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Automated exploration of inner isoptics
of an ellipse

Thierry Dana-Picard and Witold Mozgawa

Abstract. For a given curve C and a given angle θ, the θ-isoptic curve of C
is the geometric locus of points through which passes a pair of tangents to
C making an angle equal to θ. If the curve C is smooth and convex, isoptics
exist for any angle, and through every point exterior to the curve, there is
exactly one pair of tangents. The isoptics of conics are well known. In this
paper, we explore the inner isoptics of ellipses, i.e. the envelopes of the
lines joining the points of contact of the ellipse with the tangents through
points on a given isoptic. If θ = 90◦, the isoptic is called orthoptic and
the corresponding inner isoptic is called the inner orthoptic. We show
that the inner orthoptic of an ellipse is an ellipse, but in general the inner
isoptics are more complicated.
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1. Introduction

Let a plane curve C and an angle θ be given. If it exists, the geometric locus
of points through which passes a pair of tangents to C making an angle equal
to θ is called an θ-isoptic curve of C and is denoted by Opt(C, θ). The name
comes from the fact that from points on this geometric locus the curve C is
seen under a fixed angle equal to θ. We will call θ the isoptic angle.

The study of isoptic curves has been an active field of research for a long time,
both for strictly convex curves and for open curves [1,4–8,11]. An example of a
non convex non smooth closed curve, namely isoptics of an astroid, is studied
in [3]. The following important result is proven in [1]:

Theorem 1.1. If C is a convex closed curve, then for any angle θ, its θ-isoptic
is a closed and periodic curve with period 2π.
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The determination of isoptics can be done by purely computational means, but
is also a wonderful topic for computerized experimentation using a dynamical
geometry system of various online applets (see [6]). Illustrations of this theorem
are given in [4,5,7,8,11]. In [4,5] work followed an algebraic path:

• Translate the question into equations.
• Transform the equations into polynomial equations.
• Solve the equations/systems of equations using computations of Gröbner

bases. This generally yields a parametric representation of the desired
isoptic curve.

• Implicitize the parametric presentation using elimination ideals.

This can be viewed as a standard pattern for numerous questions around
algebraic plane curves.

A central feature of the situation in Theorem 1.1 is as follows: if C is smooth
convex closed curves, then it defines three regions in the plane:

a. The exterior: through any point in that region pass a pair of tangents to
C.

b. The curve C itself: through every point on the curve passes a unique
tangent.

c. The interior: through any point in that region no tangent passes.

Definition 1.2. Let C be a plane smooth closed curve and let θ be a given angle.
For any point P0 exterior to C, we denote by T1 and T2 the points of contact
of the tangents with C. If it exists, the envelope of the family of lines (T1T2)
when P0 runs over an isoptic curve of C will be called an inner isoptic of C.

In this paper, we study inner isoptics of ellipses. First, we perform experimen-
tations using a dynamical geometry system (DGS),1 then we will study the
general case using a computer algebra system (CAS).

We use now the equations derived in [4], where a complete study of the isoptics
of an ellipse can be found. WLOG, consider a general ellipse Ek whose equation
is

x2 + k2y2 = 1, k ∈ (0,+∞). (1.1)

Note that this equation is general enough, as the parameter k encodes the
eccentricity of the ellipse. Therefore considering the general canonical equation
x2

a2 + y2

b2 = 1 is not necessary. The topology remains the same.

Denote by θ an isoptic angle and let t = tan θ. Then a equation for the θ-isoptic
is as follows:

4k2 (k2y2 + x2 − 1) − t2 (1 − k2(x2 + y2 − 1))2 = 0. (1.2)

Actually this equation, derived in [4], describes both the θ-isoptic and the
π − θ-isoptic, therefore the name of bisoptic curve given there. In each case,

1We use the GeoGebra package, freely downloadable from http://www.geogebra.org.

http://www.geogebra.org
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Figure 1 Bisoptic curve of an ellipse

the curve given by Eq. (1.2) has two components. For acute θ, the θ-isoptic is
the external loop, the internal loop being the π − θ-isoptic (in this last case,
the isoptic angle is obtuse). In general we will denote by Opt(k, θ) the θ-isoptic
of the ellipse corresponding to k. In Fig. 1, the external loop is Opt(1/2, 45◦)
and the internal one is Opt(1/2, 135◦).

