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Abstract. The term ‘absolute geometry’ was coined by János Bolyai to
characterize the part of Euclidean geometry that does not depend on
the parallel postulate. In the framework of Cayley–Klein geometries the
parallel axiom characterizes three classical geometries, namely Euclidean,
Galilean and Minkowskian planes. We study the part of Galilean geom-
etry that does not depend on the parallel postulate (briefly called ab-
solute isotropic geometry) and their models (isotropic planes). After an
axiomatic foundation of absolute isotropic geometry, we develop the basic
theory of isotropic planes, prove the theorem of Saccheri for the angle sum
of a triangle, and construct models of the different types of planes (over
fields and skew fields of characteristic �= 2). Surprisingly, these models
have counterparts in the theory of Hilbert planes. The article closes with
a comparison between Hilbert planes and isotropic planes.
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1. Introduction

The term ‘absolute geometry’ was coined by János Bolyai to characterize the
part of Euclidean geometry that does not depend on the parallel postulate.
Elementary absolute geometry,1 where in addition no continuity assumptions
are made, can be characterized by the plane axioms of group I, II and III of
Hilbert’s Grundlagen der Geometrie. The models are commonly referred to as
Hilbert planes (see Hessenberg and Diller [12], Bachmann [3], Hartshorne [11]
and Pejas [20]).

In the framework of Cayley–Klein geometries the parallel axiom characterizes
three classical geometries, namely Euclidean, Galilean and Minkowskian planes
(see R. Struve [29]). In the present article we study the part of (elementary)

1We consider in this article only plane geometries.
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Galilean geometry that does not depend on the parallel postulate. We call this
theory absolute isotropic geometry and the models, briefly, isotropic planes.

The aim of the article is to propose an axiom system for real Galilean geom-
etry, to introduce the notion of absolute isotropic geometry axiomatically, to
develop the basic theory of isotropic planes and to construct ‘classical’ models
of isotropic planes (over fields and skew fields of characteristic �= 2). Through-
out the paper we will highlight the parallels with the theory of Hilbert planes.

In Sect. 2 we provide an axiom system for real Euclidean planes from which
in Sect. 3 an axiom system for Hilbert planes is derived.2 We then recall
some results about Hilbert planes and their models. Subsequently we will refer
to these sections for a comparison between absolute isotropic geometry and
Hilbert’s absolute geometry.

In Sect. 4 we present an axiom system for real Galilean planes and introduce
elementary absolute isotropic geometry as the theory which is defined by all
of the axioms with the exception of the parallel axiom and the axioms of
continuity.

In Sect. 5 we develop the basic theory of isotropic planes. As is well-known from
Galilean geometry (see Yaglom [35, p. 43]), in an isotropic plane E there are
no orthogonal lines, but the plane can be extended by ‘trajectories’ such that
the extended plane E∗ does have orthogonal lines. We show that E∗ satisfies
all axioms of Bachmann’s plane absolute geometry [3] with the exception of
the uniqueness of joining lines (see Theorem 5.5) and analyze the group of
motions (see Theorem 5.7). Finally we prove that in every isotropic plane one
of Saccheri’s hypotheses is true: If one triangle of an isotropic plane has an
angle sum which is equal, less or greater than a straight angle, then so do all.

Isotropic planes can thus be divided into three classes which correspond to
the hypotheses of Saccheri. In Sect. 6 models of all three types of planes are
constructed (over fields of characteristic �= 2). Surprisingly, these models have
counterparts among the Hilbert planes of Sect. 3. However, a remarkable dif-
ference exists: Every Hilbert plane has a commutative coordinatizing structure
(a commutative field of characteristic �= 2) whereas isotropic planes can also
be constructed over (non-commutative) skew fields.

In Sect. 7 the analogies and differences between isotropic planes and Hilbert
planes are summarized. The theory of Cayley–Klein geometries and Cayley–
Klein groups provides an appropriate framework for this comparison.

2We follow the reflection-geometric approach of Hjelmslev [16] and Bachmann [3] and for-
mulate axioms in group-theoretical terms (see Sect. 2).
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2. An axiom system for real Euclidean geometry

In this section we introduce an axiom system for real Euclidean planes which
is expressed in purely group-theoretical terms. We start with the general idea
of a geometry of involutory group elements (see Bachmann [3, § 20,2]).

Basic Assumption. Let G be a group and S and P invariant subsets of invo-
lutions of G such that S ∪ P generates G.

Elements a, b, c, . . . of S are called lines and elements A,B,C, . . . of P points.
If A = b then A, b are polar to each other and the point A is called the pole of
b and the line b the polar of A.

The ‘stroke relation’ α | β is an abbreviation of the statement that α, β and
αβ are involutory elements (i.e., group elements of order 2). The statement
α, β | δ is an abbreviation of α | δ and β | δ.

A point A and a line b are incident if A | b. The set of points on a line a is
called a row of points. The set of lines through a point A is called a pencil of
lines. Lines a, b ∈ S are orthogonal if a | b. Points A,B ∈ P are polar if A |B.
A pair (A, b) is a flag if A, b are incident. Flags (A, a) and (B, b) are called
parallel if Aa = Bb.

The mapping a → aα, A → Aα of S onto S and P onto P is called the motion
induced by α ∈ G (we write βα instead of α−1βα). A point M is a midpoint
of A and B (respectively of a and b) if AM = B (respectively if aM = b).
Dually, a line m is a midline of a and b (respectively of A and B) if am = b
(respectively if Am = B). If a and b have a common point then a midline is
also called a bisector of a and b. If A and B have a joining line, then a midline
is also called a right bisector of A and B.

Double incidences are quadruples (A,B, c, d) with A,B | c, d and A �= B and
c �= d. A triangle is a set of three (distinct) points A,B,C and three (distinct)
lines a, b, c with A | b, c and B | a, c and C | a, b. A quadrangle is a set of four
points A,B,C,D and four lines a, b, c, d with a | A,B and b | B,C and c | C,D
and d | D,A.

Remark 2.1. The ‘geometry of involutory group elements’ associates to any
group-theoretical structure (G,S, P ) a geometric structure (the group plane)
of points, lines and geometric relations (such as incidence and orthogonality),
and provides a translation from the associated group-theoretical language L
to a geometric language L′.

As Pambuccian [19] points out, if one is interested in producing an axiomatic
system, one should only use first-order logic.3 As shown in H. Struve and R.
Struve [31] and [32], there exist first-order versions LP of L and L′

P of L′, such
that a theory T , which is formulated in LP , is mutually faithfully interpretable4

3This consensus has been reached by the end of the first half of the 20th century, based on
the work of Skolem, Hilbert and Ackermann, Gödel, and Tarski.
4That is, a sentence ϕ is a theorem of T if and only if the translation of ϕ is a theorem of
T ′, and vice versa.
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with the theory T ′, which is obtained from T by a translation from LP to L′
P .

In other words, T and T ′ represent the same theory.5

This correspondence justifies to use the geometric interpretation of the group-
theoretical structure (G,S, P ) without any further ado (see the ‘formulation
of geometry in the group of motions’ in [32, Sect. 3.4]). This should not cause
any confusion since the context will always be clear.

Based on this group-theoretical approach, Bachmann [3] defines a common
substratum of Euclidean, hyperbolic, and elliptic geometry by an axiom system
whose models are called Bachmann groups or—in the geometric interpretation—
Bachmann planes. No assumptions are made about order or continuity.

Bachmann groups are the models of an axiom system (denoted by B) which
consists of the Basic Assumption and the following axioms:

B0. If a |b then ab ∈ P and for every A there exist a, b with A = ab.
B1. For A,B there exists c with A,B |c.
B2. If A,B |c, d then A = B or c = d.
B3. If a, b, c |D then abc ∈ S.
B4. If a, b, c |d then abc ∈ S.
B5. There exists g, h, j with g |h and j � g and j � h and j � gh.

The axioms make the following statements: According to B0 orthogonal lines
a, b intersect in the point ab and through every point there exist two orthogonal
lines. According to B1 and B2 any two points have a unique joining line and
according to B3 and B4 the theorem of three reflections holds: If three lines
have a common point or a common perpendicular, then the product of the
reflections in these lines is a line reflection. According to B5 there exist two
orthogonal lines g and h and a line j which is neither orthogonal to g or h nor
incident with gh.

A Bachmann plane is a Euclidean plane if the parallel postulate Pax holds:

Axiom Pax. For A, b with A � b there is one and only one line through A which
has no common point with b.

According to [3] a Euclidean plane is a Pappian affine plane (with a com-
mutative coordinate field K of characteristic �= 2) which can be extended to
a Pappian projective plane (the projective ideal plane). The orthogonality of
lines induces in the projective ideal plane a polarity, which can be described
in the projective coordinate plane by a symmetric bilinear form f of rank 2
and index6 0. The group G of Euclidean motions can be represented as the
special orthogonal group O+

3 (K, f) of degree 3 of orthogonal transformations
with determinant 1.

