
J. Geom. (2020) 111:41
c© 2020 Springer Nature Switzerland AG
0047-2468/20/030001-16
published online September 17, 2020
https://doi.org/10.1007/s00022-020-00553-4 Journal of Geometry

A para-Kähler structure in the space of
oriented geodesics in a real space form

Nikos Georgiou

Abstract. In this article, we construct a new para-Kähler structure
(G,J ,Ω) on the space of oriented geodesics of a n-dimensional (non-flat)
real space form. We first show that the para-Kähler metric G is scalar
flat and when n = 3, it is locally conformally flat. Furthermore, we prove
that the space of oriented geodesics of hyperbolic n-space equipped with
the constructed metric G is minimally isometrically embedded in the tan-
gent bundle of hyperbolic n-space. We then study submanifold theory,
and show that G-geodesics correspond to minimal ruled surfaces in the
real space form. Lagrangian submanifolds (with respect to the symplectic
structure Ω) play an important role in the geometry of the space of ori-
ented geodesics as they come from the Gauss map of hypersurfaces in the
corresponding space form. We demonstrate that the Gauss map of a non-
flat hypersurface of constant Gauss curvature is a minimal Lagrangian
submanifold. Finally, we show that a Hamiltonian minimal submanifold
is locally the Gauss map of a hypersurface Σ, which is a critical point of
the functional F(Σ) =

∫
Σ

√|K| dV , K denoting the Gaussian curvature
of Σ.
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1. Introduction

The geometry of the space L(Sn+1(c)) of oriented geodesics in a real space
form (Sn+1(c), g), of constant sectional curvature c, has been the focus of a
great deal of interest for the past two decades. In the celebrated article [7],
Guilfoyle and Klingenberg constructed a Kähler structure in the space L(S3(0))
of oriented lines in the Euclidean 3-space S

3(0) = R
3 and showed that the

Kähler metric is of neutral signature. Additionally, it is invariant under the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-020-00553-4&domain=pdf


41 Page 2 of 16 N. Georgiou J. Geom.

action of the Euclidean isometry group. A similar construction for hyperbolic
3-space S

3(−1) was established by Georgiou and Guilfoyle in [4]. Then, in [1],
Anciaux extended this geometric construction to all non-flat real space forms
by showing that L(Sn+1(c)) always admits a Kähler or a para-Kähler structure,
where the metric is Einstein and invariant under the isometry group of Sn+1(c).
In the same work, for n = 2, Anciaux proved that L(Sn+1(c)) admits another
Kähler or para-Kähler structure, such that its metric G, is of neutral signature,
locally conformally flat and is invariant under the isometry group of Sn+1(c).
This invariance, allows one to study problems in the base manifold S

n+1(c) by
studying its space of oriented geodesics.

For example, the set of all oriented geodesics orthogonal to a hypersurface
in S

n+1(c) corresponds to a Lagrangian submanifold in L(Sn+1(c)), with
respect to the canonical symplectic structure Ω (see [1]). In particular, G-flat
Lagrangian surfaces in L(S3(c)) are the oriented geodesics normal to a Wein-
garten surfaces in S

3(c), i.e. its principal curvatures are functionally related.

Consider a (para-) Kähler structure(M,J, ω), where J, ω are respectively the
(para-) complex structure and the symplectic structure. If f : Σ → M is a
Lagrangian immersion and H is the mean curvature, the one-form f∗(JH�ω)
is called the Maslov 1-form. In this article, the Maslov 1-form will be denoted
by aH .

If L(Sn+1(c)) is equipped with the (para-) Kähler–Einstein structure, the
Maslov 1-form is closed for any Lagrangian submanifold. This is generally
true for any (para-) Kähler–Einstein manifold. In fact, if the Kähler metric is
Einstein, then the Ricci 2-form ρ is proportional to the symplectic structure
ω, that is,

ρ = λω.

For a Lagrangian submanifold Σ the following identity holds [3]:

daH = ρ|Σ,

which yields,

daH = ρ|Σ = λω|Σ = 0.

It is natural then to ask whether the converse is true, i.e. considering a (para-)
Kähler manifold such that every Lagrangian submanifold has closed Maslov
1-form, can we conclude that the Kähler metric is Einstein?

