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Abstract. In this article, we construct a new para-Kéahler structure
(G, T, Q) on the space of oriented geodesics of a n-dimensional (non-flat)
real space form. We first show that the para-Kahler metric G is scalar
flat and when n = 3, it is locally conformally flat. Furthermore, we prove
that the space of oriented geodesics of hyperbolic n-space equipped with
the constructed metric G is minimally isometrically embedded in the tan-
gent bundle of hyperbolic n-space. We then study submanifold theory,
and show that G-geodesics correspond to minimal ruled surfaces in the
real space form. Lagrangian submanifolds (with respect to the symplectic
structure ) play an important role in the geometry of the space of ori-
ented geodesics as they come from the Gauss map of hypersurfaces in the
corresponding space form. We demonstrate that the Gauss map of a non-
flat hypersurface of constant Gauss curvature is a minimal Lagrangian
submanifold. Finally, we show that a Hamiltonian minimal submanifold
is locally the Gauss map of a hypersurface X, which is a critical point of
the functional F(X) = [ MdV, K denoting the Gaussian curvature

of X.
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1. Introduction

The geometry of the space L(S""!(c)) of oriented geodesics in a real space
form (S"*1(c),g), of constant sectional curvature ¢, has been the focus of a
great deal of interest for the past two decades. In the celebrated article [7],
Guilfoyle and Klingenberg constructed a Kéhler structure in the space L(S3(0))
of oriented lines in the Euclidean 3-space S3(0) = R? and showed that the
Kéhler metric is of neutral signature. Additionally, it is invariant under the
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action of the Euclidean isometry group. A similar construction for hyperbolic
3-space S3(—1) was established by Georgiou and Guilfoyle in [4]. Then, in [1],
Anciaux extended this geometric construction to all non-flat real space forms
by showing that L(S""1(c)) always admits a Kéhler or a para-Kihler structure,
where the metric is Einstein and invariant under the isometry group of S**1(c).
In the same work, for n = 2, Anciaux proved that L(S"*!(c)) admits another
Kihler or para-Kihler structure, such that its metric G, is of neutral signature,
locally conformally flat and is invariant under the isometry group of S"*1(c).
This invariance, allows one to study problems in the base manifold S"*!(c) by
studying its space of oriented geodesics.

For example, the set of all oriented geodesics orthogonal to a hypersurface
in S"*!(c) corresponds to a Lagrangian submanifold in L(S"*!(c)), with
respect to the canonical symplectic structure Q (see [1]). In particular, G-flat
Lagrangian surfaces in L(S3(c)) are the oriented geodesics normal to a Wein-
garten surfaces in S3(c), i.e. its principal curvatures are functionally related.

Consider a (para-) Kéhler structure(M, J,w), where J, w are respectively the
(para-) complex structure and the symplectic structure. If f : ¥ — M is a
Lagrangian immersion and H is the mean curvature, the one-form f*(JH |w)
is called the Maslov 1-form. In this article, the Maslov 1-form will be denoted
by ap.

If L(S"*!(c)) is equipped with the (para-) Kihler-Einstein structure, the
Maslov 1-form is closed for any Lagrangian submanifold. This is generally
true for any (para-) Kdhler—Einstein manifold. In fact, if the Kahler metric is
Einstein, then the Ricci 2-form p is proportional to the symplectic structure
w, that is,

p = Aw.
For a Lagrangian submanifold ¥ the following identity holds [3]:
dayg = pls,
which yields,
dag = pls = wly = 0.

It is natural then to ask whether the converse is true, i.e. considering a (para-)
Kahler manifold such that every Lagrangian submanifold has closed Maslov
1-form, can we conclude that the Kéhler metric is Einstein?

In this article, we show that the converse is not true. In particular, we construct
a para-Kihler (non-Einstein) structure (G, 7,€Q) in L(S"T!(c)) (for ¢ # 0),
where G, J and () are respectively the metric, the paracomplex structure and
the canonical symplectic structure such that all Lagrangian submanifolds have
closed Maslov 1-form. We use the fact that L(S"*1(c)) is identified with the
Grassmannian of oriented 2-planes of R"*2 and thus, they are submanifolds of
the set of all bivectors A2(R"2) = {zAy|z,y € R"T2} in R**2. In particular, a
tangent vector at zAy € L(S"*1(c)) € A%2(R"*2) can be written as tAX +yAY,
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where X, Y are vectors in R"*2 normal to the oriented plane z Ay (see [1] for
more details).