5This holds under mild hypotheses with respect to the axioms of T , which all axiom systems
of this article satisfy (see [32]).
6The (Witt) index of a quadratic space (V, f) is defined to be the maximal dimension of a
totally isotropic subspace of V/RadV (see [3, p. 311]).
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A Euclidean plane (and more generally a Bachmann plane) has free mobility
if any two points have a midpoint and if any two lines, which are incident with
a common point, have a bisector, i.e., if the following axioms hold

B6. For A,B there exists M with AM = B.
B7. If a, b |C then there exists m with am = b.

A Euclidean plane with free mobility has a Pythagorean coordinate field.

A Euclidean plane is orderable if every line is linearly orderable and if every
line admits a partition into sides, which is compatible with the linear order of
lines (see [28, Definition 3.9]). We note that this definition can be formulated
in purely group-theoretical terms: A line g is orderable and admits a partition
into sides, if the group of translations of the Euclidean plane is linearly or-
derable7 such that the translations along g form a convex subgroup (see [27,
Theorem 3.24]). In an ordered Euclidean plane the pencil of lines are cyclically
ordered and the associated field K of coordinates is an ordered field (see [33]
and [27, Sect. 4]).

If, in addition, the continuity axiom holds, which states, that the rows of points
(respectively the group Tg of translations along a line g) are Dedekind complete
(that is, every non-empty subset which is bounded above has a supremum), then
the Euclidean plane is isomorphic to the Euclidean coordinate plane over the
real numbers (cp. Behnke et al. [5, Chapt. 7, Sect. 2] and Prieß-Crampe [21]).8

3. Hilbert planes

The term ‘absolute geometry’ was coined by Bolyai to characterize the part of
Euclidean geometry that does not depend on the parallel postulate. If, in addi-
tion, no continuity assumptions are assumed, this part of Euclidean geometry
is the theory of the plane axioms of group I, II and III of Hilbert’s Grundlagen
der Geometrie or, equivalently, the theory of ordered Bachmann planes with
free mobility (the so-called Hilbert planes). For the theory of Hilbert planes
we refer to Pejas [20], Bachmann [3, § 20,13], Hessenberg and Diller [12] and
Hartshorne [11].

Hilbert planes can be divided into three classes which correspond to the cases
which Saccheri called the hypothesis of the right angle, the hypothesis of the
acute angle, and the hypothesis of the obtuse angle.

Theorem 3.1. If one triangle of a Hilbert plane has an angle sum which is
equal, less or greater than a straight angle, then so do all.

Proof. This holds according to Hartshorne [11, Theorem 34.7]. �
7A group is linearly orderable if and only if there exists a partition into cones; see [28,
Theorem 3.3].
8The continuity axiom implies the Archimedean axiom which Hilbert used in [13]. Neither
of these axioms can be stated in first-order logic.



1 Page 6 of 29 R. Struve and H. Struve J. Geom.

Definition 3.2. A Hilbert plane is of Type I, Type II or Type III according as
in every triangle the angle sum is equal, less or greater than a straight angle.

3.1. Models of Hilbert planes

Basic examples of the different types of Hilbert planes are the
following models9 (we recall that, if K denotes an ordered field, then
R = {x ∈ K: |x| < n for a natural numbern} is the ring of finitely bounded
elements and I = {0} ∪ {x ∈ K : x−1 �∈ R} is the ideal of infinitely small or
infinitesimal elements of K).

3.1.1. Euclidean Hilbert planes. Ordered Euclidean planes with free mobil-
ity are Hilbert planes of Type I, which satisfy the Euclidean parallel axiom.
They can be represented as affine coordinate planes A(K, k) over an ordered
Pythagorean field K and a metric constant k ∈ K with −k /∈ K2. Points are
pairs (x, y) of elements of K and lines are triples [u, v, w] with u �= 0 or v �= 0
(proportional triples represent the same line). A point (x, y) and a line [u, v, w]
are incident if ux + vy + w = 0. Lines [u, v, w] and [u′, v′, w′] are orthogonal if
vv′ + kuu′ = 0. The group G of Euclidean motions can be represented as the
special orthogonal group O+

3 (K, f) of degree 3 over K and a bilinear form f ,
which corresponds to the orthogonality of lines (see Bachmann [3, § 13,1]).

3.1.2. Semi-Euclidean Hilbert planes. These planes were discovered by Dehn
[7]. They are subplanes of Euclidean planes and show that the Euclidean paral-
lel axiom is not equivalent with the postulate, that in every triangle the angle
sum is a straight angle. Semi-Euclidean Hilbert planes can be constructed over
any non-Archimedean ordered Pythagorean field K. The points of the plane
are the points with infinitesimal coordinates of the associated Euclidean plane
(see Hessenberg and Diller [12, p. 218]). The lines of the Hilbert plane are
all lines of the Euclidean plane, which are incident with at least one point of
the Hilbert plane. They are called ‘semi-Euclidean’ since they are subplanes
of a Euclidean plane, but do not satisfy the Euclidean parallel axiom. Semi-
Euclidean Hilbert planes are of Type I.

3.1.3. Hyperbolic Hilbert planes. These planes can be represented as sub-
structures (Klein models) of the projective coordinate plane over an ordered
Euclidean field where a projective metric is given by a hyperbolic polarity π.
Points of the hyperbolic plane are the points which are interior of the ‘funda-
mental conic’ κ of self-conjugate points of π. Lines of the hyperbolic plane are
the secants of κ. The group G of hyperbolic motions can be represented as the
special orthogonal group O+

3 (K, f) of degree 3 over K and the bilinear form
f , which is associated to the polarity π (see Bachmann [3]).

Hyperbolic Hilbert planes are of Type II and satisfy the hyperbolic parallel
axiom of Hilbert’s Neue Begründung der Bolyai-Lobatschefskyschen Geometrie

9There is no commonly agreed naming of Hilbert planes. We follow Bachmann [3] and
Hessenberg and Diller [12].
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[14] which states, that if a line a and a point B are not incident, then there exist
two ‘limiting lines’ through B, which separate the lines through B, which have
a common point with a, from those lines through B, which have no common
point with a.

3.1.4. Semi-hyperbolic Hilbert planes. These planes were discovered by Schur.
They are subplanes of hyperbolic planes and can be constructed over any
non-Archimedean ordered Euclidean field K. The points of the plane are the
points with infinitesimal coordinates of the associated hyperbolic plane. The
Lotschnittaxiom (‘A quadrangle with three right angles closes’; see [1]) is sat-
isfied, but Hilbert’s hyperbolic parallel axiom does not hold. These Hilbert
planes of Type II are called ‘semi-hyperbolic’ since they are subplanes of a
hyperbolic plane, but do not satisfy the hyperbolic parallel axiom.

3.1.5. Non-Legendrean Hilbert planes. These Hilbert planes of Type III were
discovered by Dehn, who called them non-Legendrean (see Bachmann [2, § 9]
and Hessenberg and Diller [12, § 65]). The coordinate field K is a non-
Archimedean ordered Pythagorean field. The points of the plane are the points
with infinitesimal coordinates of the associated elliptic plane over K.

We note that elliptic planes with order and free mobility are not Hilbert planes,
since their rows of points are cyclically ordered.

4. An axiom system for real Galilean geometry

Galilean geometry is not a part of classical absolute geometry. For an axiomatic
characterization of Galilean planes we generalize axiom system B of Sect. 2
and define a common substratum of the so-called Cayley–Klein geometries
(including Euclidean, hyperbolic, elliptic, Galilean and Minkowskian geometry
and their dual counterparts; see R. Struve [29]) by an axiom system whose
models are called Cayley–Klein groups or—in the geometric interpretation—
Cayley–Klein planes. No assumptions are made about order or continuity.

Cayley–Klein groups are the models of an axiom system (denoted by A), which
consists of the Basic Assumption and the following axioms:

A0. If a |b then ab ∈ P and if A |B then AB ∈ S.
A1. For every pair (A, b) there exists (a,B) with a |A and B |b and Aa = bB

and if A �= b then (a,B) is unique.
A2. If A,B |c, d then A = B or c = d.
A3. If A,B,C |d then ABC ∈ P and if a, b, c |D then abc ∈ S.
A4. If A |a and B |b and C |c and Aa = Bb = Cc then ABC ∈P and abc∈S.
A5. There exists a quadrangle.

The axioms make the following statements: According to A0 orthogonal lines
a, b are incident with the point ab and polar points A,B are incident with the
line AB. The axiom A1 states that if A is a point and b a line, then there
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exists a line a through A and a point B on b with Aa = bB (a ‘perpendicular’
Aa from A to b with foot B), and that (a,B) is unique if A is not the pole
of b. According to A2 two distinct points have at most one joining line and
two distinct lines have at most one common point. A3 states that if A,B,C
are collinear points then ABC is a point (the fourth reflection point) and that
if a, b, c are copunctual lines then abc is a line (the fourth reflection line).
A4 states that parallel flags (A, a), (B, b) and (C, c) have a fourth reflection
point ABC and a fourth reflection line abc. According to A5 there exists a
quadrangle.

The Basic Assumption and all axioms are self-dual. Hence in the theory of
Cayley–Klein groups the principle of duality holds. If (G,S, P ) is a Cayley–
Klein group, then we get by interchanging points and lines the dual Cayley–
Klein group (G,S′, P ′) with S′ = P and P ′ = S. We note, that a Bachmann
group is a Cayley–Klein group, which satisfies B1, and vice versa (see [29,
Theorem 4.1]).