For the algebraic computations in the present work, we will need to distinguish
the components. This will be done later using parametrizations. For general
descriptions of the problems posed by parameterizing curves, we refer to [10].

2. Experimentation with a DGS

Consider the ellipse E2 whose equation is x2 + 4y2 = 1, and take an angle
θ = 45◦. In this case, the equation of the bisoptic curve C is

(x2 + y2)2 − 7
2
x2 − 13

2
y2 +

41
16

= 0.

Mark a point A on one of the components of the curve C, then plot the tangents
to E2 through A. We denote the tangency points by B and C and plot he
segment BC. Using the Trace On feature of the DGS, we move slowly the
point A along the curve. Figure 2a leads to conjecture the existence of an
envelope for the segments BC, what we called an inner isoptic, for the acute
angle 45◦. Figure 2b leads to a similar conjecture for the angle 135◦. We wish
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Figure 2 Examples of inner isoptics of an ellipse

to mention that, at this step, we were unable to obtain an analytic presentation
(i.e. an equation) for these envelopes using the DGS.

In order to find an equation for the envelopes of the family of segments BC
parameterized by the point A, i.e. the desired inner isoptics, we have to switch
to a CAS and to work with explicit equations. This is an example where a
dialog between DGS and CAS is necessary.

3. The automated study of inner isoptics of a given ellipse

3.1. The tangency points and the line through them

Consider a point P0(x0, y0) on the isoptic. Through P0 passes a pair of tangents
to Ek, whose respective slopes are given by:

m1 =

√
k2y2

0 + x2
0 − 1 − kx0y0

k(−x2
0 + 1)

m2 = −
√

k2y2
0 + x2

0 − 1 + kx0y0
k(−x2

0 + 1)

and the respective equations of the tangents are:

y = y0 + m1(x − x0)
y = y0 + m2(x − x0)

Now we look for the coordinates of the tangency points, by solving the systems
of equations:

⎧
⎨

⎩
y = y0 +

√
k2y2

0+x2
0−1−kx0y0

k(−x2
0+1)

(x − x0)

x2 + k2y2 = 1
(3.1)
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and
⎧
⎨

⎩
y = y0 −

√
k2y2

0+x2
0−1+kx0y0

k(−x2
0+1)

(x − x0)

x2 + k2y2 = 1.
(3.2)

In both systems of equations, the obvious condition of existence for solutions
is that x2

0 +k2y0 −1 > 0, i.e. that the point P0 is exterior to the curve Ek. The
solutions of system (3.1) are the coordinates of a point P1, namely:

⎧
⎪⎨

⎪⎩

x1 = kxl20y0

√
k2y2

0+x2
0−1−2k2x0y2

0+ky0

√
k2y2

0+x2
0−1−x3

0+x0

−k2x2
0y2

0+2kx0y0;
√

k2y2
0+x2

0−1−k2y2
0−x4

0+x2
0

y1 = x0

√
k2y2

0+x2
0−1+ky0

k (k2y2
0+x2

0)

(3.3)

and the solutions of system (3.2) are the coordinates of a point P2, namely:

⎧
⎪⎨

⎪⎩

x2 = kx2
0y0

√
k2y2

0+x2
0−1+2k2x0y2

0+ky0

√
k2y02+x02−1+x3

0−x0

k2x2
0y2

0+2kx0y0

√
k2y02+x02−1+k2y2

0+x4
0−x2

0

)

y2 = −x0

√
k2y2

0+x2
0−1−ky0

k (k2y2
0+x2

0)
.

(3.4)

The computation of an equation of the line (P1P2) is theoretically an easy
task, but technically it is heavy. In order to use the CAS efficiently, we use a
determinant whose vanishing locus is the desired line. We obtain:

2(x0 − 1)2(x0 + 1)2(k2y2
0 + x2

0)(k
2yy0 + xx0 − 1)

√
y2
0k

2 + x2
0 − 1 = 0, (3.5)

which is equivalent to

xx0 + k2yy0 − 1 = 0. (3.6)

Note that if the point P0 is on the ellipse Ek, this is exactly the equation of
the tangent to the ellipse through P0.