We then show the following:

Theorem 1. The metric G on L(S"*(c)), defined by
g(x N Xl + ) A Y17."I) A X2 + Yy A }/2) = g(Xla}/Q) + g(X27Y1)a

where ¥ A X1 +y AY1, 2 A Xo+yAYs € Tup,L(S"(c)), is scalar flat and
non-FEinstein. Furthermore, G is locally conformally flat if and only if n = 2.

It is proven in [5] that (L(S?(0)),G) is minimally isometrically embedded in
the tangent bundle (T'S3(0),Gp), where Gy is a neutral, scalar flat and locally
conformally flat metric. For the hyperbolic case, H" = S"(—1), we have the
following remark:

Remark 1. The isometric embedding f : (L(H"*!),G) — (TH"Y,Gy) : o A
y — (x,—y) is minimal.

The reason Remark 1 holds in any dimension, while in the Euclidean case
it only holds for n = 2, is because L(H"™!) admits invariant (para-) Kihler
structures for any n. The space L(R3) of oriented lines in R"*! admits an
invariant (para-) Kéhler structure only when n = 3 and 7 (see [9]). On the
other hand, there is no similar result for the spherical cases since the spheres
are not Hadamard and therefore the embedding f is not well-defined.

A curve in IL(S3(¢)) corresponds to a 1-parameter family of oriented geodesics,
i.e. it corresponds to a ruled surface in the real space form S3(c). We then
have:

Remark 2. A curve v in (L(S3(c)),G) is a geodesic if and only if the corre-
sponding ruled surface in S3(c) is minimal.

Let ¢ : ¥ — S"*1(¢) be an immersion of a hypersurface in S**!(c). The set of
oriented geodesics normal to ¢(X) is immersed by the mapping

d:Y - LS" () : x — ¢(x) AN(x), (1)

where N is the unit normal vector field along ¢(X). The map ® is called the
Gauss map of the immersion ¢. It is already known that the image ®(X) of
the Gauss map of a hypersurface in S?(c) form a Lagrangian submanifold in
(L(S3(c)), ), where Q is the canonical symplectic structure. The following
remark describes all minimal Lagrangian submanifolds:

Remark 3. Every Lagrangian submanifold in (L(S""!(c)),G,Q) has closed
Maslov 1-form. If ¥ is a non-flat hypersurface of S"*1(c) then it is of con-
stant Gauss curvature if and only if the oriented geodesics normal to X form
a minimal Lagrangian submanifold of (L(S"*!(c)), g, Q).
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A point on hypersurface is "non-flat” if the product of all principal curvatures
is non-zero. Remark 3, shows that for n = 2, the metrics G and G are not
isometric, since they have different minimal surfaces. In particular, the only
G-minimal Lagrangian surfaces in L(S3(c)) are the set of geodesics normal to
a given geodesic, which is flat (see [1,3]).

Remark 3 says that every Lagrangian submanifold has closed Maslov 1-form,
but G is not Einstein, answering the question posed previously in the negative.

Let (M,w) be a symplectic manifold and f : ¥ — M a Lagrangian sub-
manifold. A vector field X along ¥ is said to be Hamiltonian if the one-
form f*(X]w) is exact. A smooth variation F : ¥ x [0,T7) — M of ¥ with
F(2,0) = f(x) is called a Hamiltonian deformation if 2&|,_ is a Hamiltonian
vector field.

If a (para-) Kéhler structure (J, g,w) is given on M, then a normal variation
F of the Lagrangian submanifold ¥ is Hamiltonian if

oF
E ‘t:o = JVu,

where J is the (para-) complex structure and Vu is the gradient of the smooth
function u defined on X. A Hamiltonian minimal submanifold is a Lagrangian
submanifold that is also a critical point of the volume functional with respect
to Hamiltonian variations. The first variation formula of the volume functional
implies that a Hamiltonian minimal submanifold is characterised by the equa-
tion divJH = 0. Here H denotes the mean curvature vector of ¥ and div is
the divergence operator with respect to the induced metric (for more details,
see [11] and [12]). In [6] and [10] it is proven that smooth one-parameter defor-
mations of a submanifold in S"*!(c)) induce Hamiltonian deformations of the
corresponding Gauss map in (L(S"*1(c)), Q). We then have the following:

Remark 4. Let ¢ : ¥ — S"*1(c) be a non-flat hypersurface in (S"1(c), g).
Then the Gauss map ® : ¥ — L(S"T!(c)) is a Hamiltonian minimal submani-
fold of (IL(S"*!(c)), G, ) if and only if ¢ is a critical point of the functional

f<¢>:/2mdv,

where K and dV denote, respectively, the Gaussian curvature of ¢ and the
volume element of the induced metric ¢*g.