A Cayley–Klein plane is a Galilean plane if the parallel postulate Pax and the
dual statement Pax∗ hold:

Axiom Pax∗. For A, b with A � b there is one and only one point on b which
has no joining line with A.

According to H. Struve [25] and R. Struve [29] the incidence structure of a
Galilean plane can be obtained from an affine plane A by the removal of a
pencil Π of parallel lines. The elements of Π are called isotropic lines and
determine an isotropic direction. In every line b and in every point B of a
Galilean plane there exists a reflection, i.e., an involutory collineation of A
which leaves Π invariant and which fixes the points on b respectively the lines
through B. The set S of line-reflections and the set P of point reflections
generate the group G of motions. A Galilean plane can be coordinatized over
a division ring R.10

A Galilean plane has free mobility if B6 and B7 hold. Both axioms are inde-
pendent from A ∪ {Pax∗}.

An order structure for Galilean planes is introduced in [27], and will explicitly
be introduced in Definition 5.8 (for the more general case of isotropic planes).
Analogously to the Euclidean case, every line of an ordered Galilean plane
is linearly orderable and every line admits a partition into sides, which is
compatible with the linear order of lines.

The coordinatizing algebraic structure of an ordered Galilean plane is an or-
dered division ring R (cp. [27, Sect. 4]). If, in addition, the Archimedean axiom
holds (which states in our group-theoretical approach, that the group Tg of
translations along a line g is an Archimedean ordered group), then the division
ring R is isomorphic to a subfield of the real numbers (see Prieß-Crampe [21,
Chap. 2, § 3, Satz 3]). If the continuity axiom of Sect. 2 is satisfied (which

10 In the literature division rings are also called ‘distributive Veblen–Wedderburn systems’
(see Hughes and Piper [17]).
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implies the Archimedean axiom) then R is isomorphic to the field of real num-
bers.

Galilean geometry is studied in detail in the literature. We refer to Yaglom
[35], Giering [9], Strubecker [23] and Sachs [22] and the references given there.

5. Absolute isotropic geometry

We now study the part of Galilean geometry which does not depend on the
parallel postulate and any continuity assumption. This is the theory of Cayley–
Klein groups which satisfy the dual parallel postulate and the axioms of order
and free mobility. We call this theory absolute isotropic geometry. The mod-
els are called groups of absolute isotropic geometry and the associated group
planes planes of absolute isotropic geometry (or, for brevity, isotropic planes).

More explicitly, a group of absolute isotropic geometry (G,S, P ) is a model
of the Basic Assumption and the axioms A0–A5, Pax∗, B6, B7 and axioms of
order, for which we refer to Definition 5.8.

In an isotropic plane there exist points which have no joining line. We define:

Definition 5.1. Points A and B are called parallel if A and B have no joining
line or if A = B.

A characterization of parallel points by a positive first-order sentence is given
in the next theorem.

Theorem 5.2. Distinct points A and B of an isotropic plane are parallel if and
only if a |A implies Aa |B for all a ∈ S.

Proof. This holds according to [29, Theorem 7.2]. �

Immediate consequences are, that parallelism is an equivalence relation on the
set of points (cp. [29, Theorem 7.4]) and that the equivalence class of a point
A is the set {B ∈ P : There exists a line a with a |A and B |Aa}.

According to the dual parallel postulate, through any point E of an isotropic
plane there is a distinguished ‘isotropic direction’, given by the set of points
which are parallel to E.

If H is a subset of G then we denote the set of involutions of H by I(H).
The involutions of PS are called trajectories. Let J = I(PS). We say that a
trajectory τ ∈J and a point A (respectively a line b) are incident (respectively
orthogonal) if A |τ (respectively b |τ).

Theorem 5.3. In an isotropic plane the following holds:

(a) The set of points of a trajectory is an equivalence class of parallel points.
(b) Trajectories, which have a common point, carry the same points.
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Proof. For a proof see Theorems 3.15 and 7.4 in [29]. �

Theorem 5.4. In an isotropic plane the following statements hold:

(a) There are no orthogonal lines.
(b) There are no polar points.
(c) The sets S, P and J are disjoint.

Proof. Statement (a) holds by [29, Theorem 7.5]. For a proof of (b), suppose
that there exist points A,B with A | B. Then AB ∈ S. If g := AB then
AB is an involution in the group T (g) of translations along g. Hence T (g) is
not linearly orderable, which is a contradiction to our axioms of order, which
imply that every row of points is linearly orderable. Statement (c) holds by
[29, Theorem 3.8]. �

5.1. The extended isotropic plane

Trajectories can be considered as ‘ideal lines’ precisely, to every group (G,S, P )
of absolute isotropic geometry we associate the structure (G,S∗, P ) with S∗ =
S ∪ J . In this way we obtain from an isotropic plane the extended isotropic
plane. For the extension of a Galilean plane by trajectories we refer to Bach-
mann [4, § 7,5].

Basic properties of an extended isotropic plane are summarized in the next
theorem. Please observe that, following the idea of the geometry of involutory
group elements, in this section the elements of S∗ are denoted by a, b, c, . . ..

Theorem 5.5. In (G,S∗, P ) with S∗ = S ∪ J the Basic Assumption and the
following axioms hold:

(a) P = I(S∗·S∗): B0
(b) Existence of joining lines: B1
(c) Theorem of three reflections: B3, B4
(d) Existence of three lines in general position: B5
(e) Weak uniqueness of joining lines: If A �= B and A,B,C | c and A,B | d

then C |d.
(f) Existence of perpendiculars: For A, b there exists c with A, b |c.
(g) Uniqueness of perpendiculars: If A, b |c, d then c = d.
(h) Existence of double incidences: There exist A,B, c, d with A �= B and

c �= d and A,B |c, d.
(i) Existence of points with at most one joining line: There exist A,B such

that A,B |c, d implies c = d.

Proof. For a proof of the Basic Assumption and of the statements (a), (b),
(c), (f), (g), (h), (i) we can refer to the proof of Theorem 7.7 in [29], where
these statements are proved for Galilean planes, but without using the parallel
postulate Pax. Statement (d) is an immediate consequence of (f), (h) and (i).
Statement (e) holds by Theorem 5.3 and axiom A2. �
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(G,S∗, P ) satisfies all axioms of a Bachmann group with the exception of the
uniqueness of joining lines, which is replaced by the weaker version (e). Ac-
cording to (a), (c), (d), (f) and (g), (G,S∗, P ) satisfies the defining axioms of a
Hjelmslev group, which is a generalization of the notion of a Bachmann group
(the existence and uniqueness of joining lines is substituted by the existence
and uniqueness of perpendiculars; see Bachmann [4]).

Moreover, the following theorem holds (we recall that a Hjelmslev group is
called singular if every quadrilateral with three right angles is a rectangle; see
Bachmann [4, § 4.3]).

Theorem 5.6. Let (G,S, P ) be a group of absolute isotropic geometry and J
the set of trajectories.

(a) (G,S ∪ J, P ) and (G,S ∪ P, J) and (G, J ∪ P, S) are Hjelmslev groups.
(b) (G, J ∪ P, S) is a singular Hjelmslev group.
(c) (G,S ∪ P, J) is a non-singular Hjelmslev group.

Proof. For a proof of (a) let (G,S, P ) be a group of absolute isotropic geometry
and J the set of trajectories. Then (G,S ∪ J, P ) is a Hjelmslev group which
satisfies, in addition, the properties (e), (h) and (i) of Theorem 5.5. Lines of J
with a common point carry the same points whereas lines of S are not elements
of a double incidence. Hence (G,S ∪P, J) and (G, J ∪P, S) are also Hjelmslev
groups (according to H. Struve and R. Struve [24, Theorem 12]) and (a) holds.

All three Hjelmslev groups are non-elliptic since S, P and J are disjoint sets
(by Theorem 5.4), whereas in the elliptic case every point-reflection is a line-
reflection and vice versa. Hence none of the sets S, P and J contains elements
α, β with α |β.

In (G,S ∪ J, P ) elements of J with a common point (an element of P ) carry
the same points. This implies for (G,P ∪ J, S) that lines of J , which have a
common perpendicular (which is necessarily an element of P ), have the same
set of perpendiculars. Hence every quadrilateral with three right angles is a
rectangle, i.e., the Hjelmslev group (G, J ∪ P, S) is singular and (b) holds.

For a proof of (c) suppose that both (G, J ∪P, S) and (G,S∪P, J) are singular
Hjelmslev groups, i.e., Hjelmslev groups where lines with a common perpendic-
ular have the same set of perpendiculars (see Bachmann [4, § 4.3]). This implies
that in (G,S ∪ J, P ) lines of S (respectively lines of J), which have a common
point of P , carry the same points. This is a contradiction to Theorem 5.5, (i)
that there exist points with at most one joining line. �

The next theorem states basic group-theoretical properties of (G,S ∪ J, P ).