3.2. A parametrization of Opt(k, t)

Equation (1.2) determines bisoptic curves of the ellipse Ek. As we described
previously, this curve is the disjoint union of two smooth closed curves. It has
been proven in [4] that this curve is a special case of a Spiric of Perseus, namely
the intersection of a torus with a plane parallel to the torus axis. In the case
of bisoptic of ellipses (and also of hyperbolas, as shown in [5], but this not our
concern here), the torus is self-intersecting. Anyway, the two loops forming
the bisoptic curve are not self-intersecting, and they can be decomposed into
4 arcs by cutting them along the x-axis.
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Solving Eq. (1.2) for y, we obtain the following equations, which provide easily
parametrizations for the arcs:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Arc 1: y =
√

−k2t2x2+k2t2+2k2+t2+2
√−k4t2x2+k4t2+k2t2x2+k4

tk

Arc 2: y = −
√

−k2t2x2+k2t2+2k2+t2+2
√−k4t2x2+k4t2+k2t2x2+k4

tk

Arc 3: y =
√

−k2t2x2+k2t2+2k2+t2−2
√−k4t2x2+k4t2+k2t2x2+k4

tk

Arc 4: y = −
√

−k2t2x2+k2t2+2k2+t2−2
√−k4t2x2+k4t2+k2t2x2+k4

tk

3.3. The inner isoptics

Take a point P0 on Arc 1; it is defined by the following parametrization:
{

x0 = u

y0 =
√

−k2t2u2+k2t2+2k2+t2+2
√−k4t2u2+k4t2+k2t2u2+k4

tk

, (3.7)

where u is now the parameter instead of x. By substitution into the equation
of the line P1P2, we have:

xu+ k2y

(√
−k2t2u2 + k2t2 + 2k2 + t2 + 2

√−k4t2u2 + k4t2 + k2t2u2 + k4

tk

)

− 1 = 0.

Denote by F (x, y, u) the right-hand side of this equation. An envelope of the
family of lines, if it exists, is determined by the following system of equations:

{
F (x, y, u) = 0
∂F
∂u F (x, y, u) = 0.

(3.8)

We obtain:
⎧
⎪⎨

⎪⎩

x =
u((1+(−u2+1)k4+(u2+2)k2)

√
−k2((u2−2)k2−u2)+(u2−1)k6−3k4−k2u2

(u4+u2−2)k6+(−2u4+5u2−12)k4+(u4−5u2−2)k2−u2

y =

(
((−u2+4)k2+u2)

√
−k2((u2−2)k2−u2)+3(k2+ 1

3
)((u2−2)k2−u2)

) √
2
√

−k2((u2−2)k2−u2)+1+(−u2+3)k2

((u4+u2−2)k6+(−2u4+5u2−12)k4+(u4−5u2−2)k2−u2)k

Back to the DGS, we use the command Curve to plot the curve defined by
these equations. We plotted it in a GeoGebra file with general k. The slider
bar enabled us to show that in the case where k = 2, the arc defined by the
parametrization coincides exactly with what has been conjectured in Sect. 2.
Two examples are displayed in Fig. 3, with emphasis on the chord BC.

For the other arcs, work follows exactly the same path. We may leave it to the
interested reader.

Remark 3.1. An important question is implicitization of the parametric pre-
sentation of the inner isoptic that we have found. In other (simpler) settings,
when the data could be put into polynomial from, we could use algorithms
such as computation of elimination ideals or resultants (see [2]), in the way it
has been done e.g. in [4]. Here the transformation of Eq. (3.8) into rational,
then polynomial expressions seems hopeless.
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Figure 3 Examples of chords and inner isoptics of an ellipse

For example, let k = 2. Transforming Eq. (3.2) into polynomial data, by means
of transfer from side to side and successive raising to the square provides the
following polynomial equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

