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Some characterizations of the Euclidean ball

Jesús Jerónimo-Castro

Abstract. In this paper the following result is proved, which is an extension
of the one proved in Garćıa-Jiménez et al. (Monatsh Math 181:601–607,
2016): a convex body K in the n-dimensional Euclidean space is a Eu-
clidean ball if one of its isoptic surfaces is homothetic to ∂K. We also
proved some related characterizations of the Euclidean ball.

1. Introduction

Let K ∈ R
n, n ≥ 2, be a convex body, i.e., a compact and convex set with

non-empty interior. The solid cone generated by K with apex z is denoted by
cone(K, z), i.e., cone(K, z) := {z + μ(y − z) : y ∈ K, μ ≥ 0}. The boundary
of cone(K, z) is known as the support cone of K from z. Let Bn(z, r) and
Sn(z, r) denote the Euclidean ball and sphere in R

n, respectively, centred
at z and with radius r. We say that the solid angle of cone(K,x) is α if
voln−1(cone(K,x) ∩ Sn(x, 1)) = α.

The isoptic surface of K of angle α, denoted by Kα, is the hypersurface such
that from every point in Kα, K is seen under a constant solid angle α. In
other words, for every z ∈ Kα we have that voln−1(cone(K, z)∩Sn(z, 1)) = α.
There are some interesting characterizations of the Euclidean disc and ball,
related with isoptic curves and isoptic surfaces in [3–7]. Here we are interested
in some similar results

Consider the following two properties of the Euclidean ball in R
n:

(a) For a positive number λ, the solid angle (from the origin) under which
is seen every ball of radius λ, which is exteriorly tangent to Bn(O, 1), is
constant.

(b) For a positive number λ < 1, the common support cone of Bn(O, 1) and
every ball of radius λ, which is exteriorly tangent, subtend a constant
solid angle.
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Figure 1 Homothetic copies tangent to K are seen under a
constant angle

Figure 2 The common tangent lines intersect at a constant
angle

We wonder if the above properties are characteristics of the Euclidean ball, in
other words, we wonder if there exist any other convex body which have the
property (a) or (b).

Problem 1. Let K ⊂ R
n be a convex body with the origin O in its interior

and let λ be a positive real number. Suppose every translate of λK, which is
tangent to K, is seen under a constant solid angle α from O (Fig. 1). Is it true
that K is a Euclidean ball?

Problem 2. Let K ⊂ R
n be a convex body and let λ < 1 be a positive real

number. For every x ∈ R
n such that λK + x is tangent to K, the common

support cone of K and λK + x has a constant solid angle α (Fig. 2). Is it true
that K is a Euclidean ball?
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With respect to Problem 1 the following result was proved in [3] and the
particular case when λ = 1 was proved by Yu in [9].

Theorem 1. Let K be a centrally symmetric convex body in R
n, n ≥ 2, centred

at the origin O and let λ be a positive number. Suppose every translate of λK,
which is tangent to K, is seen under a constant solid angle α from O. Then
K is a Euclidean ball.

If K is a centrally symmetric set centred at the origin and z is a point in the
boundary of K, then λK +(1+λ)z is tangent to K at the point z. If the body
λK + (1 + λ)z is seen from O under the fixed solid angle α, then λK is also
seen from −(1 + λ)z under the solid angle α. It follows that the boundary of
(1 + λ)K is an isoptic surface of λK.

By the above comment, note that Theorem 1 says: let K be a centrally sym-
metric convex set, if for some α the isoptic Kα is homothetic to ∂K then K is
a Euclidean ball. However, we suspected the hypothesis over K of being a cen-
trally symmetric set is unnecessary and this is what we obtained in Corollary
1.

In this paper we prove the following results.

Theorem 2. Let K ⊂ R
n be a convex body with the origin in its interior and

let λ > 0 be a real number. For every x ∈ R
n such that x − λK is tangent to

K, the support cone of x − λK from O subtends a constant solid angle α.
Then K is a Euclidean ball.

Corollary 1. Let K be a convex body in R
n, n ≥ 2. If Kα is homothetic to ∂K

for a solid angle α, then K is a Euclidean ball.

Theorem 3. Let K ⊂ R
n be a convex body, n ≥ 2, and let 0 < λ < 1 be a

real number. For every x ∈ ∂K the common support cone of K and λK + x
subtends a constant solid angle α from its apex. Then K is a Euclidean ball.

Corollary 2. Let K ⊂ R
n be a centrally symmetric convex body, n ≥ 2, and let

λ < 1 be a positive real number. For every x ∈ R
n such that λK +x is tangent

to K, the common support cone of K and λK + x subtends a constant solid
angle α from its apex. Then K is a Euclidean ball.

2. Proof of Theorem 2

Let r be the minimal distance among the points in ∂K to O. Clearly, Bn(O, r)
is the maximal ball contained in K with center at O. Without loss of generality
we suppose that r = 1. If x ∈ ∂K ∩ Bn(O, r) we say that x is a contact point
of K. Let r2 be the minimal number such that the ball Bn(O, r2) contains to
K. Every point x ∈ ∂K ∩ Sn(O, r2) is called a distant point of K. Finally,
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Figure 3 All points in Du are contact points

denote by αn(λ) the solid angle under which is seen from O any ball of radius
λ which is tangent to Bn(O, 1).

The following two auxiliary lemmas are proved in [3] for a centrally symmetric
set K, however, the hypothesis of central symmetry is only used to give a little
stronger conclusion in Lemma 2. For completeness we give its proofs here.

Lemma 1. The solid angle α is equal to αn(λ).