The author would like to thank Brendan Guilfoyle for interesting comments
and observations about the early version of this manuscript.

2. A canonical para Kahler structure

Let S"*!(c) be a real space form of constant sectional curvature ¢ € {—1,1}.
That is, let H**! = §"*1(—1) is the hyperbolic (n + 1)-dimensional space
defined by:
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H" = {2 € R" 2| (x,2)_, =1, z9 >0},

where (z,z) | = a3 — 2% — .-+ — 22, ;. Moreover S"*! = §"*1(1) is the

(n + 1)-dimensional sphere defined by:
S = (3 € R™2| (,2), =1},
where (z,2), =23 + 2 + -+ 22 ;.
The space of oriented geodesics in S"*1(c) will be identified with the
L(S""(c)) = {z Ay € A*(R"*?) |y € T.S"(c), (y,y). = c}.
Every tangent vector in T, L(S""!(c)) can be written as:
s ANX+yNY,

where X, Y € (zAy)t are in R"+2. L(S"*1(c)) is equipped with the Riemann-
ian metric Go = ¢* ((.,.)), where,

L LH™) — A2 R™™) iz Ay =z Ay,
and ((.,.)), is the flat metric in A?(R™*!):

({1 ANy, 22 Ay2))e = (T1,T2)e < Y1,Y2)e — (X1, Y2) e (T2, Y1 )e-

For the hyperbolic case (¢ = —1), fixing a point p € R"™2 every oriented
geodesic v = ~(t), with ¢ being its arc-length, can be identified with the pair
(v(to), 7 (to)), where (o) is the closest point of v to p and, v/ (¢o) is its velocity.
When p is the origin, it is not hard to see that (y(¢),7'(t0)); = 0.

In this article, when we write the oriented geodesic v as the oriented plane
x Ay we mean that < z,y >1= 0.
Proposition 1. The following embedding is well defined:
fLH") — TH™™ -z Ay — (x,—y). (2)
Proof. Indeed, let 2 A w € L(H"*!) be such that 2 A w = 2 Ay, where <
z,y >1=< z,w >1= 0. Then
z = xcosht + ysinht, w = xsinht + y cosht, (3)

for some real t. Note that (z,y), = 0 and thus we have that yo = 0. The fact
that (y,y)_; = —1 implies (y,y); = 1.

From (z,w),; =0, we then have,
(Jz|2 4 |y|?) sinh ¢ cosh ¢ + (2, ), (cosh® t + sinh?t) = 0,
which yields,
(|z|? 4+ 1) sinh t cosh t = 0,

Thus, ¢ = 0 and substituting this in (3), we finally get (x,—y) = (z,—w),
which means that f(z Ay) = f(z Aw). O



41 Page 6 of 16 N. Georgiou J. Geom.

We now use the embedding f to define a new geometric structure on L(H"*1).
To do this, consider the neutral metric Gy on TH"t!:

Go(X,Y) = g(IIX, KY) + g(KX,11Y'),

where X ~ (IIX,KX),Y ~ (IY, KY) in TTH**! = TH**! @ TH"*', and ¢
is the metric (.,.) , induced by the inclusion map i : H"** < R"*2. For more
details about this metric, see [5] and [8].

Let G be the metric Gy induced by f on L(H"*!), i.e. G = f*Go. It can be
shown that

GanXi+ynYi,z A Xo+yAYe)=g(X1,Y2) +g(X2, V1) (4)
Proposition 2. The metrics G and Gy are projectively equivalent.
Proof. Let x,y,e1,...e, be an orthonormal frame of R"*2, and define the
vector By, ... Eay, in Typ, L(H" ) by:
E;,=xNe;, E,i=yNe,

where ¢ = 1,...,n. If V is the Levi-Civita connection of Gg, one can show
that Vg, F; = 0.

