k′
α sinϑ sin ϕ + k2

α cos ϕ cos ϑ sin ϑ − kατα cos ϑ sin ϕ

−2kα cos ϕ sin2 ϕ cos ϑ. (3.4)

Hence, in view of (3.1) and Lemma 3.1, we have

kβ cos ω = −k′
α

kα
sin ϕ − kα cos ϕ cos ϑ + τα

cos ϑ

sin ϑ
sin ϕ + 2 cos ϕ sin2 ϕ

cos ϑ

sin ϑ
.

(3.5)

Differentiating (3.5) with respect to s again and taking (3.2) into account, we
have

k2
α

sin2 ϑ

sin ϕ
+ kα sin ϑ sin ϕ = −

(k′
α

kα

)′
sin ϕ + k2

α
cos2 ϕ sin2 ϑ

sin ϕ
− kατα cos ϕ sin ϑ

− k2
α sin ϕ cos2 ϑ + τ ′

α
cos ϑ sin ϕ

sin ϑ
− kατα

cos ϕ

sin ϑ
+ τ2

α
sin ϕ

sin2 ϑ
− kατα

cos2 ϑ cos ϕ

sin ϑ

+ 2kα
cos2 ϑ sin3 ϕ

sin ϑ
− 4kα

cos2 ϕ cos2 ϑ sin ϕ

sin ϑ
− 2kα

cos2 ϕ sin ϕ

sin ϑ
+ 2τα

cos ϕ sin2 ϕ

sin2 ϑ

or, multiplying by sin2 ϑ
τα

and collecting the terms,

(k′
α

kα

)′
+ k2

α

τα
sinϕ sin2 ϑ − τ ′

α

τα
cosϑ sinϑ sinϕ − τα sinϕ − 2 cosϕ sin2 ϕ

+
2kα

τα
(τα cosϕ − sin3 ϕ + 3 cos2 ϕ sinϕ) sinϑ

+
kα

τα
(2 sin3 ϕ + sinϕ − 4 cos2 ϕ sinϕ) sin3 ϑ = 0.
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Dividing by sin3 ϕ, setting Z := cosϕ
sinϕ , and using the relation 1

sin2 ϕ
= 1 + Z2,

we see that

(k′
α

kα

)′
+ k2

α

τα
sin2 ϑ(1 + Z2) − τ ′

α

τα
cosϑ sinϑ(1 + Z2) − τα(1 + Z2) − 2Z

+
2kα

τα

(
ταZ(1 + Z2) − 1 + 3Z2)

sinϑ +
3kα

τα
(1 − Z2) sin3 ϑ = 0

or

2kα sinϑZ3 +

((k′
α

kα

)′
+ k2

α

τα
sin2 ϑ − τ ′

α

τα
cosϑ sinϑ − τα +

6kα

τα
sinϑ − 3kα

τα
sin3 ϑ

)

Z2

+ (2kα sinϑ − 2)Z

+

(( k′
α

kα

)′
+ k2

α

τα
sin2 ϑ − τ ′

α

τα
cosϑ sinϑ − τα − 2kα

τα
sinϑ +

3kα

τα
sin3 ϑ

)

= 0.

(3.6)
Henceforth, for notational convenience, we set

k := kα, τ := τα, Σ :=
(k′

k

)′

+ k2 − τ2, B :=
2k′

k
+

τ ′

τ

C :=
Σ

τ
− τ, D :=

Σ

τ
+ τ, X := cos ϑ, Y := sinϑ.

(3.7)

Inserting these notations in (3.6) and using the identity sin3 ϑ = sinϑ(1 −
cos2 ϑ), we obtain

2kY Z3 +
(3k

τ
X2Y + DY 2 − τ ′

τ
XY +

3k

τ
Y − τ

)
Z2 + (2kY − 2)Z

+ (−3k

τ
X2Y + DY 2 − τ ′

τ
XY +

k

τ
Y − τ) = 0.

(3.8)

Remark 3.1. We note that Z �= 0 almost everywhere in I × J . Indeed, if this
were not the case, then (2.1) would yield 〈tα, tβ〉 = 0. Differentiating this twice
with respect to s, and using (3.1) and the Frenet formulas (2.1), we are lead
to a contradiction 〈nα, tβ〉 = 〈bα, tβ〉 = 0.

Before we proceed to some more calculations, we need the following obvious
consequence of (2.6) and (2.7).