Proof. Let x be any contact point of K and z any distant point. We have
that (1 + λ)x − λK and (1 + λ)z − λK are exteriorly tangent to K at x
and z, respectively. Also, (1 + λ)x + Bn(O, λ) and (1 + λ)z + Bn(O, λr2) are
exteriorly tangent to Bn(O, 1) and Bn(O, r2), at x and z, respectively. Clearly,
(1 + λ)x + Bn(O, λ) and (1 + λ)z + Bn(O, λr2) are both seen from O under
the solid angle αn(λ). Since

{(1 + λ)x − λK} ⊃ {(1 + λ)x + Bn(O, λ)}
and

{(1 + λ)z − λK} ⊂ {(1 + λ)z + Bn(O, λr2)},

we have that α ≥ αn(λ) and α ≤ αn(λ), respectively. We conclude that α =
αn(λ). �

Given u ∈ Sn(O, 1) we define Du =
{

x ∈ Sn(O, 1) : 〈x, u〉 = λ
1+λ

}
(see Fig. 3).

Lemma 2. Let u ∈ ∂K be a contact point. Then all points in Du are contact
points of K.

Proof. Since u is a contact point, we have that u ∈ Sn(O, 1). We know that
(1+λ)u−λK and (1+λ)u+Bn(O, λ) have the same support cone with apex
O. If � is a line through O and tangent to (1 + λ)u + Bn(O, λ) then is easy to
see that the point of tangency is also in ∂((1 + λ)u − λK). This proves that
all points in Du are contact points of K. �
Now we are ready to prove Theorem 2.
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Proof of Theorem 2. The proof for n = 2 was already given in [3]. In order
to prove the theorem for n ≥ 3 it is sufficient to prove that all points in
Sn(O, 1) are contact points of K. Let u be any contact point of K and consider
x ∈ Sn(O, 1) such that 〈x, u〉 ≥ λ

1+λ . Since x is contained in the smaller cap
of Sn(O, 1) which is bounded by Du (the one that contains u) and for every
z ∈ Du we have that u ∈ Dz, we obtain that Du ∩ Dx 
= ∅. Let y be a point
in Du ∩ Dx, and because all points in Du are contact points (by Lemma 2), it
follows that all points in Dy are contact points. Since x ∈ Dy, we obtain that
x is a contact point of K, and because x is any point in the closed cap defined
by Ru :=

{
z ∈ Sn(O, 1) : 〈z, u〉 ≥ λ

1+λ

}
, we obtain that all points in the cap

Ru are contact points of K. Every point z ∈ Du gives another cap Rz whose
elements are all contact points. By compactness of Sn(O, 1) we have that the
whole sphere Sn(O, 1) is covered by a finite number of regions Ru. Therefore,
all points of Sn(O, 1) are contact points and hence K is a Euclidean ball. �
Proof of Corollary 1. Without loss of generality we assume that the center of
homothety of ∂K and Kα is the origin O. Since K is contained in the interior
of Kα, we have that O is in the interior of K. Consider an arbitrary point
z ∈ Kα and let xz be the point where the segment [O, z] intersects ∂K. Let
λ be the ratio of homothety between Kα and ∂K, i.e., λ = |Oz|

|Oxz| , where |pq|
denotes de length of the segment [p, q]. We have that the homothetic copy
(λ − 1)K + z is tangent to K at the point xz and K is seen from z under the
solid angle α, this implies that K − z is tangent to (λ − 1)K and is seen from
O under the solid angle α. We repeat this argument for every z ∈ Kα and get
the conditions of Theorem 2, so we have that (λ−1)K is a Euclidean ball and
therefore K is a Euclidean ball. �

3. Proof of Theorem 3

Proof of Theorem 3. Let x ∈ ∂K be an arbitrary point and let px be the apex
of the common support cone of K and λK + x. Clearly, px is the center of
homothety between the two bodies with the ratio λ, hence the points O, x, and
px are collinear (see Fig. 4). For every natural number m ≥ 2 we denote by
xm the second point of intersection of the ray from O to px with the boundary
of λmK + xm−1. We have that

xm = (1 + λ + λ2 + · · · + λm)x =
λm+1 − 1

λ − 1
x,

and since 0 < λ < 1 we have that

px = lim
m→∞ xm =

1
1 − λ

x.

Since x is any point in the boundary of K we have that the locus of points px

is a surface homothetic to ∂K with center of homothety at O and ratio 1
1−λ .

Now, we apply Corollary 1 and conclude that K is a Euclidean ball. �
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Figure 4 The points px lie in the isoptic Kα which is homo-
thetic to ∂K

Figure 5 The common support cone of (1+λ)K and 2λK +
(1 + λ)z subtends a solid angle α

Proof of Corollary 2. Without loss of generality we suppose the center of
symmetry of K is O. Let z be any point in ∂K and let λK + (1 + λ)z be
the homothetic copy tangent at z. Since the two bodies are homothetic the
common support hyperplanes concur at the center of homothety, namely pz.
The center of λK + (1 + λ)z is in ∂(1 + λ)K, hence the common support
hyperplanes of (1 + λ)K and 2λK + (1 + λ)z are parallel to the corresponding
common support hyperplanes of K and λK+(1+λ)z (see Fig. 5). By similarity
of triangles we can see that all the common support hyperplanes of (1 + λ)K
and 2λK +(1+λ)z concur at a point qz collinear with O and pz. This is valid
for every z ∈ ∂K, we then have the conditions of Theorem 3 for (1 + λ)K and
2λK + (1 + λ)z, therefore K is a Euclidean ball. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.



Vol. 112 (2021) Some characterizations of the Euclidean ball Page 7 of 7 21

References
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