An almost complex structure Jp in L(H"*!) can be defined by
Jo(@ANX+yANY)=—-yAX+zAY.

Then Vg, Jo = JoVE,, which shows that J is V-parallel and therefore inte-
grable. We also have that T is symmetric with respect to Gy, i.e.

Go(joX,Y) :GO(XHZ)Y):
for any X,Y € Tpp, L(H" ™). Namely,
Go(jo(:ﬂ/\xl +y/\Y1),x/\X2+y/\Yg) :Go(—y/\X1 +.72/\Y1,£C/\X2+y/\Y2)
= g(X1,Y2) + g(X2, Y1), (5)
which implies
Go(jo(d?/\Xl +y/\Y1),;z:/\X2+y/\Y2)
=Go(x NX1 +yAYL, To(z A Xo+y AY2)).

Consider the following Lemma:

Lemma 1 [1]. Let (N,G) be a pseudo-Riemannian manifold with Levi-Civita
connection D and T a symmetric, D-parallel (1,1) tensor. Then the Levi—
Civita connection of the pseudo-Riemannian metric G' = G(.,T.) is D.
From (5), we have

G =Go(., Jo.)-
The proposition then follows. O
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Considering the (n + 1)-dimensional real space form S"*!(c) and defining the
almost (para-)complex structure Jp by

Jo(aANX4+yANY)=cyAX +zAY,
we now define the metric G by
g = GO(-aJO')7

which is given by (4). It is easily seen that, G is V and Jp symmetric and
therefore G and G share the same Levi—-Civita connection.

The following theorem explores the curvature of G:

Theorem 1. The metric G on L(S"*1(c)), defined by
Gl NXi+yAY, oA X +yAYs) =g(X1,Y2) +9(Xa, Y1),
where t AN X1 +yANY, a AN Xo+yAYs € Tz/\yL(S”“(c)), is scalar flat and

non-FEinstein. Furthermore, G is locally conformally flat if and only if n = 2.

Proof. Consider the frame FE; used previously, where again ¢ = 1,...,n, then
JoE; = cE,+; and JopE,+; = E;. Let R and Ric be the Riemann curvature
and Ricci tensor respectively of G. Since the metrics G and Gy have the same
Levi—Civita connection then R = R, where R is the Riemann curvature tensor
of Gy. Then,

G(R(.s-)-s-) = Go(R(,.)-, Jo.)
= Go(R(,),j@)

Fori,7 =1,...,n we have,

Gintj = Cij,  Gij = Gnyint; =0,
and therefore the inverse matrix has coefficients

gi,nJrj — C(Sij7 gij — gn+i,n+j = 0.

Using the fact that Gf = Gy = §;; and Gy = 0, we then have

Ric(X,Y) =G (G(R(X, E))Y, Enyi) + G(R(X, En i)Y, E;))
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Now, G is an Einstein metric with scalar curvature S = 2en? (for more details,
see [1]), so

S
Ric= —Gy = cnGy.
2n
That means,

Ric(X,Y) = enGo(X,Y)
cn <<X7Y>>c7

and thus, G is non-Einstein.

If S denotes the scalar curvature of G then,

2n

> GURic(E,, Ey)

a,b=1

S

2> GV Ric(E;, Eny)

i=1
=20y ((Ei, Enti)),
=0.

We now proceed with the proof of the second part of the theorem. Since G is
scalar flat, the Weyl tensor W is given by

W(X,Y,Z,W) = G(R(X,Y)Z,W) — Rico G(X,Y, Z,W)

2(n - 1)
— G(R(X,Y)Z,TW) — ﬁRic 0 G(X.Y,Z, W)
= G(R(X,Y)Z,TW) — 2:? 5GooG(X, Y, Z,W).
Now,
W(EL, By, B, Bnt) = G(R(By, B2) Bz, TBui1) = 5 Go 0 G(Ex, Bz, Bz, Eyy)

cn
2n — 2
n n _ n-—2
-2 0 2m—-2 2m-2
which is zero if and only if n = 2. Similarly, one can prove the same for the
other coefficients of the Weyl tensor. O

= G(R(E1, E2)Es, E4) —

Go(E2, E2)G(E1, Ent1)

=1

When n = 2, there is a complex structure on L(S3(c)), defined as follows:
T ANX+yANY)=azANJ'X —yAJY,

where J" is the complex structure in the plane (xr Ay)* in R Then the metric
G = Go(.,Jo o J§.) on L(S3(c)), is locally conformally flat, scalar flat and is
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invariant under the isometry group action in L(S?(c)). The metric G has been
studied by several authors (see for example, [1,2,4,7,9]).