Theorem 5.7. In (G,S ∪ J, P ) the following group-theoretical properties hold:

(a) I(G) = S ∪ P ∪ J
(b) S3 ⊆ S and J3 � J .
(c) Every element of G is a product of two or three elements of S ∪ J .
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(d) Z(G) = {1}
(e) The centralizer of a flag (A, b) is {1, A, b, Ab} (Rigidity Theorem).

Proof. Since (G,S ∪ J, P ) is a Hjelmslev group, (a), (c), (d) and (e) hold by
Theorems 3.3, 3.7, 3.29 and 3.12 of [4]. Statement (b) holds since (G, J ∪P, S)
is a singular Hjelmslev group and (G,S ∪ P, J) is a non-singular Hjelmslev
group. �

Since (G,S∗, P ) is a Hjelmslev group, we can define that (G,S∗, P ) is orderable,
if the Hjelmslev group is orderable (according to R. Struve [28]).

Definition 5.8. An extended isotropic plane is orderable, if (a) every line is
linearly orderable and (b) every line admits a partition into sides, which is
compatible with the linear order of lines (see [28]). An isotropic plane is or-
derable, if the associated extended plane is orderable.

5.2. The theorem of Saccheri in the extended isotropic plane

In Hilbert planes the Theorem of Saccheri holds: If one Saccheri quadrilateral
has acute (respectively obtuse) angles, then so do all. If one is a rectangle, then
all Saccheri quadrilaterals are rectangles (see Hartshorne [11, Theorem 34.5]).
We will show that a corresponding theorem holds in extended isotropic planes
and start this section with the introduction of the necessary order structure.

Let (G,S∗, P ) be an (extended) isotropic plane with S∗ = S ∪J . According to
our axiomatic assumptions, (G,S∗, P ) is an ordered Hjelmslev group. For the
order structure of Hjelmslev groups we refer to H. Struve and R. Struve [27]
and [28].

Let A,B be a pair of points which have a joining line c. We define the line
segment AB to be the set of points consisting of A,B and all points lying
between A and B. We call AB a segment of the first kind, if c ∈ S and of the
second kind if c ∈ J .

Segments AB and CD are called congruent if there exists a motion α ∈ G
which maps AB onto CD. Congruence is an equivalence relation on the set
of line segments. Congruent segments are of the same kind (since S and J
are invariant subsets of G). We define the length of a line segment to be the
associated congruence class.

Free mobility implies that the classes of congruent segments of the first kind
can be represented by the segments AB of a fixed line g ∈ S (that is, with
A,B | g), which, in turn, can be represented by the elements of the positive
cone T+

g of the abelian group Tg of translations along g. Since Tg is an ordered
abelian group (according to our axiomatic assumptions), the classes of con-
gruent segments can be endowed with an addition and an order relation ‘<’
such that they generate an ordered abelian group (isomorphic to Tg). These
definitions are equivalent with the definitions of a sum of segments and of an
order relation in Hilbert planes (see Hartshorne [11, Sect. 8]).
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For segments of the second kind corresponding results hold: The associated
congruence classes can be endowed with an addition and an order relation
such that they generate an ordered abelian group which is isomorphic to the
group of translations along a line h ∈ J . The length of line segments of different
kinds are not comparable (with respect to <).

Every line g ∈ S∗ admits a partition into sides which divides the set P of
points into three classes, namely, the points of g and the two ‘sides’ of g (also
called halfplanes; see [28]). We denote the sides of g by g+ respectively g−. An
angle is an unordered quadruple, which is given by two lines a, b with a unique
point of intersection (called the vertex of the angle), and by a halfplane a+ of
a and a halfplane b+ of b (in symbols ∠(a, b, a+, b+) or, for brevity, ∠(a+, b+)).
The interior of an angle ∠(a+, b+) is the set of points a+ ∩ b+.

There are two kinds of angles, namely ∠(a+, b+) with a, b ∈ S (first kind)
and ∠(a+, b+) with a ∈ S and b ∈ J (second kind). There are no angles
∠(a+, b+) with a, b ∈ J since there are no lines a, b ∈ J with a unique point
of intersection (see Theorem 5.3). In (G,S, P ) every line is an element of S
and every angle is of the first kind. For this reason we are mainly interested in
geometric properties of angles of the first kind. Angles of the second type are
introduced for technical reasons.

The introduction of angles can, equivalently, be based on the notion of rays. A
ray �u of a line u is the set of points of u consisting of a point O on u (the origin
of the ray) plus all points on u that are on the same side of O (with respect
to the linear order on u; see [11]). For any two rays �u and �v with u, v ∈ S
(or u, v ∈ J) there exists a motion α ∈ G, which maps �u onto �v (since the
origins of �u and �v have a midpoint and since any two lines of S respectively
J , which have a point of intersection, have a midline, and since the reflection
in the vertex of �v maps �v onto the associated opposite ray). According to the
Rigidity Theorem 5.7, (e) the centralizer of a flag (O, u) is {1, O, u,Ou}. Since
two of these motions reverse the orientation of u the following holds:

(‡) There are exactly two motions which leave a line u and a ray �ufixed,
namely the identity and the reflection in u.

With these definitions in mind, an angle can equivalently be defined as an
unordered quadruple (u, v, �u,�v) of two distinct rays �u and �v and their asso-
ciated lines u and v, originating at the same point (in symbols ∠(u, v, �u,�v)
or, for brevity, ∠�u,�v)). This definition corresponds to the definition of angles
in Hilbert planes (see [11]). Since the lines u and v are distinct, there are no
‘straight angles’ and since the rays �u and �v are distinct, the lines u and v are
not incident with the same points (that is, not both lines u and v are elements
of J).

An angle with vertex B is also given by three points A,B,C and joining
lines g of A,B and h of B,C, in symbols ∠(A,B,C, g, h). We use the various
representations of angles freely without further ado.
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Angles ∠(�u,�v) and ∠(�x, �y) are called congruent if there exists a motion α ∈
G which maps {u, v} onto {x, y} and {�u,�v} onto {�x, �y}. Congruence is an
equivalence relation on the set of angles. The angles of an equivalence class
are either all of the first kind or all of the second kind (since S and J are
invariant subsets of G). We define the magnitude of an angle ∠(�u,�v) to be the
associated congruence class (in symbols �(�u,�v)).

We now consider angles of the first kind and define the following notions anal-
ogously to the theory of Hilbert planes (see Hartshorne [11, Chapter 9]). If
∠(�u,�v) and ∠(�x, �y) are angles of the first kind (that is, u, v, x, y ∈ S) then
ϕ = �(�u,�v) is less than ϑ = �(�x, �y) (in symbols ϕ < ϑ) if the following
condition holds:

(†) There exists a ray �z in the interior of ∠(�x, �y) such that ∠(�u,�v) and
∠(�x, �z) or ∠(�u,�v) and ∠(�z, �y) are congruent.

Since angles of the first kind have an angular bisector, the two conditions ‘there
exists a ray �z such that ∠(�u,�v) and ∠(�x, �z) are congruent ’ respectively ‘there
exists a ray �z such that ∠(�u,�v) and ∠(�z, �y) are congruent ’ of statement (†)
are equivalent. If ϕ < ϑ then ϑ is greater than ϕ (in symbols ϑ > ϑ). The
<-relation induces a <-relation on the congruence classes of angles of the first
kind, which is a total linear order (the proof is identical with the proof in
Hilbert planes; see [11, Proposition 9.5]).

We now consider angles ∠(�u,�v) and ∠(�x, �y) of the second kind (with u, x ∈ S
and v, y ∈ J) and define the relation ‘< ’ in the same way as for angles of the
first kind, i.e., by condition (†). There exists no ray �z in the interior of ∠(�x, �y)
such that ∠(�u,�v) and ∠(�x, �z) are congruent (since this would imply z ∈ J ,
but then z and y are incident with the same points, which is a contradiction
to the assumption that �z is in the interior of ∠(�x, �y)). Hence the statement
∠(�u,�v) < ∠(�x, �y) is equivalent with the existence of a ray �z (with z ∈ S) in
the interior of ∠(�x, �y) such that ∠(�u,�v) and ∠(�z, �y) are congruent.

We show that this relation is irreflexive: Let α = ∠(�u,�v) be an angle of the
second kind with vertex O and let us assume α < α. Then there exists a ray
�z in the interior of ∠(�u,�v) such that ∠(�u,�v) and ∠(�z,�v) are congruent. Thus
there exists a motion β ∈ G with �u β = �z and �v β = �v. According to (‡) it is
β = v. This is a contradiction to our assumption that �z is a ray in the interior
of ∠(�u,�v), since the reflection in v interchanges the sides of v (see R. Struve
[28, Theorem 3.7]). Hence there are no elements α ∈ G with α < α and ‘<’ is
an irreflexive relation. Since ‘<’ is transitive, it is a partial linear order, which
induces a partial linear order on the set of congruence classes of angles of the
second kind. Free mobility implies, that any two of these congruence classes
are comparable, i.e., the partial order is a total linear order.

Finally we define the relation ‘<’ for arbitrary angles of the first or second
kind by condition (†). As is easily verified, this is a total linear order on the
set of congruence classes of angles of the first or second kind.
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Following the terminology of Hilbert planes, we say that an angle ∠(�u,�v) is
the sum of angles ∠(�u, �w) and ∠(�w,�v) if the ray �w lies in the interior of ∠(�u,�v)
(see [11, Sect. 9]). The sum of angles induces a corresponding definition on the
classes of congruent angles.