In this article, we show that the converse is not true. In particular, we construct
a para-Kähler (non-Einstein) structure (G,J ,Ω) in L(Sn+1(c)) (for c �= 0),
where G,J and Ω are respectively the metric, the paracomplex structure and
the canonical symplectic structure such that all Lagrangian submanifolds have
closed Maslov 1-form. We use the fact that L(Sn+1(c)) is identified with the
Grassmannian of oriented 2-planes of Rn+2 and thus, they are submanifolds of
the set of all bivectors Λ2(Rn+2) = {x∧y|x, y ∈ R

n+2} in R
n+2. In particular, a

tangent vector at x∧y ∈ L(Sn+1(c)) ⊂ Λ2(Rn+2) can be written as x∧X+y∧Y ,
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where X,Y are vectors in R
n+2 normal to the oriented plane x ∧ y (see [1] for

more details).

We then show the following:

Theorem 1. The metric G on L(Sn+1(c)), defined by

G(x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2) = g(X1, Y2) + g(X2, Y1),

where x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2 ∈ Tx∧yL(Sn+1(c)), is scalar flat and
non-Einstein. Furthermore, G is locally conformally flat if and only if n = 2.

It is proven in [5] that (L(S3(0)), G) is minimally isometrically embedded in
the tangent bundle (TS

3(0),G0), where G0 is a neutral, scalar flat and locally
conformally flat metric. For the hyperbolic case, Hn = S

n(−1), we have the
following remark:

Remark 1. The isometric embedding f : (L(Hn+1),G) −→ (TH
n+1,G0) : x ∧

y �→ (x,−y) is minimal.

The reason Remark 1 holds in any dimension, while in the Euclidean case
it only holds for n = 2, is because L(Hn+1) admits invariant (para-) Kähler
structures for any n. The space L(R3) of oriented lines in R

n+1 admits an
invariant (para-) Kähler structure only when n = 3 and 7 (see [9]). On the
other hand, there is no similar result for the spherical cases since the spheres
are not Hadamard and therefore the embedding f is not well-defined.

A curve in L(S3(c)) corresponds to a 1-parameter family of oriented geodesics,
i.e. it corresponds to a ruled surface in the real space form S

3(c). We then
have:

Remark 2. A curve γ in (L(S3(c)),G) is a geodesic if and only if the corre-
sponding ruled surface in S

3(c) is minimal.

Let φ : Σ → S
n+1(c) be an immersion of a hypersurface in S

n+1(c). The set of
oriented geodesics normal to φ(Σ) is immersed by the mapping

Φ : Σ → L(Sn+1(c)) : x �→ φ(x) ∧ N(x), (1)

where N is the unit normal vector field along φ(Σ). The map Φ is called the
Gauss map of the immersion φ. It is already known that the image Φ(Σ) of
the Gauss map of a hypersurface in S

3(c) form a Lagrangian submanifold in
(L(S3(c)),Ω), where Ω is the canonical symplectic structure. The following
remark describes all minimal Lagrangian submanifolds:

Remark 3. Every Lagrangian submanifold in (L(Sn+1(c)),G,Ω) has closed
Maslov 1-form. If Σ is a non-flat hypersurface of S

n+1(c) then it is of con-
stant Gauss curvature if and only if the oriented geodesics normal to Σ form
a minimal Lagrangian submanifold of (L(Sn+1(c)),G,Ω).
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A point on hypersurface is ”non-flat” if the product of all principal curvatures
is non-zero. Remark 3, shows that for n = 2, the metrics G and G are not
isometric, since they have different minimal surfaces. In particular, the only
G-minimal Lagrangian surfaces in L(S3(c)) are the set of geodesics normal to
a given geodesic, which is flat (see [1,3]).

Remark 3 says that every Lagrangian submanifold has closed Maslov 1-form,
but G is not Einstein, answering the question posed previously in the negative.

Let (M,ω) be a symplectic manifold and f : Σ → M a Lagrangian sub-
manifold. A vector field X along Σ is said to be Hamiltonian if the one-
form f∗(X�ω) is exact. A smooth variation F : Σ × [0, T ) → M of Σ with
F (x, 0) = f(x) is called a Hamiltonian deformation if ∂F

∂t |t=0 is a Hamiltonian
vector field.