Lemma 3.2. For the derivatives of X,Y,Z with respect to s we have

Xs = −kY 2Z + τY,

Ys = kXY Z − τX,

Zs = kX(1 + Z2).
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Differentiating (3.8) with respect to s and taking Lemma 3.2 into account, we
get

8k2XY Z4 +
(15k2

τ
X3Y − 4kτ ′

τ
X2Y + 4kDXY 2 +

3k2

τ
XY − 4kτX + kBY

)
Z3

+
(
− 9kX3 + 3

(k

τ

)′
X2Y + C′Y 2 + (8k2 − B′)XY + kX + 3

(k

τ

)′
Y

)
Z2

+
(
− 3k2

τ
X3Y + 4kDXY 2 − 4kτ ′

τ
X2Y +

13k2

τ
XY − 4kτX + kBY

)
Z

+
(
− 3

(k

τ

)′
X2Y − 9kXY 2 + C′Y 2 − B′XY +

(k

τ

)′
Y

)
= 0,

(3.9)
where in some steps we have used the relation X2 +Y 2 = 1, the notation (3.7)

and the relation 2k2 − (
τ ′
τ

)′
− 2τD = −B′. Now, multiplying (3.8) by 4kXZ

and subtracting from (3.9), and dividing the result by Y , which is non-zero by
Lemma 3.1, we obtain

k
(3k

τ
X3 − 9k

τ
X + B

)
Z3 +

(
3
(k

τ

)′
X2 + 9kXY + C′Y − B′X + 3

(k

τ

)′)
Z2

+ k
(9k

τ
X3 +

9k

τ
X + B

)
Z +

(
− 3

(k

τ

)′
X2 − 9kXY + C′Y − B′X +

(k

τ

)′)
= 0.

(3.10)
Elimination of Z3 between equations (3.8) and (3.10) yields an equation of the
form

b2Z
2 + b1Z + b0 = 0. (3.11)

This is a polynomial equation of second degree with respect to Z, with coeffi-
cients

b2 =
9k2

τ2
X5Y +

3kD

τ
X3Y 2 − 3kτ ′

τ2
X4Y − 18k2

τ2
X3Y − 3kX3

+
18kτ ′

τ2
X2Y −

(9kD

τ
+ 18k

)
XY 2 + (BD − 2C ′)Y 2

+
(
2B′ − Bτ ′

τ
− 27k2

τ2

)
XY + 9kX +

9kτ ′

τ2
Y − τB,

b1 = −12k2

τ
X3Y − 6k

τ
X3 − 36k2

τ
XY +

18k

τ
X − 2B,

b0 = −9k2

τ2
X5Y +

3kD

τ
X3Y 2 − 3kτ ′

τ2
X4Y +

30k2

τ2
X3Y − 3kX3

−
(9kD

τ
− 18k

)
XY 2 + (BD − 2C ′)Y 2 +

(
2B′ − Bτ ′

τ
− 9k2

τ2

)
XY

+ 9kX +
3kτ ′

τ2
Y − τB.

Next, we shall eliminate Z3 between equation (3.8) and b2Z
3+b1Z

2+b0Z = 0.
The resulting polynomial equation is of second degree with respect to Z and
has the form

c2Z
2 + c1Z + c0 = 0, (3.12)