Now let ∠(B,A,C, g, h) be an angle with vertex A and joining lines g of A,B
and h of A,C. If D is a point on h on the other side of A from C, then the
angles ∠(B,A,C, g, h) and ∠(B,A,D, g, h) are supplementary (cp. [11, p. 92]).
An angle, which is congruent to one of its supplementary angles, is called a
right angle (cp. [11, p. 94]). Free mobility ensures that any two right angles
are congruent.

Lemma 5.9. An angle ∠(�u,�v) is a right angle if and only if u and v are or-
thogonal lines.

Proof. Let ϕ = ∠(B,A,C, g, h) and ψ = ∠(B,A,D, g, h) be supplementary
angles with g |A,B and h |A,C. Then D is a point on h on the other side of
A from C, in other words,

−→
AC and

−−→
AD are ‘opposite’ rays of h.

If g |h then gg = g and (
−→
AB)g =

−→
AB and hg = h and (

−→
AC)g =

−−→
AD, i.e., ϕ and

ψ are congruent and hence right angles.

Now let g � h and let us assume that there exists α ∈ G with gα = g and
hα = h and Aα = A or β ∈ G with gβ = h and hβ = g and Aβ = A. In the
first case the flags (A, g) and (A, h) are fixed and α = 1 or α = A, according
to the Rigidity Theorem 5.7, (e). In the second case the flags (A, g) and (A, h)
are fixed by βw, if w ∈ S denotes the angular bisector of g and h, and this
implies βw = 1 or βw = A, that is β = w or β = Aw. None of the motions of
{1, A,w,Aw} maps

−→
AC onto

−−→
AD and leaves

−→
AB fixed, and hence the angles ϕ

and ψ are not congruent and not right angles. This completes the proof. �

An angle is called acute if it is less than a right angle, and obtuse if it is
greater than a right angle. We are now in a position to formulate the Theorem
of Saccheri in an extended isotropic plane.

Definition 5.10. A quadrilateral with vertices A,B,C,D and sides a, b, c, d ∈
S∗ and a | A,B and b | B,D and c | C,A and d | D,C and a | b and a | c
is called a Saccheri quadrilateral if there exists a line m of symmetry with
Am = B and Cm = D.

In a Saccheri quadrilateral the angles at A and B are right angles and the
angles at C and D are equal. Hence, if a Saccheri quadrilateral has an acute
angle then two of the angles are acute and none of the angles is obtuse.

Theorem 5.11 (Saccheri’s Theorem). If one Saccheri quadrilateral of an ex-
tended isotropic plane has acute (respectively obtuse) angles, so do they all. If
one is a rectangle, then all Saccheri quadrilaterals are rectangles.
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We follow the proof of Saccheri’s Theorem in Hilbert planes (see [11, Sect. 34]),
which proceeds in several steps. In a first step we prove the following lemma
(see [11, Proposition 10.3]).

Lemma 5.12 (Exterior Angle Theorem). In any triangle an exterior angle is
greater than either of the opposite interior angles.

Proof. Let A,B,C be the vertices of the given triangle and a, b, c ∈ S∗ the
sides with A | b, c and B | a, c and C | a, b. Let D be a point on a, such that
C is a point between B and D. We show that the exterior angle ∠(A,C,D, b, a)
(with vertex C) is greater than the interior angle ∠(C,A,B, b, c) with
vertex A.

Let E be the midpoint of A and C and F = BE . The reflection in E maps the
angle ∠(E,A,B, b, c) (with vertex A) onto the angle ∠(E,C, F, b, cE) with ver-
tex C. Since ∠(C,A,B, b, c) = ∠(E,A,B, b, c) = ∠(E,C, F, b, cE) = ∠(A,C, F,
b, cE), it is sufficient for a proof of the theorem, to show that ∠(A,C, F, b, cE)
is less than ∠(A,C,D, b, a).

We show that F is an interior point of ∠(A,C,D, b, a). The points B and D
(and also B and F ) are on opposite sides of b. Hence D and F are on the same
side of b. We now consider the sides of a. The point E is a point of the segment
AC. Hence A,E and also A,F are on the same side of a. This shows, that F
is an interior point of ∠(A,C,D, b, a) and this implies that ∠(A,C, F, b, cE) is
less than ∠(A,C,D, b, a), as required. �

Proof of Theorem 5.11. Hartshorne shows in [11] that the Exterior Angle The-
orem implies in Hilbert planes successively Propositions 34.2 and 34.3 and 34.4
of [11] and finally the Theorem of Saccheri (Proposition 34.5). The proofs are
identical for (extended) isotropic planes. �

We note as an immediate consequence of Saccheri’s Theorem, that in an ex-
tended isotropic plane the existence of a rectangle implies that any quadri-
lateral with three right angles is a rectangle. This corollary holds not only in
isotropic planes but also in Hilbert planes and in Bachmann’s plane absolute
geometry (see [3, § 6,8]).

There is a close relationship between triangles and Saccheri quadrilaterals, as
the next theorem shows (cp. Hartshorne [11, Proposition 34.6]).

Theorem 5.13. To any triangle there exists a Saccheri quadrilateral for which
the sum of its two top angles is equal to the sum of the three angles of the
triangle.

Proof. We follow in outline the proof [11, p. 310] for Hilbert planes and denote
points as in the figures, which are provided there. However, the proofs are not
identical, since the axiomatic bases are distinct.
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Let A,B,C, a, b, c be a triangle with A |b, c and B |a, c and C |a, b. Let AD = B
and AE = C and n the perpendicular bisector with n | a and Bn = C (it is
n = Ma, if M denotes the midpoint of B and C).

It is AEnD = A. Hence EnD a glide reflection (by [4, Satz 2.20]) with fixed
point A, and EnD ∈ S (according to [4, Satz 2.30]). Hence there exists a line
m with m |E,n,D (by [4, Satz 2.23]). If g := EnD then g |A,m, that is, g is
the uniquely determined perpendicular from A to m.

Analogously, it is BDEn = B and this implies that f := DEn is a line with
f |B,m′ for a line m′ with m′ |D,E, n. Since there is a unique perpendicular
from D to n, it is m′ = m and f the perpendicular from B to m. Finally,
it is CnDE = C and h := nDE the perpendicular from C to m. It is fn =
(DEn)n = n(DEn)n = nDE = h. If F,G and H denote the feet of the
perpendiculars f, g, h from A,B,C to m, respectively, then Fn = H.

It is DD = D and cD = c and AD = B and mD = m, which implies fD = g and
FD = G. Thus AG and CH are congruent segments and ∠(D,A,G, c, g) and
∠(D,B,F, c, f) are congruent angles. Analogously, BF and AG are congruent
segments and ∠(E,A,G, b, g) and ∠(E,C,H, b, h) are congruent angles.

The quadrilateral FHBC with sides f, h, a,m has right angles at F and H,
and n is a line of symmetry (it is Bn = C and Fn = H, as just shown), so it
is a Saccheri quadrilateral.

The angles of the quadrilateral at B and C are the sum of the angles of the
triangle at B and C, plus angles that are congruent to the two parts of the angle
at A, divided by the line g. Hence the angles at B and C of the quadrilateral
equal the angle sum of the triangle. �

5.3. The geometry of isotropic planes

A characteristic property of isotropic geometry is that the group of rotations
around a point O and the group of translations in the isotropic direction (i.e.,
along a trajectory of parallel points) are isomorphic.

For a proof let (G,S, P ) be a group of absolute isotropic geometry. If S(O) :=
{a : a | O} denotes the set of lines, which are incident with a point O, then
S(O)3 ⊆ S(O). The set D(O) := {ab : a, b | O} of rotations around O forms
an abelian group. Free mobility implies that all groups D(O) with O ∈ P are
conjugated.

If τ ∈ J then P (τ) := {A : A | τ} is, with respect to the Hjelmslev group
(G,S ∪ J, P ), the set of points which are incident with the line τ , and thus
P (τ)3 ⊆ P (τ). Hence the set T (τ) := {AB : A,B | τ} of translations along
a trajectory τ forms an abelian group. Free mobility implies that all groups
T (τ) with τ ∈ J are conjugated.

Theorem 5.14. In an isotropic plane the group D(O) of rotations around a
point O and the group T (τ) of translations along a trajectory τ are isomorphic
to each other, for any O ∈ P and τ ∈ J .
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Proof. Let (G,S, P ) be a group of absolute isotropic geometry. Then there
are no orthogonal lines (by Theorem 5.4) and the existence and uniqueness of
perpendiculars in the Hjelmslev group (G,S ∪ P, J) imply that an element of
S and an element τ ∈ J have a unique common element of P .

Now let O be a point of (G,S, P ) and τ ∈ J a trajectory with O � τ . Let ϕ
be the mapping from the pencil of lines through O onto the set of points of
τ which associates to a line a with a | O the point A with A | a, τ . Then ϕ is
bijective (since the points of τ have no joining line and Pax* holds).