If a (para-) Kähler structure (J, g, ω) is given on M , then a normal variation
F of the Lagrangian submanifold Σ is Hamiltonian if

∂F

∂t
|t=0 = J∇u,

where J is the (para-) complex structure and ∇u is the gradient of the smooth
function u defined on Σ. A Hamiltonian minimal submanifold is a Lagrangian
submanifold that is also a critical point of the volume functional with respect
to Hamiltonian variations. The first variation formula of the volume functional
implies that a Hamiltonian minimal submanifold is characterised by the equa-
tion divJH = 0. Here H denotes the mean curvature vector of Σ and div is
the divergence operator with respect to the induced metric (for more details,
see [11] and [12]). In [6] and [10] it is proven that smooth one-parameter defor-
mations of a submanifold in S

n+1(c)) induce Hamiltonian deformations of the
corresponding Gauss map in (L(Sn+1(c)),Ω). We then have the following:

Remark 4. Let φ : Σ → S
n+1(c) be a non-flat hypersurface in (Sn+1(c), g).

Then the Gauss map Φ : Σ → L(Sn+1(c)) is a Hamiltonian minimal submani-
fold of (L(Sn+1(c)),G,Ω) if and only if φ is a critical point of the functional

F(φ) =
∫

Σ

√
|K| dV,

where K and dV denote, respectively, the Gaussian curvature of φ and the
volume element of the induced metric φ∗g.

The author would like to thank Brendan Guilfoyle for interesting comments
and observations about the early version of this manuscript.

2. A canonical para Kähler structure

Let S
n+1(c) be a real space form of constant sectional curvature c ∈ {−1, 1}.

That is, let H
n+1 = S

n+1(−1) is the hyperbolic (n + 1)-dimensional space
defined by:
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H
n+1 = {x ∈ R

n+2 | 〈x, x〉−1 = 1, x0 > 0},

where 〈x, x〉−1 := x2
0 − x2

1 − · · · − x2
n+1. Moreover S

n+1 = S
n+1(1) is the

(n + 1)-dimensional sphere defined by:

S
n+1 = {x ∈ R

n+2 | 〈x, x〉1 = 1},

where 〈x, x〉1 := x2
0 + x2

1 + · · · + x2
n+1.

The space of oriented geodesics in S
n+1(c) will be identified with the

L(Sn+1(c)) = {x ∧ y ∈ Λ2(Rn+2) | y ∈ TxS
n+1(c), 〈y, y〉c = c}.

Every tangent vector in Tx∧yL(Sn+1(c)) can be written as:

x ∧ X + y ∧ Y,

where X,Y ∈ (x∧y)⊥ are in R
n+2. L(Sn+1(c)) is equipped with the Riemann-

ian metric G0 = ι∗ 〈〈., .〉〉c where,

ι : L(Hn) ↪−→ Λ2(Rn+1) : x ∧ y �→ x ∧ y,

and 〈〈., .〉〉c is the flat metric in Λ2(Rn+1):

〈〈x1 ∧ y1, x2 ∧ y2〉〉c = 〈x1, x2〉c < y1, y2〉c − 〈x1, y2〉c〈x2, y1〉c.

For the hyperbolic case (c = −1), fixing a point p ∈ R
n+2, every oriented

geodesic γ = γ(t), with t being its arc-length, can be identified with the pair
(γ(t0), γ′(t0)), where γ(t0) is the closest point of γ to p and, γ′(t0) is its velocity.
When p is the origin, it is not hard to see that 〈γ(t0), γ′(t0)〉1 = 0.

In this article, when we write the oriented geodesic γ as the oriented plane
x ∧ y we mean that < x, y >1= 0.

Proposition 1. The following embedding is well defined:

f : L(Hn+1) −→ TH
n+1 : x ∧ y �→ (x,−y). (2)

Proof. Indeed, let z ∧ w ∈ L(Hn+1) be such that z ∧ w = x ∧ y, where <
x, y >1=< z,w >1= 0. Then

z = x cosh t + y sinh t, w = x sinh t + y cosh t, (3)

for some real t. Note that 〈x, y〉1 = 0 and thus we have that y0 = 0. The fact
that 〈y, y〉−1 = −1 implies 〈y, y〉1 = 1.