110592u14 − 608256u12 − 147456u11y + 1057536u10 + 602112u9 ∗ y + 1296u8x2

+49152u8y2 − 591872u8 − 9216u7x − 557056u7y + 8856u6x2 − 131072u6y2

+16384u6 − 15360u5x − 8487u4x2 − 57344u4 + 139072u3x − 80688u2x2

+50176u2 − 146944ux+ 107584x2 = 0

26873856u16y4 − 2654208u16y2 + 367276032u14y4 + 65536u16 + 275816448u14y2

+902886912u12y4 + 15592448u14 + 1105416576u12y2 − 5751440640u10y4

+61000192u12 − 8064265152u10y2 − 17252143344u8y4 + 668471424u10

−12938192552u8y2 + 52402014720u6y4 + 1938827977u8 + 79391817472u6y2

+74950760448u4y4 − 14469805664u6 − 73272450048u4y2 − 277783609344u2y4

+8493420928u4 + 20904001536u2y2 + 185189072896y4 + 3487442944u2

−29359243264y2 + 282300416 = 0

We tried with different packages, but until now, no CAS was unable to elimi-
nate the parameter u in a “reasonable” time. In the particular case of θ = π/2,
computations are easier. We show this case in the next section.

3.4. An implicit equation for the inner orthoptic of an ellipse

We consider now the case where θ = π
2 . If it exists, the π

2 -isoptic of a curve C
is generally called the orthoptic of C. The best known cases are for conics, the
equations are displayed in Table 1 and the curves in Fig. 4.

Let E be the ellipse whose equation is x2 + k2y2 = 1, for k > 0. Its director
circle has equation x2 + y2 = 1 + 1

k2 . Following the same path as in previous
subsection, a parametric presentation of the inner orthoptic is obtained:
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Table 1 Orthoptics of conics

The conic Equation of
the conic

Equation of
the orthoptic

Name

Parabola 2 = 4ax x = −a Directrix
Ellipse x2

a2 + y2

b2 = 1 x2 + y2 = a2 + b2 Director circle
Hyperbola x2

a2 + y2

b2 = 1 x2 + y2 = a2 − b2, a > b Director circle

Figure 4 Orthoptics of conics

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = 1
2(1+ 1

k2 )
(√

sin2 t+ 1
k2 cos2 t

√
cos2 t+ 1

k2 sin2 t+(1− 1
k2 ) sin t cos t

)
(
−2 sin3 t

√
cos2 t + 1

k2 sin2 t+

+
√
2

(
1 − 2

k2

)
sin t cos2 t

√(
1 − 1

k2

)
cos 2t + 1 + 1

k2 + 2 cos3 t
√
sin2 t + 1

k2 cos2 t−
−√

2
(
1 − 2(1/k)2

)
sin2 t cos t

√(
1
k2 − 1

)
cos 2t + 1 + 1

k2

)

y = 1
2k2(1+ 1

k2 )
(√

sin2 t+ 1
k2 cos2 t

√
cos2 t+ 1

k2 sin2 t+(1− 1
k2 ) sin t cos t

)
(

2
k2 sin3(t)

√
sin2 t + 1

k2 cos2 t+

+
√
2

(
2 − 1

k2

)
sin t cos2 t

√(
1
k2 − 1

)
cos 2t + 1 + 1

k2 + 2
k2 cos3 t

√
cos2 t + 1

k2 sin2 t+

+
√
2

(
2 − 1

k2

)
sin2 t cos t

√(
1 − 1

k2

)
cos 2t + 1 + 1

k2

)

In this specific case, an implicit equation can be derived for the inner-orthoptic,
namely

(x2 + k4y2)(k6y2 + k4y2 + k2x2 − k2 + x2) = 0 (3.9)

Equation (3.9) has been obtained using methods based on support functions;
see [9].

Actually, the first factor defines the origin only, and is irrelevant. The second
factor determines the desired inner-orthoptic. Finally we have the following
result:

Proposition 3.2. Let E be the ellipse whose equation is x2 + k2y2 = 1, for
k > 0.

1. E has an inner-orthoptic.
2. This inner-orthoptic is an ellipse whose equation is (1 + k2)x2 + (k4 +

k6)y2 = k2.
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Figure 5 Inner orthoptic of an ellipse

It is easy to prove that the given ellipse and its inner orthoptic have different
eccentricity and foci. An interactive GeoGebra applet is available at https://
www.geogebra.org/m/z9aqyuun.
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