Finally, for the hyperbolic case (¢ = —1), we show the following:

Remark 1. The isometric embedding f : (L(H"*!),G) — (TH"*,Gy) : A
y — (z, —y) is minimal.

Proof. The derivative of f is given by:
df N X +yAY)=(-Y,—X).
Note that X = Vyy and if D denotes the Levi-Civita connection of G, we
have
Daganx, rynvydf (@ A X1 +y AY1) = Dy, —x,)(=Y2, = X>)
= (Dy,Ys, R(y,Y1)Y2 + Dy, X5)
= (Dy, Y2, g(Y1,Y2)y + Dy, X2)
= (Dy, Y2, —g(X1, X2)y + Dy, X»)
+(0, (9(X1, X2) + (Y1, Y2))y),
which implies that the second fundamental form A is given by
hp(x A X1 +yAYi,z A Xo+yAYe)=(0,(9(X1, X2) + g(Y1,Y2))y).
Recalling the basis (E1, ... Eay,) of Tpp,L(S"11(c)), the mean curvature Hy of
fis
Hy =G""hy(Em, En),

so that
Hy = G""""hy(E;, Epyi)
=hr(xhe,yNe)
= (07 (g(ei7 0) + g(ou eZ))y)a
which shows that f is minimal. O

Considering the almost para-complex structure J in L(S"*1(c)):
JaANX+yAY)=zAX —yAY,

we then have:

(1) J is compatible with G. Namely,

g(j((ﬁ/\X1 —i—y/\Y1),J(3:/\X2 +y/\Y2)) g(ar/\X1—y/\Y17x/\X2—y/\Y2)

—g(X1,Y2) — g(X2,Y1)
= 7g(x/\X1 +y/\Y1,I/\X2+y/\Y2).

(2) J is integrable, i.e., DJ = JD. In fact,
JE; = I, JEnii = —Eny,

and the claim follows from Dg, E; = 0.
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Define the symplectic 2-form € in L(S"*1) by
Q=G(7..).
In particular,
Qe ANXys+yAYi, e A Xo+yAYa) =g(X1,Y2) — g(X2, V7).
Then the quadruple (L(S"*1(c)),G,J,f) form a para-Kihler structure, so

that the symplectic structure is the same as the symplectic structure defined
by the (para-) Kihler structure (L(S"*(c)), Go, Jo), since

Q= Go(Jo-, )
The latter (para-) Kéhler structure has been widely studied in [1], [4] and [7].

Every isometry ¢ : S"*!(¢) — §""!(c), can be extended to a linear orthogonal
transformation ¢ in R"2 restricted to S"*!(c). This induces a mapping F in
the space of oriented geodesics defined by

F(z Ay) = é(x) A d(y).
The derivative of F' is
AdF(x AX +yAY) = é(x) Addp(X) + d(y) Adp(Y).

Using now the fact that X, Y € (xAy)* (see [1]), we have that X € T,S"*+1(c)
and thus,

dF(x AX +yAY) = é(z) Adp(X) + d(y) Adp(Y).
We now have
GAF(xANX1+yAY1),dF(z A Xo+yAYs))
= G(¢(x) Adp(X1) + d(y) A dp(Y1), p(x) A dp(Xa) + ¢(y) A dp(Ya))
= g(do(X1),dp(Y2)) + g(dp(X2), dp(Y1))
=g9(X1,Y2) +9(X2, Y1)
=G0zANX1+yAY, e AXo+yAYs),

which shows the following;:

Proposition 3. The metric G is invariant under the action of the isometry
group of (S"*1(c), g) in the space of oriented geodesics L(S"T1(c)).