From 〈z, w〉1 = 0, we then have,

(|x|21 + |y|21) sinh t cosh t + 〈x, y〉1 (cosh2 t + sinh2 t) = 0,

which yields,

(|x|21 + 1) sinh t cosh t = 0,

Thus, t = 0 and substituting this in (3), we finally get (x,−y) = (z,−w),
which means that f(x ∧ y) = f(z ∧ w). �
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We now use the embedding f to define a new geometric structure on L(Hn+1).
To do this, consider the neutral metric G0 on TH

n+1:

G0(X̄, Ȳ ) = g(ΠX̄,KȲ ) + g(KX̄, ΠȲ ),

where X̄ � (ΠX̄,KX̄), Ȳ � (ΠȲ ,KȲ ) in TTH
n+1 = TH

n+1 ⊕ TH
n+1, and g

is the metric 〈., .〉−1 induced by the inclusion map i : Hn+1 ↪→ R
n+2. For more

details about this metric, see [5] and [8].

Let G be the metric G0 induced by f on L(Hn+1), i.e. G = f∗G0. It can be
shown that

G(x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2) = g(X1, Y2) + g(X2, Y1). (4)

Proposition 2. The metrics G and G0 are projectively equivalent.

Proof. Let x, y, e1, . . . en be an orthonormal frame of R
n+2, and define the

vector E1, . . . E2n in Tx∧yL(Hn+1) by:

Ei = x ∧ ei, En+i = y ∧ ei,

where i = 1, . . . , n. If ∇ is the Levi–Civita connection of G0, one can show
that ∇Ei

Ej = 0.

An almost complex structure J0 in L(Hn+1) can be defined by

J0(x ∧ X + y ∧ Y ) = −y ∧ X + x ∧ Y.

Then ∇Ei
J0 = J0∇Ei

, which shows that J0 is ∇-parallel and therefore inte-
grable. We also have that T is symmetric with respect to G0, i.e.

G0(J0X̄, Ȳ ) = G0(X̄,J0Ȳ ),

for any X̄, Ȳ ∈ Tx∧yL(Hn+1). Namely,

G0(J0(x ∧ X1 + y ∧ Y1), x ∧ X2 + y ∧ Y2) = G0(−y ∧ X1 + x ∧ Y1, x ∧ X2 + y ∧ Y2)

= g(X1, Y2) + g(X2, Y1), (5)

which implies

G0(J0(x ∧ X1 + y ∧ Y1), x ∧ X2 + y ∧ Y2)
= G0(x ∧ X1 + y ∧ Y1,J0(x ∧ X2 + y ∧ Y2)).

Consider the following Lemma:

Lemma 1 [1]. Let (N,G) be a pseudo-Riemannian manifold with Levi–Civita
connection D and T a symmetric, D-parallel (1, 1) tensor. Then the Levi–
Civita connection of the pseudo-Riemannian metric G′ = G(., T.) is D.

From (5), we have

G = G0(.,J0.).

The proposition then follows. �
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Considering the (n + 1)-dimensional real space form S
n+1(c) and defining the

almost (para-)complex structure J0 by

J0(x ∧ X + y ∧ Y ) = cy ∧ X + x ∧ Y,

we now define the metric G by

G = G0(.,J0.),

which is given by (4). It is easily seen that, G is ∇ and J0 symmetric and
therefore G and G0 share the same Levi–Civita connection.

The following theorem explores the curvature of G:

Theorem 1. The metric G on L(Sn+1(c)), defined by

G(x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2) = g(X1, Y2) + g(X2, Y1),

where x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2 ∈ Tx∧yL(Sn+1(c)), is scalar flat and
non-Einstein. Furthermore, G is locally conformally flat if and only if n = 2.

Proof. Consider the frame Ei used previously, where again i = 1, . . . , n, then
J0Ei = cEn+i and J0En+i = Ei. Let R and Ric be the Riemann curvature
and Ricci tensor respectively of G. Since the metrics G and G0 have the same
Levi–Civita connection then R = R, where R is the Riemann curvature tensor
of G0. Then,

G(R(., .)., .) = G0(R(., .).,J0.)
= G0(R(., .).,J0.)

For i, j = 1, . . . , n we have,

Gi,n+j = cδij , Gij = Gn+i,n+j = 0,

and therefore the inverse matrix has coefficients

Gi,n+j = cδij , Gij = Gn+i,n+j = 0.