ϕ induces a mapping χ from D(O) onto T (τ) with χ(ab) = ϕ(a)ϕ(b). We
show that χ is well-defined. Let a, b, c, d | O and ab = cd and A = ϕ(a)
and B = ϕ(b) and C = ϕ(c) and D = ϕ(d). We denote the trajectories
Aa,Bb,Cc,Dd ∈ J by a′, b′, c′, d′, respectively. By Theorem 5.3, (b) these
trajectories carry the same points (namely the points which are incident with
τ). Hence for all points E with E | τ it is EAB = Ea′a·b′b = Eab′b = Eab

and ECD = Ec′c·d′d = Ecd′d = Ecd. Since ab = cd it is EAB = ECD and
EEAB = EECD.

Since (G,S∪J, P ) is a Hjelmslev group, E,A,B,C,D |τ implies EAB,ECD ∈
P . Since the Hjelmslev group is non-elliptic (since there are no polar points
according to Theorem 5.4) any two points have at most one midpoint (see [4,
Satz 2.35]) and EEAB = EECD implies EAB = ECD and AB = CD. Hence
ab = cd implies ϕ(a)ϕ(b) = ϕ(c)ϕ(d) and χ is well-defined. As an immediate
consequence we note, that abd = c implies ϕ(a)ϕ(b)ϕ(d) = ϕ(c).

χ is bijective since ϕ is bijective. It remains to show that χ is a group ho-
momorphism. If a, b, c, d | O then χ(ab · cd) = χ(abc · d) = ϕ(abc)ϕ(d) =
ϕ(a)ϕ(b)ϕ(c)ϕ(d) = χ(ab) · χ(cd). This proves the theorem. �

In Hilbert planes the length a, b, c of the sides of a triangle satisfy the triangle
inequality a + b ≥ c. In isotropic planes a ‘triangle equality’ holds.

Theorem 5.15. If a, b, c are the length of the sides of a triangle of an isotropic
plane and a ≤ b ≤ c then a + b = c.

Proof. Let (G,S, P ) be a group of absolute isotropic geometry and A,B,C, a, b, c
a triangle with A |b, c and B |a, c and C |a, b and a ≤ b ≤ c.

Let D be the point on the line c which is parallel to C. If w denotes the
line through B with aw = c then Cw = D and (since the reflection in w
preserves lengths) BC = BD. Analogously it is AC = AD. Hence BC +AC =
BD + DA = AB (since D is a point between A and B) and a + b = c. �

Thus in isotropic planes there are no equilateral triangles: If two sides of a
triangle are congruent, then the third side is twice as long. We now study the
angle sum of a triangle in isotropic planes.

Remark 5.16. Hilbert and Hartshorne introduce the notion of an angle as the
union of two rays not lying on the same line. Then the interior of an angle
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∠BAC consists of all points D such that D and C are on the same side of the
line through A and B, and such that D and B are on the same side of the line
through A and C. Hartshorne [11, p. 77] notes, that in this approach there is
no ‘straight angle’ (particularly, the interior of a straight angle, consisting of
two opposite rays of a line, cannot be defined).

An alternative approach is, to use halfplanes for a definition of angles (see
Section 5.2) and to call ∠(a, a, a+, a+), where a+ denotes one of the halfplanes
of a line a, a straight angle. The interior a+ ∩ a+ of this angle is a halfplane,
as one would expect, and any two straight angles are congruent (since free
mobility holds).11 We propose this approach and extend the definition of an
angle, given at the beginning of Section 5.2, by the notion of a straight angle.

Based on this terminology, the following theorem holds.

Theorem 5.17. If in an isotropic plane there exists a triangle with an angle
sum, which is less (respectively equal or greater) than a straight angle, then
every triangle has an angle sum, which is less (respectively equal or greater)
than a straight angle.

Proof. If in an isotropic plane there exists a triangle with angle sum less than
a straight angle, then the associated Saccheri quadrilateral in the extended
isotropic plane must have acute angles (see Theorem 5.13). According to The-
orem 5.11 then every Saccheri quadrilateral has acute angles and by Theo-
rem 5.13 every triangle has an angle sum less than a straight angle.

The proofs of the two other cases (there exists a triangle with an angle sum
which is equal respectively greater than a straight angle) are analogous. �

Hence, just as in the theory of Hilbert planes, isotropic planes can be di-
vided into three classes which correspond to the cases which Saccheri called
the hypothesis of the right angle, the hypothesis of the acute angle, and the
hypothesis of the obtuse angle.

Definition 5.18. An isotropic plane is of Type I or Type II or Type III, de-
pending on whether in every triangle the angle sum is equal to a straight angle
or less or greater than a straight angle.

6. Models of isotropic planes

We use the framework of quadratic spaces and orthogonal groups for the con-
struction of isotropic planes. Let V be a 3-dimensional vector space over a
field K of characteristic �= 2, f a symmetric bilinear form, (V, f) the associ-
ated quadratic space and O+

3 (K, f) the special orthogonal group (of degree 3)

11∠(a, a, a+, a−) is a zero angle (whose interior a+ ∩ a− is void). Any two zero angles are
congruent.
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of orthogonal transformations with determinant 1, which we will also denote
by O+

3 (V, f).

If (V, f) is a regular quadratic space (with radical radV = {0}), then every
element of O+

3 (K, f) can be represented as a product of symmetries σ1, . . . , σr,
and the spinor norm on O+

3 (K, f) can be defined as the homomorphism η from
O+

3 (K, f) into the factor group K̇/K̇2 (of the multiplicative group K̇ of K

over the group K̇2 of non-zero squares) with η(σ1 · · · σr) = η(σ1) · · · η(σr) and
η(σi) = f(ui, ui)K̇2, where ui denotes a non-zero element of the 1-dimensional
fixed space of the symmetry σi (for i = 1, . . . , r). As is well-known two sym-
metries have the same spinor norm if and only if they are conjugated. For the
theory of quadratic spaces we refer to O’Meara [18].

We now generalize the notion of a spinor norm to the non-regular case. Let
(V, f) be a quadratic space with radV �= {0}. Then the quotient space V ′ =
V/radV inherits a regular metric from V by f ′(u+ radV, v + radV ) := f(u, v)
for u, v ∈ V . In other words, (V ′, f ′) is a regular quadratic space.

An orthogonal transformation α ∈ O+
3 (V, f) induces an orthogonal trans-

formation α′ ∈ O+
3 (V ′, f ′) by α′(v + radV ) := α(v) + radV . The mapping

ϕ : α � α′ is a group homomorphism from O+
3 (V, f) into O+

3 (V ′, f ′). If η
denotes the spinor norm on the regular quadratic space O+

3 (V ′, f ′) then the
product η∗ := η ◦ ϕ is a homomorphism from O+

3 (V, f) into K̇/K̇2, which we
call the spinor norm on O+

3 (V, f).

From a geometric point of view, quadratic spaces and the associated orthog-
onal groups O+

3 (V, f) correspond to projective spaces with a Cayley–Klein
metric (see H. Struve and R. Struve [26]). The isotropic planes, which we will
construct, correspond to subplanes of projective planes with a Cayley–Klein
metric.

We call a metric plane complete if the group G of motions can be represented
as a full group O+

3 (K, f) (see Bachmann [3, § 18,3]). The complete Hilbert
planes are the Euclidean, hyperbolic and non-Legendrean Hilbert planes. A
subplane of a metric plane E is called locally complete (lokalvollständig, see [3,
p. 346]), if the subplane contains with a point of E all lines of E , which are
incident with that point.

6.1. Galilean planes

Ordered Galilean planes with free mobility are introduced in Sect. 4. They are
isotropic planes of Type I since in the extended Galilean plane every quadrilat-
eral with three right angles is a rectangle. They satisfy the Euclidean parallel
axiom (see Bachmann [4, § 7]).

6.2. Locally Galilean planes

These planes can be constructed over any non-Archimedean ordered field K.
Let I be the (maximal) ideal of infinitesimal elements of K. The points of
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the plane are those points of the associated Galilean coordinate plane E over
K, whose first coordinate is infinitesimal and whose second coordinate is an
arbitrary element of K. The subplane of E with this set of points and with
the set of lines of E which are incident with at least one of these points, is
an isotropic plane of Type I, which does not satisfy the Euclidean parallel
postulate.

We note, that the associated group (G,S, P ) of absolute isotropic geometry can
be represented as a group of certain (3×3)-matrices, whose entries are elements
of subgroups A,B and C of the additive group of K (see [24, Sect. 5]), namely
B = (I,+) and A = C = (K,+).

We call these planes locally Galilean, since they are locally complete subplanes
of a Galilean plane and in any neighborhood of a point12 the Galilean geometry
holds. Every Galilean plane is locally Galilean.

6.3. Locally co-Minkowskian planes

Let G = O+
3 (K, f) be the special orthogonal group over a field K (of charac-

teristic �= 2) and a symmetric bilinear form f of rank 2 and index 1. Then there
exist isotropic vectors, which are not elements of the 1-dimensional radical, and
f can be represented in the normal form f((u, v, w), (u′, v′, w′)) = vv′ + k·uu′

for all (u, v, w), (u′, v′, w′) ∈ K3 and an orthogonality constant k with −k ∈ K̇2

(see Wolff [34] and Bachmann [3]).