3. Geodesics

We now study geodesics in (L(S"*!(c)),G). We start with the following propo-
sition:

Proposition 4. If the curve y(t) = x(t) Ay(t) is a G-geodesic L(S"*1(c)), then
the vector field y = y(t) is orthogonal to the curve x = x(t) in S"*1(c).
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Proof. We prove the proposition for ¢ = 1, the proof is similar for ¢ = —1.
Denote the flat connection of A2R"*2 by V and the Levi-Civita connection of
g by by D. Then
= - - - -2 . . N
Viy =Dz Ay+a A (Dyy+(2,y) &) —x Ay+ 22 A D;y.
If V is the Levi-Civita connection of G, we then have:
. - - -2 . .
Viy =Dt ANy +aA(Dyy+(2,y) 2).
Suppose 7 is a G-geodesic. Then
D;t =ay and ﬁiy + {&,y) & = by,
for some functions a = a(t), b = b(t) along the curve z = z(t). Assuming ¢ is
the arc-length of the curve z, it follows that
If a # 0 in some open interval, then obviously we have that g(i,y) = 0.
Assuming @ = 0 in an open interval, we have that x is a geodesic in that
interval. Note that &,y are linearly independent, since otherwise it can be
shown that y = +4 and therefore the curve (¢) = 2 A & is not regular.
Let x,4,y,e1,...6,-1 be a frame of R"™2 such that g(e;,e;) = d;; and set
co = g(Dsy, &) with ¢, = g(Dzy, €k)

Now, g(Dsy, D ch =— my y), and therefore

i =—b+g(d,y)>

On the other hand
N SRR g =
by — g(&,y)¢ = Dyy = Di(Day) = Dalcod + ) _ cxer)

= ¢oT + Z(ékek + cpé) = cod + Z(ékek + créx)
k %

= CO':C - (Z Ci)y + A(ela LRRE 6n—1)a

k=1
where, A € span{ey,...,e,—1}. Then
CO:_g(i‘7y)a b:—ZCi,
k=1

and A = 0. In particular, for every k =1,...,n — 1, we have

e+ Y gleiéx)ei = 0.
ik
Thus

n—1 n—1

D ener = cickgles éx) =0,

k=1 k,i=1
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S —1 . 1
which implies that Y ;_; ¢ = constant. This means, b = — > }'_, ¢? is con-

stant and by definition we have

—2 . . —_— =S .
b=g(Dyy+ (&,y) i,y) = —9(Day, Day) + (d,9)°.

Using now the fact that b is constant, we have

b= 490 y)o(&, Dsy) = 25 (9(,9)°) = 0.

It follows that g(, y) is constant and therefore g(i, Dyy) = 0. Moreover, ¢ = 0
since ¢g = g(Dyy, &). But 0 = ¢y = —g(&,y) and the proposition follows. [

Every curve v = v(t) = x(t) Ay(t) in L(S"*1(c)), corresponds to a ruled surface
in S"T1(c) and such a surface, can be parametrised by

X(t,0) = x(t) cos c(0) + y(t) sin ¢(0), (6)
where,

5(0 =1
cosc(f) = cos(0), ¢
cosh(9), c¢=-1

For n = 2, we show the following:

Remark 2. A curve v in (L(S3(c)),G) is a geodesic if and only if the corre-
sponding ruled surface in S3(c) is minimal.

Proof. We know that &,y are linearly independent and let, {z, 4, y,e;} be an
orthonormal frame of R%,(.,.)) along the curve z = x(t). The corresponding
ruled surface, parametrised by (6), has normal vector fields N, where:

¢y sin cf
N(t,0) = —X
(7 ) |Xt|2 ty

with ¢; = <ﬁ,~vy,el>. Now

¢y coscl . ¢1 sin cf c1 sin ¢

N0:77|Xt|2 Xy, Ny=¢é1— |Xt|2 t— |Xt\2 tt
c1 sin cf
1|‘th|4 <Xtt;Xt> Xt77

If h is the second fundamental form of X, we then have
h(X:, Xi) = — (X, Nyy = é1sinc
h(X¢, Xg) = — (X, Ng) = ¢ cos cf
h(Xg, Xo) = — (Xp, Np) = 0.
If H is the mean curvature and ¢;; the induced metric X*g, we have that

tig = 0. Therefore

1 .. 1 1
H = 5Wh(xi,xj) = 5t“h(Xt,Xt) + 515‘9911()(9,)(9).
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Thus, using the previous proposition
_ ¢18in c B
CO2Xer

since, ¢p is constant. O

It would be interesting to know whether Remark 2 can be extended to any
dimension. We therefore conjecture the following:

Conjecture 1. A curve v in (L(S"T1(c)),G) is a geodesic if and only if the
corresponding ruled surface in S"*1(c) is minimal.