Using the fact that Gij
0 = cGn+i,n+j

0 = δij and Gi,n+j
0 = 0, we then have

Ric(X,Y ) =
n∑

i=1

Gi,n+i (G(R(X,Ei)Y,En+i) + G(R(X,En+i)Y,Ei))

=
n∑

i=1

(G0(R(X,Ei)Y,J0En+i) + G0(R(X,En+i)Y,J0Ei))

=
n∑

i=1

(
〈〈R(X,Ei)Y,Ei〉〉c + c 〈〈R(X,En+i)Y,En+i〉〉c

)

=
n∑

i=1

(
Gii

0 〈〈R(X,Ei)Y,Ei〉〉c + Gn+i,n+i
0 〈〈R(X,En+i)Y,En+i〉〉c

)

= Ric(X,Y )
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Now, G0 is an Einstein metric with scalar curvature S = 2cn2 (for more details,
see [1]), so

Ric =
S

2n
G0 = cnG0.

That means,

Ric(X,Y ) = cnG0(X,Y )
= cn 〈〈X,Y 〉〉c ,

and thus, G is non-Einstein.

If S denotes the scalar curvature of G then,

S =
2n∑

a,b=1

GabRic(Ea, Eb)

= 2
n∑

i=1

Gi,n+iRic(Ei, En+i)

= 2c2n
n∑

i

〈〈Ei, En+i〉〉c

= 0.

We now proceed with the proof of the second part of the theorem. Since G is
scalar flat, the Weyl tensor W is given by

W(X,Y,Z,W ) = G(R(X,Y )Z,W ) − 1
2(n − 1)

Ric ◦ G(X,Y,Z,W )

= G(R(X,Y )Z, TW ) − 1
2(n − 1)

Ric ◦ G(X,Y,Z,W )

= G(R(X,Y )Z, TW ) − cn

2n − 2
G0 ◦ G(X,Y,Z,W ).

Now,

W(E1, E2, E2, En+1) = G(R(E1, E2)E2, TEn+1) − cn

2n − 2
G0 ◦ G(E1, E2, E2, En+1)

= G(R(E1, E2)E2, E1) − cn

2n − 2
G0(E2, E2)G(E1, En+1)

= 1 − c2n

2n − 2
= 1 − n

2n − 2
=

n − 2

2n − 2
,

which is zero if and only if n = 2. Similarly, one can prove the same for the
other coefficients of the Weyl tensor. �

When n = 2, there is a complex structure on L(S3(c)), defined as follows:

J ′
0(x ∧ X + y ∧ Y ) = x ∧ J ′X − y ∧ J ′Y,

where J ′ is the complex structure in the plane (x∧y)⊥ in R
4. Then the metric

G = G0(.,J0 ◦ J ′
0.) on L(S3(c)), is locally conformally flat, scalar flat and is
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invariant under the isometry group action in L(S3(c)). The metric G has been
studied by several authors (see for example, [1,2,4,7,9]).

Finally, for the hyperbolic case (c = −1), we show the following:

Remark 1. The isometric embedding f : (L(Hn+1),G) −→ (TH
n+1,G0) : x ∧

y �→ (x,−y) is minimal.

Proof. The derivative of f is given by:

df(x ∧ X + y ∧ Y ) = (−Y,−X).

Note that X = ∇Y y and if D̄ denotes the Levi–Civita connection of G, we
have

D̄df(x∧X1+y∧Y1)df(x ∧ X1 + y ∧ Y1) = D̄(−Y1,−X1)(−Y2,−X2)
= (DY1Y2, R(y, Y1)Y2 + DY1X2)
= (DY1Y2, g(Y1, Y2)y + DY1X2)
= (DY1Y2, −g(X1,X2)y + DY1X2)

+(0, (g(X1,X2) + g(Y1, Y2))y),

which implies that the second fundamental form hf is given by

hf (x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2) = (0, (g(X1,X2) + g(Y1, Y2))y).

Recalling the basis (E1, . . . E2n) of Tx∧yL(Sn+1(c)), the mean curvature Hf of
f is

Hf = Gmnhf (Em, En),

so that

Hf = Gi,n+ihf (Ei, En+i)
= hf (x ∧ ei, y ∧ ei)
= (0, (g(ei, 0) + g(0, ei))y),

which shows that f is minimal. �

Considering the almost para-complex structure J in L(Sn+1(c)):

J (x ∧ X + y ∧ Y ) = x ∧ X − y ∧ Y,

we then have:

(1) J is compatible with G. Namely,
G(J (x ∧ X1 + y ∧ Y1),J (x ∧ X2 + y ∧ Y2)) = G(x ∧ X1 − y ∧ Y1, x ∧ X2 − y ∧ Y2)

= −g(X1, Y2) − g(X2, Y1)

= −G(x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2).