with coefficients
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c2 =
27k3

τ3
X7Y 2 +

18k2D

τ2
X5Y 3 − 18k2τ ′

τ3
X6Y 2 +

(
− 27k3

τ3
+

3k(τ ′)2

τ3

)
X5Y 2

+
3kD2

τ
X3Y 4 − 6kτ ′D

τ2
X4Y 3 − 18k2

τ
X5Y +

63k2τ ′

τ3
X4Y 2 −

(36k2D

τ2
+

54k2

τ

)
X3Y 3

+
(27kτ ′D

τ2
+

3k

τ
(BD − 2C′) +

18kτ ′

τ

)
X2Y 3 +

6kτ ′

τ
X4Y − D

(9kD

τ
+ 18k

)
XY 4

+
(6kB′

τ
− 3kτ ′B

τ2
− 6kD − 135k3

τ3
+

24k3

τ
− 18k(τ ′)2

τ3

)
X3Y 2 +

48k2

τ
X3Y

+ D(BD − 2C′)Y 4 +
(108k2τ ′

τ3
− τ ′

τ
(2B′ − Bτ ′

τ
)
)
X2Y 2

+
(
2DB′ − 2τ ′

τ
(BD − C′) − 54k2D

τ2
− 54k2

τ

)
XY 3 + 3kτX3 −

(
6k′ +

30kτ ′

τ

)
X2Y

+
(12kτ ′D

τ2
+

6k′D
τ

− 6kC′

τ

)
Y 3

+
(
18kD + 18kτ +

72k3

τ
− 81k3

τ3
− 9k(τ ′)2

τ3
+

6kB′

τ
− 3kτ ′B

τ2

)
XY 2

+
(27k2τ ′

τ3
− 2τBD + 2τC′

)
Y 2 +

(18k2

τ
+ 2τ ′B − 2τB′

)
XY − 9kτX

+
(
2k′ − 8kτ ′

τ

)
Y + τ2B,

c1 =
36k3

τ2
X5Y 2 − 18k2

τ2
X5Y −

(96k3

τ2
+

6kD

τ

)
X3Y 2 +

6kτ ′

τ2
X4Y +

36k2τ ′

τ2
X2Y 2

− 72k2XY 3 +
36k2

τ2
X3Y + 6kX3 − 36kτ ′

τ2
X2Y +

(18kD

τ
+ 36k − 36k3

τ2

)
XY 2

+
(12k2τ ′

τ2
− 2BD + 4C′

)
Y 2 − 2

(
2B′ − Bτ ′

τ
− 27k2

τ2

)
XY − 18kX

− 18kτ ′

τ2
Y + 2τB,

c0 = −27k3

τ3
X7Y 2 +

(63k3

τ3
+

3k(τ ′)2

τ3

)
X5Y 2 +

3kD2

τ
X3Y 4 − 6kτ ′D

τ2
X4Y 3

− 39k2τ ′

τ3
X4Y 2 +

(54k2

τ
+

12k2D

τ2

)
X3Y 3 +

6kτ ′

τ
X4Y − D

(9kD

τ
+ 18k

)
XY 4

+
(

− 3k

τ

(
2B′ − Bτ ′

τ
− 27k2

τ2

)
− 6kD − 18k(τ ′)2

τ3
− 18k3

τ3

)
X3Y 2

+
(

− 3k

τ
(BD − 2C′) +

27kτ ′D
τ2

+
18kτ ′

τ

)
X2Y 3 + D(BD − 2C′)Y 4 − 12k2

τ
X3Y

+
(
D

(
2B′ − Bτ ′

τ
− 27k2

τ2

)
− τ ′

τ
(BD − 2C′) − k

τ

(9kD

τ
+ 18k

))
XY 3

−
(9k2τ ′

τ3
+

τ ′

τ

(
2B′ − Bτ ′

τ
− 27k2

τ2

))
X2Y 2 +

(
3kB − 27kτ ′

τ

)
X2Y + 3kτX3

+
(9kτ ′D

τ2
+

k

τ
(BD − 2C′)

)
Y 3 +

(k

τ

(
2B′ − Bτ ′

τ
− 27k2

τ2

)
+ 18kD + 18kτ

− 9k(τ ′)2

τ3

)
XY 2 +

(9k2τ ′

τ3
− 2τ(BD − C′)

)
Y 2 +

(36k2

τ
+ 2(τ ′B − τB′)

)

× XY − 9kτX −
(
2k′ +

10kτ ′

τ

)
Y + τ2B.

Before proving Theorem 1.1, for completeness, let us comment on the case that
at least one of the coefficients bi, ci (i = 0, 1, 2) is zero.



36 Page 10 of 13 T. Hasanis J. Geom.

Proposition 3.1. If at least one of the coefficients bi, ci (i = 0, 1, 2) is zero in
an open subset of I × J , then the curvature of the generating curve β is zero,
that is kβ = 0.

Proof. Since the proofs are similar in all cases, we shall only consider the case
b2 = 0 in an open subset of I × J . Inserting Y 2 = 1 − X2 in the expression of
b2 we have

(
9k2

τ2
X5 − 3kτ ′

τ2
X4 − 18k2

τ2
X3 +

18kτ ′

τ2
X2 +

(
2B′ − Bτ ′

τ
− 27k2

τ2

)
X

+
9kτ ′

τ2

)
Y +

(
− 3kD

τ
X5 +

(12kD

τ
+ 15k

)
X3 − (BD − 2C ′)X2

−
(9kD

τ
+ 9k

)
X + BD − 2C ′ − τB

)
= 0.

The last equation is of the form

P (X)Y + Q(X) = 0,

where P and Q are polynomials of one variable X and their coefficients are
functions of s. The leading terms are 9k2

τ2 X5 and − 3kD
τ X5, respectively. Squar-

ing P (X)Y = −Q(X) and inserting Y 2 = 1 − X2, we obtain

P 2(X)(X2 − 1) + Q2(X) = 0, (3.13)

a polynomial equation in X of degree 12 with leading coefficient 81k4

τ4 > 0,
since k > 0 and τ �= 0. Thus, the root X = cos ϑ is a function f(s) of s, and
hence we have

cos ϑ = f(s). (3.14)

Differentiating (3.14) with respect to t, we see that sin ϑ ·ϑt = 0; consequently,
in view of Lemma 3.1, we have ϑt = 0. From the second relation of (2.9) we
obtain kβ = 0. �

Now, we are ready to prove Theorem 1.1



Vol. 112 (2021) A characteristic property of circular cylinders Page 11 of 13 36

Proof of Theorem 1.1. Using the expressions for bi, ci (i = 0, 1, 2) we calculate

b2c0 − b0c2 =

=
(9k2

τ2
X5Y +

3kD

τ
X3Y 2 − 3kτ ′

τ2
X4Y − 18k2

τ2
X3Y + · · ·

)
·

·
(

− 27k3

τ3
X7Y 2 +

(63k3

τ3
+

3k(τ ′)2

τ3

)
X5Y 2 +

3kD2

τ
X3Y 4 − 6kτ ′D

τ2
X4Y 3 + · · ·

)

−
(

− 9k2

τ2
X5Y +

3kD

τ
X3Y 2 − 3kτ ′

τ2
X4Y +

30k2

τ2
X3Y + · · ·

)
·

·
(27k3

τ3
X7Y 2 +

18k2D

τ2
X5Y 3 − 18k2τ ′

τ3
X6Y 2 +

(
− 27k3

τ3
+

3k(τ ′)2

τ3

)
X5Y 2

+
3kD2

τ
X3Y 4 − 6kτ ′D

τ2
X4Y 3 + · · ·

)
= P1(X, Y ),

b2c1 − b1c2 =

=
(9k2

τ2
X5Y + · · ·

)(36k3

τ2
X5Y 2 + · · ·

)
−

(
− 12k2

τ
X3Y + · · ·

)(27k3

τ3
X7Y 2 + · · ·

)

=
18 · 36k5

τ4
X10Y 3 + P2(X, Y ),

b1c0 − b0c1 =

=
(

− 12k2

τ
X3Y + · · ·

)(
− 27k3

τ3
X7Y 2 + · · ·

)

−
(

− 9k2

τ2
X5Y + · · ·

)(36k3

τ2
X5Y 2 + · · ·

)

=
18 · 36k5

τ4
X10Y 3 + P3(X, Y ),

(3.15)
where Pi(X,Y ) (i = 1, 2, 3) are polynomials of two variables X,Y and of total
degree at most 12. The coefficients of Pi(X,Y ) are functions of s.

Consider the system {
b2Z

2 + b1Z + b0 = 0
c2Z

2 + c1Z + c0 = 0
(3.16)

of two polynomial equations of second degree with respect to Z.

If at least one of the coefficients bi, ci (i = 0, 1, 2) is zero in an open subset
of I × J , then, by Proposition 3.1, we have kβ = 0 and thus S is a circular
cylinder.

In the sequel we assume that the coefficients bi, ci (i = 0, 1, 2) are non-zero
almost everywhere on I × J . System (3.16) possesses at least one solution at
any point (s, t) ∈ I × J . We distinguish two cases.

Case I The system has two solutions and thus the two equations coincide up
to a multiplicative factor. Then, we must have

b2c0 − b0c2 = b2c1 − b1c2 = b1c0 − b0c1 = 0.

In particular, we have

b2c1 − b1c2 =
18 · 36k5

τ4
X10Y 3 + P2(X,Y ) = 0.
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Inserting Y 2 = 1 − X2 and proceeding as in the proof of Proposition 3.1, we
obtain an equation of the form

P (X)Y + Q(X) = 0,

where P and Q are polynomials of one variable X. The leading term of P is
− 18·36k5

τ4 X12 and the degree of Q is at most 12. Squaring P (X)Y = −Q(X)
and proceeding as before we conclude that kβ = 0; hence, S is a circular
cylinder.

Case II System (3.16) has exactly one solution. Then, the resultant of the two
equations of (3.16) must vanish, that is, we have

(b2c0 − b0c2)2 − (b1c0 − b0c1)(b2c1 − b1c2) = 0. (3.17)

Inserting (3.15) in (3.17), we get

− 182 · 362
k10

τ8
X20Y 6 + Q1(X,Y ) = 0, (3.18)

where Q1(X,Y ) is a polynomial of two variables X,Y and of total degree at
most 25. Inserting Y 2 = 1 − X2 in (3.18), we obtain an equation of the form

P (X) + Q(X)Y = 0, (3.19)

where P and Q are polynomials of one variable X. The leading term of P is
182 ·362 k10

τ8 X26 and the degree of Q is at most 24. Squaring P (X) = −Q(X)Y
and inserting Y 2 = 1 − X2 we obtain

P 2(X) + (X2 − 1)Q2(X) = 0, (3.20)

a polynomial equation in X of degree 52, with leading coefficient 184 ·364 k20

τ16 >
0, since k > 0 and τ �= 0. All coefficients of this polynomial equation are
functions of s. Continuing as in the proof of Proposition 3.1, we have kβ = 0
and thus S is a circular cylinder.

This completes the Proof of Theorem 1.1.
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