Theorem 6.1. Let V be a 3-dimensional vector space over an ordered Euclidean
field K, which is endowed with a symmetric bilinear form f of rank 2 and
index 1. Let k be the associated orthogonality constant and −k ∈ K̇2. Then
the involutions of G = O+

3 (V, f) can be divided into three classes with the
following properties:

(1) The involutions of two classes I−
1 and I−

2 have a negative spinor norm
and the involutions of one class I+3 have a positive norm.

(2) (G,S′, P ′) with S′ = I−
1 and P ′ = I−

2 ∪ I+3 is a co-Minkowkian Cayley–
Klein group and the dual Cayley–Klein group is a Minkowskian group.

(3) (G,S∗, P ∗) and (G,S∗, P ∗∗) with S∗ = I−
1 and P ∗ = I−

2 and P ∗∗ = I+3
are isotropic planes of Type II, which are isomorphic.

Proof. Let K, k, V, f satisfy the assumptions of the theorem. If S denotes the
set of reflections in 1-dimensional subspaces of (V, f), and if G = O+

3 (V, f)
and P = I(S2), then (G,S, P ) is a Minkowskian group (see Wolff [34]). The
associated Minkowskian plane is orderable (since K is orderable; see H. Struve
and R. Struve [27]), and since k /∈ K̇2 no right angle has a bisector (cp. [24,
Sect. 2]) and the Exchange Theorem can be applied (see [4, § 14] and [24,
Satz 2]).

12The neighborhood is defined with respect to the order topology.
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According to our assumptions −k ∈ K̇2. Hence −k > 0 and k < 0 and k /∈ K̇2.
The spinor norm of an element of P is the element k ·K̇2 of K̇/K̇2 and hence
negative. If I−

1 := P and if I−
2 and I+3 are the sets of elements of S with a

negative (respectively positive) spinor norm, then I−
1 , I−

2 , I+3 satisfiy statement
(1).

Statement (2) holds since (G, I−
2 ∪ I+3 , I−

1 ) is a Minkowskian group, which
implies that the dual structure (G, I−

1 , I−
2 ∪ I+3 ) is a co-Minkowskian Cayley–

Klein group (see [29]).

For a proof of (3) we note that, according to [24, Satz 3], (G,S′, P ′) with
S′ = I−

1 ∪ I−
2 and P ′ = I+3 is a Hjelmslev group, which satisfies the conditions

of the Exchange Theorem [4, § 14], that is, I−
1 and I−

2 are invariant subsets
of G which contain with three copunctual lines the fourth reflection line, but
no pair of orthogonal lines, and for every pair (α, β) with α ∈ I−

1 and β ∈ I−
2

there exists a unique element γ ∈ I−
3 with α, β |γ.

Hence (G, I−
1 ∪I+3 , I−

2 ) is also a Hjelmslev group and (G,S∗, P ∗)and(G,S∗, P ∗∗)
with S∗ = I−

1 and P ∗ = I−
2 and P ∗∗ = I+3 are Cayley–Klein groups. They are

isotropic planes (of Type II) since (G, I−
2 ∪I+3 , I−

1 ) is an orderable Minkowskian
group with free mobility, which satisfies the Euclidean parallel postulate. They
are isomorphic since the extended isotropic planes are isomorphic (by [24,
p. 405]). �

The isotropic planes of the theorem are locally complete subplanes of a co-
Minkowkian plane. We call isotropic planes with this property locally co-
Minkowkian. Their group G of motions is the full orthogonal group O+

3 (V, f),
that is, the isotropic planes are complete.

The planes satisfy the hyperbolic parallel axiom of Hilbert’s Neue Begründung
der Bolyai-Lobatschefskyschen Geometrie [14] which we stated explicitly in
Section 3.1.3.

Models of isotropic planes, which are locally co-Minkowskian but which are not
complete and do not satisfy the hyperbolic parallel axiom, can be constructed
over any non-Archimedean ordered Euclidean field K. Let R be the ring of
finitely bounded elements of K and let I be the maximal ideal of infinitesimal
elements of R. The subplane of the co-Minkowskian plane over K, whose points
have infinitesimal coordinates, is an isotropic plane (of Type II) with these
properties.

6.4. Locally co-Euclidean planes

Let G = O+
3 (K, f) be the special orthogonal group over a field K (of char-

acteristic �= 2) and a symmetric bilinear form f of rank 2 and index 0. Then
every isotropic vector is an element of the 1-dimensional radical, and f can be
represented in the normal form f((u, v, w), (u′, v′, w′)) = vv′ + k ·uu′ for all
(u, v, w), (u′, v′, w′) ∈ K3 and an orthogonality constant k with −k /∈ K̇2 (see
Bachmann [4, § 7.4] and [3, § 10,1]). The field K is called ‘k-Pythagorean’ if
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1 + kx2 ∈ K̇2 for all x ∈ K. For the construction of fields of this type we refer
to Gröger and Sörensen [10, Sect. 3].13

Theorem 6.2. Let V be a 3-dimensional vector space over an ordered field K,
which is endowed with a symmetric bilinear form f of rank 2 and index 0. Let
k be the associated orthogonality constant and k < 0 and −k /∈ K̇2. If K is
k-Pythagorean then the involutions of G = O+

3 (V, f) can be divided into three
classes with the following properties:

(1) The involutions of two classes I−
1 and I−

2 have a negative spinor norm
and the involutions of one class I+3 have a positive norm.

(2) (G,S′, P ′) with S′ = I−
1 and P ′ = I−

2 ∪I+3 is a co-Euclidean Cayley–Klein
group and the dual Cayley–Klein group is a Euclidean group.

(3) (G,S∗, P ∗) and (G,S∗, P ∗∗) with S∗ = I−
1 and P ∗ = I−

2 and P ∗∗ = I+3
are isotropic planes of Type III, which are isomorphic.

Proof. Let K, k, V, f satisfy the assumptions of the theorem. If S denotes the
set of reflections in 1-dimensional subspaces of (V, f), and if G = O+

3 (V, f)
and P = I(S2), then (G,S, P ) is a Euclidean Bachmann group (see [3, § 9,1;
Theorem 4]). The associated Euclidean plane is orderable, since K is orderable.
Since k /∈ K̇2 no right angle has a bisector (cp [3, p. 216]) and the Exchange
Theorem can be applied (see [4, § 14] and [24, Satz 2]).

The spinor norm of an element of P is the element k ·K̇2 of K̇/K̇2 and hence
negative. If I−

1 := P and if I−
2 and I+3 are the sets of elements of S with a

negative (respectively positive) spinor norm, then I−
1 , I−

2 , I+3 satisfiy statement
(1).

Statement (2) holds since (G, I−
2 ∪ I+3 , I−

1 ) is a Euclidean Bachmann group,
which implies that the dual structure (G, I−

1 , I−
2 ∪I+3 ) is a co-Euclidean Cayley–

Klein group (see [29]).

For a proof of (3) we note that, according to [24, Satz 3], (G,S′, P ′) with
S′ = I−

1 ∪ I−
2 and P ′ = I+3 is a Hjelmslev group, which satisfies the conditions

of the Exchange Theorem [4, § 14], that is, I−
1 and I−

2 are invariant subsets
of G which contain with three copunctual lines the fourth reflection line, but
no pair of orthogonal lines, and for every pair (α, β) with α ∈ I−

1 and β ∈ I−
2

there exists a unique element γ ∈ I−
3 with α, β |γ.

Hence (G, I−
1 ∪I+3 , I−

2 ) is also a Hjelmslev group and (G,S∗, P ∗)and(G,S∗, P ∗∗)
with S∗ = I−

1 and P ∗ = I−
2 and P ∗∗ = I+3 are Cayley–Klein groups. They are

isotropic planes (of Type III) since (G, I−
2 ∪ I+3 , I−

1 ) is a Euclidean group with
free mobility, which is orderable and satisfies the Euclidean parallel postulate.
They are isomorphic since the extended isotropic planes are isomorphic (by
[24, p. 405]). �

An isotropic plane of Theorem 6.2, (3) is a subplane of a co-Euclidean plane
and contains with a given point all lines of the co-Euclidean plane which are

13In [10] the field K and the metric constant k are denoted by M respectively κ.
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incident with this point (the co-Euclidean pencil of lines). We call isotropic
planes with this property locally co-Euclidean. Their group G of motions is the
full orthogonal group O+

3 (V, f), that is, the isotropic planes are complete.

Co-Euclidean planes are locally co-Euclidean. However, they are not isotropic
planes since their rows of points are cyclically ordered.

6.5. Isotropic planes over skew fields

Let P be an arguesian projective plane, which satisfies the Fano axiom. Let
g and h be two ‘fundamental lines’ with the common point F . The pair of
lines is a degenerate conic κ = {g, h}. A harmonic (and hence involutory)
homology, which leaves κ invariant, has either an axis, which is incident with
F , or the center of the homology is F . The set of harmonic homologies, which
leave κ invariant, can thus be divided into two classes H and H∗, depending
on whether the axis is incident with F or the center is the point F .