(2) J is integrable, i.e., DJ = J D. In fact,

J Ei = Ei, J En+i = −En+i,

and the claim follows from DEi
Ej = 0.
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Define the symplectic 2-form Ω in L(Sn+1) by

Ω = G(J ., .).

In particular,

Ω(x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2) = g(X1, Y2) − g(X2, Y1).

Then the quadruple (L(Sn+1(c)),G,J ,Ω) form a para-Kähler structure, so
that the symplectic structure is the same as the symplectic structure defined
by the (para-) Kähler structure (L(Sn+1(c)), G0,J0), since

Ω = G0(J0., .).

The latter (para-) Kähler structure has been widely studied in [1], [4] and [7].

Every isometry φ : Sn+1(c) → S
n+1(c), can be extended to a linear orthogonal

transformation φ̄ in R
n+2 restricted to S

n+1(c). This induces a mapping F in
the space of oriented geodesics defined by

F (x ∧ y) = φ(x) ∧ φ̄(y).

The derivative of F is

dF (x ∧ X + y ∧ Y ) = φ(x) ∧ dφ̄(X) + φ̄(y) ∧ dφ(Y ).

Using now the fact that X,Y ∈ (x∧y)⊥ (see [1]), we have that X ∈ TxS
n+1(c)

and thus,

dF (x ∧ X + y ∧ Y ) = φ(x) ∧ dφ(X) + φ̄(y) ∧ dφ(Y ).

We now have

G(dF (x ∧ X1 + y ∧ Y1), dF (x ∧ X2 + y ∧ Y2))
= G(φ(x) ∧ dφ(X1) + φ̄(y) ∧ dφ(Y1), φ(x) ∧ dφ(X2) + φ̄(y) ∧ dφ(Y2))
= g(dφ(X1), dφ(Y2)) + g(dφ(X2), dφ(Y1))
= g(X1, Y2) + g(X2, Y1)
= G(x ∧ X1 + y ∧ Y1, x ∧ X2 + y ∧ Y2),

which shows the following:

Proposition 3. The metric G is invariant under the action of the isometry
group of (Sn+1(c), g) in the space of oriented geodesics L(Sn+1(c)).

3. Geodesics

We now study geodesics in (L(Sn+1(c)),G). We start with the following propo-
sition:

Proposition 4. If the curve γ(t) = x(t) ∧ y(t) is a G-geodesic L(Sn+1(c)), then
the vector field y = y(t) is orthogonal to the curve x = x(t) in S

n+1(c).
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Proof. We prove the proposition for c = 1, the proof is similar for c = −1.
Denote the flat connection of Λ2

R
n+2 by ∇ and the Levi–Civita connection of

g by by D. Then

∇γ̇ γ̇ = Dẋẋ ∧ y + x ∧ (D
2

ẋy + 〈ẋ, y〉 ẋ) − x ∧ y + 2ẋ ∧ Dẋy.

If ∇ is the Levi–Civita connection of G, we then have:

∇γ̇ γ̇ = Dẋẋ ∧ y + x ∧ (D
2

ẋy + 〈ẋ, y〉 ẋ).

Suppose γ is a G-geodesic. Then

Dẋẋ = ay and D
2

ẋy + 〈ẋ, y〉 ẋ = by,

for some functions a = a(t), b = b(t) along the curve x = x(t). Assuming t is
the arc-length of the curve x, it follows that

0 = g(Dẋẋ, ẋ) = ag(ẋ, y).

If a �= 0 in some open interval, then obviously we have that g(ẋ, y) = 0.
Assuming a = 0 in an open interval, we have that x is a geodesic in that
interval. Note that ẋ, y are linearly independent, since otherwise it can be
shown that y = ±ẋ and therefore the curve γ(t) = ±x ∧ ẋ is not regular.

Let x, ẋ, y, e1, . . . en−1 be a frame of R
n+2 such that g(ei, ej) = δij and set

c0 = g(Dẋy, ẋ) with ck = g(Dẋy, ek).