4. Lagrangian submanifolds

Let ¢ : ¥ — S""1(¢), be an immersed, orientable hypersurface and N the
unit normal vector field along ¥. The Gauss map ® of ¢, given in (1), defines a
Lagrangian immersion in L(S"!)(c) with respect to the symplectic structure
Q [1]. Tt can be shown that any Lagrangian immersion in L(S"*1(¢)) is locally
the Gauss map of a hypersurface in S"*!(c)) and hence is immersed by a
mapping ®. Identifying a vector field X in ¥ with the derivative d¢(X), we
have

X =d®(X)=XAN+AX A ¢,
where A denotes the shape operator of ¢. Let D and D be the flat connections
of R"*2 and A2R"*2 respectively, then we get
D)*(Y = (Exy) AN + (ﬁxAY) A .

Since the Levifcivi_ta connection V of G is the same as that of G, the second
fundamental form A of ® is:

MX,Y,2)=G(VxY,TZ).
Let (eq,...,e,) be an orthonormal frame of (X, ¢*g) such that Ae; = k;e;,

where A denotes the shape operator of ¢. If we simply write the induced
metric ®*G as G then

Q(éi, éj) = 2(5@‘]@‘. (7)
Away from flat points, i.e. II}_, k; # 0, we have

h(ei,ej,ej) = —ei(k;),

and therefore, if H is the mean curvature of ®, we obtain

" (e, e e; " e (k; _
g(nH’jdq)(ei)):Z((_.}'(ejjej)]):_Z 2(k;) =e;loglky - ky 1/2
i=1 ’ i=1

Finally, we have that
1
H=—JVloglks - k|12,

and thus, we obtain the following:
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Remark 3. Every Lagrangian submanifold in (L(S"*'(c)),G,9) has closed
Maslov 1-form. If ¥ is a non-flat hypersurface of S"*1(c) then it is of con-
stant Gauss curvature if and only if the oriented geodesics normal to ¥ form
a minimal Lagrangian submanifold of (L(S"*1(c)), G, Q).

A Lagrangian submanifold ¥ is said to be Hamiltonian minimal if

d
P volfy(3)[i=0 =0,

for all Hamiltonian deformations {f;} of 3. Using the first variation formula,
¥ is Hamiltonian minimal if

(5aH = 07
where ag = G(JH,.) is the Maslov 1-form and § is the Hodge-dual of d on 3
[12].

Remark 4. Let ¢ : ¥ — S"*1(c) be a non-flat hypersurface in (S"1(c), g).
Then the Gauss map ® : ¥ — L(S"*!(c)) is a Hamiltonian minimal submani-
fold of (L(S"*1(c)), G, ) if and only if ¢ is a critical point of the functional

f((b):/zmd‘/,

where K and dV denote, respectively, the Gaussian curvature of ¢ and the
volume element of the induced metric ¢*g.

Proof. Let ® be the Gauss map of a smooth immersion of ¢ of the n-
dimensional manifold ¥ in S"*!(c) and let (es,...,e,) be an orthonormal
frame, with respect to the induced metric ¢*g, such that

Aeizk‘iei, i:l,...,’l’L7
where A denotes the shape operator of ¢.

Let (¢t)ie(—to,to) be a smooth variation of ¢ and (®;) be the corresponded
variation of the Gauss map ®. We extend all extrinsic geometric quantities
such as the shape operator A, the principal directions e; and the principal
curvatures k; to the l-parameter family of immersions (¢¢). Using (7), the
induced metric ®;G is given by

DG = diag(2kzl, o 2kn).

For every sufficiently small ¢ > 0, the volume of every Gauss map ®;, with
respect to the metric G, is

Vol(®,) :/ V] det ®rGldV = 272 F(¢,). (8)
b
If ¢ is a critical point of the functional F, we have

0¢(Vol(®4))[t=0 = 0,
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for any Hamiltonian variation of ®. Therefore, ® is a Hamiltonian minimal
submanifold with respect to the para-Kéhler structure (G, ). The converse
follows directly from (8).

O

Combining Remark 3 and Remark 4 and using the fact that every minimal
Lagrangian submanifold is hamiltonian minimal, we also have the following;:

Proposition 5. A non-flat submanifold in S"*1(c) of constant Gaussian cur-
vature is a critical point of the functional F.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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