If P is an ordered arguesian Fanoian projective plane then a separation relation
is defined on the pencil of lines. This relation induces an equivalence relation
∼ on the set of lines through F , which are distinct from g and h: Two lines are
called equivalent if they are not separated by g, h. There are two equivalence
classes. Similarly, the set of points of P, which are not incident with g or h,
can be divided into two disjoint classes W and W ′ with the property, that the
joining lines of F with points of the same class are equivalent with respect to
the relation ∼.

P can be represented as a projective coordinate plane over an ordered skew
field (cp. Beutelspacher and Rosenbaum [6]). The points and lines are the
1-dimensional respectively 2-dimensional subspaces of a 3-dimensional left
vector space V = K3 over a skew field K of characteristic �= 2. Using
homogenous coordinates the points can be represented by triples (x, y, z) with
x, y, z ∈ K and (x, y, z) �= (0, 0, 0). The triples (x, y, z) and (λx, λy, λz) with
λ �= 0 represent the same point. The homogenous coordinates of those points,
which are incident with a given line, are the solutions of a homogenous equa-
tion with coefficients in K. Thus we can represent the lines as triples [u, v, w]
with u, v, w ∈ K and [u, v, w] �= [0, 0, 0]. The triples [u, v, w] and [uλ, vλ,wλ]
with λ �= 0 represent the same line. A point (x, y, z) is incident with a line
[u, v, w] if and only if xu + yv + zw = 0.

Let g = [1, 0, 0] and h = [0, 1, 0] be the two ‘fundamental’ lines with the com-
mon point F = (0, 0, 1). The ‘isotropic’ lines of P through F are [1, c, 0] with
c �= 0. The points of P which are not incident with one of the fundamen-
tal lines g and h are (c,−1, d) with c, d ∈ K and c �= 0. The set of points
{(c,−1, d) : c, d ∈ K; c �= 0} can be divided into two classes W< and W>

depending on whether c < 0 or c > 0. We call these classes angular spaces.
In an affine interpretation the points of an angular space are the points of a
‘strip’, i.e., the points ‘between’ two parallel lines g and h, or the points of a
halfplane.
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Now let K be a Euclidean ordered skew field of characteristic �= 2. Then K̇2

is the set of positive elements of K and K̇ = K̇2 ∪ −K̇2. The center L of K is
a field of characteristic 0. The restriction of the order relation of K to L is a
Euclidean order on L.

Let S = H∗ and let P be the set of homologies of H which satisfy two condi-
tions: (a) the center is a point of the angular space W< and hence of the form
(c,−1, d) with c, d ∈ K and c < 0, and (b) the coordinate c is an element of
L. Let G be the group of collineations of P which is generated by S ∪ P . If
we represent the elements of G as linear mappings of V = K3 then G is the
group of the following matrices:

M(c, a, b)=

⎛
⎝

0 c−1 a
c 0 b
0 0 1

⎞
⎠; N(c, a, b)=

⎛
⎝

c 0 a
0 c−1 b
0 0 1

⎞
⎠ (c ∈ L̇ and a, b ∈ K)

and S ={N(−1, a, b) : a, b ∈ K}; P ={M(c,−c−1d, d) : c ∈ L; c < 0; d ∈ K}.

The matrix representation allows to verify that (G,S, P ) is an isotropic plane.
If K is a field, then K = L and (G,S′, P ′) with P ′ = S and S′ ={M(c,−c−1d, d):
c, d ∈ K; c �= 0} is a Minkowskian group (see [4, § 14.8]).

7. A comparison between Hilbert planes and isotropic planes

7.1. The axiomatic perspective

Plane Euclidean geometry and plane Galilean geometry have a common ax-
iomatic basis. In the reflection-geometric approach they both can be charac-
terized by Cayley–Klein groups, which satisfy the Euclidean parallel axiom
Pax and one additional axiom, namely axiom B1 (the existence of a joining
line) respectively Pax∗ (the dual parallel axiom; see [29, Sects. 4.2, 7.2]).

Hilbert planes and isotropic planes inherit the common axiomatic basis of
Euclidean and Galilean geometry. They are both Cayley–Klein planes which
satisfy the following axiom:

E. For a,B with a � B there is at most one point on a which has no joining
line with B.14

The order structure of Hilbert planes and isotropic planes can both be intro-
duced by Definition 5.8. In Hilbert planes the set of trajectories coincides with
the set of lines and thus Definition 5.8 coincides with the definition of an order
structure for Bachmann planes in [28, Definition 3.9].

Theorem 7.1. Hilbert planes and isotropic planes are exactly the Cayley–Klein
planes which satisfy axiom E and the axioms of free mobility B6 and B7, and
which can be endowed with an order structure according to Definition 5.8.

14The axiom was introduced in R. Struve [30] for a characterization of the part of Euclidean
geometry which satisfies the principle of duality.
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Proof. Obviously, Hilbert planes and isotropic planes satisfy the axioms of the
theorem. Now let (G,S, P ) be a Cayley–Klein group with E, B6 and B7, which
can be endowed with an order structure according to Definition 5.8.

In a Cayley–Klein group with axiom E either any two points have a joining line
or for every pair (a,B) with a � B there is exactly one point on a which has no
joining line with B, that is, B1 or Pax∗ holds (see [30, Theorem 3.2]; the proof
of Theorem 3.2 in [30] is based on an axiom system for Cayley–Klein groups
which satisfy E and the dual axiom E∗, but E∗ is not used in the proof of this
theorem). Hence (G,S, P ) is an ordered Bachmann group with free mobility
(see [29, Theorem 4.1]) or a group of absolute isotropic geometry. This proves
the theorem. �

As a major difference between Hilbert planes and isotropic planes, we note
that in both cases there are no polar points, but isotropic planes have also no
orthogonal lines. However, extended isotropic planes (see Sect. 5.1) do have
orthogonal lines and they satisfy all axioms of a Hjelmslev group. The theory
of Hjelmslev groups (see [4]) can hence be applied both to Hilbert planes and
to isotropic planes. As an example we note that in both cases one of the
hypotheses of Saccheri holds, that is, the hypothesis of the acute, obtuse or
right angle (see Theorems 3.1 and 5.17).

7.2. The model perspective

From a model perspective, Hilbert planes and isotropic planes fit into the
framework of Cayley–Klein geometries.

The parameters m and n in Table 1 and their values 0 or 1 or 2 can be
interpreted in the following way: If n = 0 then the ‘elliptic parallel axiom’ holds
(Any two lines have a common point). If n = 1 then the Euclidean parallel
axiom Pax holds and if n = 2 then Hilbert’s hyperbolic parallel axiom is
satisfied (see Sect. 6.3).15 The parameter m has the value 0 or 1 or 2 according
as the corresponding dual axiom holds.

Models of Hilbert planes can be constructed as subplanes of the geometries
of the first row of Table 1 (see Sect. 3). Models of isotropic planes can be
constructed as subplanes of the geometries of the second row of Table 1 (see
Sect. 6).

For a classification of the models of Hilbert planes and isotropic planes we
generalize the definition of Sect. 6: A subplane of an elliptic, Euclidean, hyper-
bolic or any other Cayley–Klein geometry E of Table 1 is called locally elliptic,
locally Euclidean, locally hyperbolic, and so on, if it contains with a point A all
lines of E which are incident with A. The intended geometric interpretation
is, that in the neighborhood of any point of these subplanes the associated
Cayley–Klein geometry holds.

15In other words, if A is a point, which is not incident with a line b then n = 0 or n = 1 or
n = 2 according as there are 0, 1 or at least 2 lines through A which are ‘parallel’ to b (i.e.,
which have no common point with b).
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Table 1 Plane ordered Cayley–Klein geometries (see [29])

n = 0 n = 1 n = 2

m = 0 Elliptic planes Euclidean planes Hyperbolic planes
m = 1 Co-Euclidean planes Galilean planes Co-Minkowskian planes
m = 2 Cohyperbolic planes Minkowskian planes Doubly-hyperbolic planes

The Hilbert planes, which were constructed in Sect. 3.1, are locally Euclidean
(the Euclidean and semi-Euclidean Hilbert planes) or locally hyperbolic (the
hyperbolic and semi-hyperbolic Hilbert planes) or locally elliptic (the non-
Legendrean Hilbert planes).16 The Euclidean, hyperbolic and non-Legendrean
Hilbert planes are complete. There are no elliptic Hilbert planes since their
rows of points are cyclically ordered.

Correspondingly, the isotropic planes, which were constructed in Sect. 6, are
locally Galilean or locally co-Minkowskian or locally co-Euclidean and each of
these classes contain isotropic planes which are complete (as is shown there).
There are no co-Euclidean isotropic planes since their rows of points are cycli-
cally ordered.

7.3. The algebraic perspective

From an algebraic point of view the constructions of Hilbert planes and isotropic
planes in Sects. 3.1 and 6 are analogical, namely based on an orthogonal group
or on a coordinate plane over a non-Archimedean ordered field K, where the
coordinates of points are restricted to the subset of infinitesimal or finitely
bounded elements of K.

However, a remarkable difference exists: Every Hilbert plane has a commuta-
tive field of characteristic �= 2 as coordinatizing structure,17 whereas isotropic
planes can be constructed, in addition, over skew fields (see Sect. 6.5).
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