Now, g(Dẋy,Dẋy) =
∑

k=0

c2
k = −g(D

2

ẋy, y), and therefore

∑

k=0

c2
k = −b + g(ẋ, y)2.

On the other hand

by − g(ẋ, y)ẋ = D
2

ẋy = Dẋ(Dẋy) = Dẋ(c0ẋ +
∑

k=1

ckek)

= ċ0ẋ +
∑

k

(ċkek + ckėk) = ċ0ẋ +
∑

k

(ċkek + ckėk)

= ċ0ẋ − (
∑

k=1

c2
k)y + Λ(e1, . . . , en−1),

where, Λ ∈ span{e1, . . . , en−1}. Then

ċ0 = −g(ẋ, y), b = −
∑

k=1

c2
k,

and Λ = 0. In particular, for every k = 1, . . . , n − 1, we have

ċk +
∑

i�=k

g(ei, ėk)ci = 0.

Thus
n−1∑

k=1

ck ċk =
n−1∑

k,i=1

cickg(ei, ėk) = 0,
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which implies that
∑n−1

k=1 c2
k = constant. This means, b = −∑n−1

k=1 c2
k is con-

stant and by definition we have

b = g(D
2

ẋy + 〈ẋ, y〉 ẋ, y) = −g(Dẋy,Dẋy) + 〈ẋ, y〉2 .

Using now the fact that b is constant, we have

ḃ = 4g(ẋ, y)g(ẋ,Dẋy) = 2
d

dt

(
g(ẋ, y)2

)
= 0.

It follows that g(ẋ, y) is constant and therefore g(ẋ,Dẋy) = 0. Moreover, c0 = 0
since c0 = g(Dẋy, ẋ). But 0 = ċ0 = −g(ẋ, y) and the proposition follows. �

Every curve γ = γ(t) = x(t)∧y(t) in L(Sn+1(c)), corresponds to a ruled surface
in S

n+1(c) and such a surface, can be parametrised by

X(t, θ) = x(t) cos c(θ) + y(t) sin c(θ), (6)

where,

cos c(θ) =

{
cos(θ), c = 1
cosh(θ), c = −1

For n = 2, we show the following:

Remark 2. A curve γ in (L(S3(c)),G) is a geodesic if and only if the corre-
sponding ruled surface in S

3(c) is minimal.

Proof. We know that ẋ, y are linearly independent and let, {x, ẋ, y, e1} be an
orthonormal frame of R4, 〈., .〉) along the curve x = x(t). The corresponding
ruled surface, parametrised by (6), has normal vector fields N , where:

N(t, θ) = e1 − c1 sin cθ

|Xt|2 Xt,

with c1 =
〈
Dẋy, e1

〉
. Now

Nθ = −c1 cos cθ

|Xt|2 Xt, Nt = ė1 − ċ1 sin cθ

|Xt|2 Xt − c1 sin cθ

|Xt|2 Xtt

+
c1 sin cθ

|Xt|4 〈Xtt,Xt〉 Xt, ,

If h is the second fundamental form of X, we then have

h(Xt,Xt) = −〈Xt, Nt〉 = ċ1 sin cθ

h(Xt,Xθ) = −〈Xt, Nθ〉 = c1 cos cθ

h(Xθ,Xθ) = −〈Xθ, Nθ〉 = 0.

If H is the mean curvature and tij the induced metric X∗g, we have that
ttθ = 0. Therefore

H =
1
2
tijh(Xi,Xj) =

1
2
ttth(Xt,Xt) +

1
2
tθθh(Xθ,Xθ).
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Thus, using the previous proposition

H =
ċ1 sin cθ

2|Xt|2 = 0,

since, c1 is constant. �

It would be interesting to know whether Remark 2 can be extended to any
dimension. We therefore conjecture the following:

Conjecture 1. A curve γ in (L(Sn+1(c)),G) is a geodesic if and only if the
corresponding ruled surface in S

n+1(c) is minimal.

4. Lagrangian submanifolds

Let φ : Σn → S
n+1(c), be an immersed, orientable hypersurface and N the

unit normal vector field along Σ. The Gauss map Φ of φ, given in (1), defines a
Lagrangian immersion in L(Sn+1)(c) with respect to the symplectic structure
Ω [1]. It can be shown that any Lagrangian immersion in L(Sn+1(c)) is locally
the Gauss map of a hypersurface in S

n+1(c)) and hence is immersed by a
mapping Φ. Identifying a vector field X in Σ with the derivative dφ(X), we
have

X̄ = dΦ(X) = X ∧ N + AX ∧ φ,

where A denotes the shape operator of φ. Let D and D be the flat connections
of Rn+2 and Λ2

R
n+2 respectively, then we get

DX̄ Ȳ = (DXY ) ∧ N + (DXAY ) ∧ φ.

Since the Levi–Civita connection ∇ of G is the same as that of G0, the second
fundamental form h̄ of Φ is:

h̄(X̄, Ȳ , Z̄) = G(∇X̄ Ȳ ,J Z̄).

Let (e1, . . . , en) be an orthonormal frame of (Σ, φ∗g) such that Aei = kiei,
where A denotes the shape operator of φ. If we simply write the induced
metric Φ∗G as G then

G(ēi, ēj) = 2δijki. (7)

Away from flat points, i.e. Πn
k=1ki �= 0, we have

h̄(ei, ej , ej) = −ei(kj),

and therefore, if H is the mean curvature of Φ, we obtain

G(nH,J dΦ(ei)) =
n∑

i=1

h̄(ei, ej , ej)
G(ej , ej)

= −
n∑

i=1

ei(kj)
2kj

= ei log |k1 · · · · · kn|−1/2

Finally, we have that

H =
1
n

J ∇ log |k1 · · · · · kn|−1/2,

and thus, we obtain the following:
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Remark 3. Every Lagrangian submanifold in (L(Sn+1(c)),G,Ω) has closed
Maslov 1-form. If Σ is a non-flat hypersurface of S

n+1(c) then it is of con-
stant Gauss curvature if and only if the oriented geodesics normal to Σ form
a minimal Lagrangian submanifold of (L(Sn+1(c)),G,Ω).

A Lagrangian submanifold Σ is said to be Hamiltonian minimal if

d

dt
volft(Σ)|t=0 = 0,

for all Hamiltonian deformations {ft} of Σ. Using the first variation formula,
Σ is Hamiltonian minimal if

δaH = 0,

where aH = G(JH, .) is the Maslov 1-form and δ is the Hodge-dual of d on Σ
[12].

Remark 4. Let φ : Σ → S
n+1(c) be a non-flat hypersurface in (Sn+1(c), g).

Then the Gauss map Φ : Σ → L(Sn+1(c)) is a Hamiltonian minimal submani-
fold of (L(Sn+1(c)),G,Ω) if and only if φ is a critical point of the functional

F(φ) =
∫

Σ

√
|K| dV,

where K and dV denote, respectively, the Gaussian curvature of φ and the
volume element of the induced metric φ∗g.

Proof. Let Φ be the Gauss map of a smooth immersion of φ of the n-
dimensional manifold Σ in S

n+1(c) and let (e1, . . . , en) be an orthonormal
frame, with respect to the induced metric φ∗g, such that

Aei = kiei, i = 1, . . . , n,

where A denotes the shape operator of φ.

Let (φt)t∈(−t0,t0) be a smooth variation of φ and (Φt) be the corresponded
variation of the Gauss map Φ. We extend all extrinsic geometric quantities
such as the shape operator A, the principal directions ei and the principal
curvatures ki to the 1-parameter family of immersions (φt). Using (7), the
induced metric Φ∗

t G is given by

Φ∗
t G = diag

(
2k1, . . . , 2kn

)
.

For every sufficiently small t > 0, the volume of every Gauss map Φt, with
respect to the metric G, is

Vol(Φt) =
∫

Σ

√
|det Φ∗

t G|dV = 2n/2F(φt). (8)

If φ is a critical point of the functional F , we have

∂t(Vol(Φt))|t=0 = 0,
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for any Hamiltonian variation of Φ. Therefore, Φ is a Hamiltonian minimal
submanifold with respect to the para-Kähler structure (G,J ). The converse
follows directly from (8).

�

Combining Remark 3 and Remark 4 and using the fact that every minimal
Lagrangian submanifold is hamiltonian minimal, we also have the following:

Proposition 5. A non-flat submanifold in S
n+1(c) of constant Gaussian cur-

vature is a critical point of the functional F .

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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