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Abstract. In this paper we present a certain modification of the Holditch
construction. This construction allows to consider a geometric family of
pairs of ring domains. It is proved that the ratio of areas of ring domains
of each pair belonging to this family is constant. Problems on extremal
chords of constant length sliding around a given oval with both endpoints
on it are also considered.
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1. Introduction

Hamnet Holditch, president of Caius College in Cambridge, published in [13]
a remarkable theorem. Let C be a convex curve, and a chord h of length a+ b
be divided into parts of lengths a and b by a point A. Let Ca,b denote a curve
traced out by the point A when the chord h slides around with both endpoints
on C. Holditch proved that the area of a ring domain bounded by C and Ca,b

is equal to πab, see Fig 1.

Arne Broman proved in [4] and [3] a much more general theorem and gave
some kinematic applications. Further applications to mechanics were given in
[11,12], and [14]. Some additional remarks on Holditch’s theorem can be found
also in [1,8,9], and [18], and recent related investigations are given in [15,16],
and [10].

In this paper we modify the Holditch construction in which one ring domain is
considered. In our modification we deal with a family of pairs of ring domains
and obtain a natural geometric generalization. As an application we derive
some Crofton-type formula for a ring domain.

We denote by C∗ the family of all closed strictly convex curves of class C1.
Let C ∈ C∗ and let p denote a fixed support function of C. The parametric
representation of the curve C has the form
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z (t) = p (t) eit + ṗ (t) ieit for t ∈ [0, 2π] , (1.1)

where the dot denotes differentiation with respect to t, see [2] and [17]. We
denote by C a subfamily of C∗ defined as follows: a curve C ∈ C∗ belongs to C
if and only if the function R = p + p̈ satisfies the inequality

R = p + p̈ > 0. (1.2)

Note that the function R is the curvature radius of C if the curve is of class
C2.

We fix α ∈ (0, π), and we denote by zα (t) the intersection point of the tangent
lines at z (t) and z (t + α). A curve Cα : t → zα (t) is called an α-isoptic, see
Fig. 2.

We will use the notations introduced in [6] and [7], namely

zα (t) = z (t) + λ (t, α) ieit = z (t + α) + μ (t, α) iei(t+α), (1.3)

Figure 1 Illustration of Holditch’s theorem

Figure 2 An α-isoptic of the curve C
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Figure 3 The functions f and g

where

λ (t, α) sin α = p (t + α) − p (t) cos α − ṗ (t) sin α, (1.4)
μ (t, α) sin α = p (t + α) cos α − ṗ (t + α) sin α − p (t) . (1.5)

Moreover, if

b (t, α) = p (t + α) sinα + ṗ (t + α) cos α − ṗ (t) , (1.6)
B (t, α) = p (t) − p (t + α) cos α + ṗ (t + α) sin α, (1.7)

then we have

z (t) − z (t + α) = B (t, α) eit − b (t, α) ieit, (1.8)
λ (t, α) = b (t, α) − B (t, α) cot α, (1.9)

μ (t, α) sin α = −B (t, α) , (1.10)

see [7]. We denote by ξα (t) the intersection point of the normal lines at z (t)
and z (t + α). We have

ξα (t) = z (t) − f (t, α) eit = z (t + α) − g (t, α) ei(t+α), (1.11)

see Fig. 3.

Simple calculations lead us to the formulas

f (t, α) sin α = p (t) sinα + ṗ (t + α) − ṗ (t) cos α, (1.12)
g (t, α) sin α = p (t + α) sinα + ṗ (t + α) cos α − ṗ (t) . (1.13)

Comparing (1.6) and (1.13), we get

g (t, α) sinα = b (t, α) . (1.14)

Moreover, it is easy to verify that

f (t, α) = B (t, α) + b (t, α) cot α. (1.15)
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2. Extremal chords

Let us fix a curve C ∈ C. We consider lengths of chords joining a fixed point
z (t) and z (t + α) for α ∈ (0, 2π). Let

Ht (α) = |z (t) − z (t + α)| for α ∈ (0, 2π) . (2.1)

We denote by 〈−,−〉 the Euclidean scalar product. Differentiating the function
Ht given by the formula (2.1) and making use of (1.8) and (1.15), we obtain

H ′
t (α) Ht (α) =

〈
∂

∂α
(z (t) − z (t + α)), z (t) − z (t + α)

〉

=
〈
−R (t + α) iei(t+α), B (t, α) eit − b (t, α) ieit

〉
= R (t + α) (B (t, α) sinα + b (t, α) cos α)
= R (t + α) f (t, α) sin α

and

H ′
t (α) =

R(t + α)
Ht (α)

f(t, α) sin α. (2.2)

The above formula implies immediately the following statement.

If the chord joining a fixed point z (t) and a point z (t + α) for some α ∈ (0, 2π)
has maximal length, then the normal line at z (t + α) intersects C at z (t).

Let

ww(C) = min
t∈[0,2π]

max
α∈[0,2π]

H(t, α). (2.3)

Now we consider the particular but important case of ellipses.

Proposition 2.1. Let us fix an ellipse E, x2

a2 + y2

b2 = 1, where a > b > 0. Then
the maximal length of chords is given by the formula

⎧⎪⎨
⎪⎩

3
3
2

a2b2

(a2 + b2)
3
2
, if a > b

√
2,

2b, if a ≤ b
√

2.

(2.4)

Proof. For a given point P (r, s) of E we consider the normal line to E at P .
This normal line intersects E at the second point P̃ (r̃, s̃), where

(r̃, s̃) =
(

r
a6s2 − b6r2 − 2a4b2s2

b6r2 + a6s2
, s

b6r2 − 2a2b4r2 − a6s2

b6r2 + a6s2

)
. (2.5)

Hence the distance between the points P and P̃ is d(P, P̃ ) = 2(b4r2 + a4s2)
3
2

(b6r2 + a6s2)−1. Since a2s2 = a2b2 − b2r2, it suffices to find the minimum of
the function
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d(r) = 2b
(a4 − (a2 − b2)r2)

3
2

a6 − (a4 − b4)r2
for r ∈ (−a, a).

�

Example. Let us fix an ellipse E, x2

a2 + y2

b2 = 1. Each chord of the length m
which slides around the curve E with endpoints on E determines some curve
Em. We find the equation of the curve Em. For this aim we solve the system
of equations {

b2x2 + a2y2 − a2b2 = 0,

b2ux + a2vy − a2b2 = 0,

where the second equation represents the line dual to an exterior point (u, v)
with respect to E. Then its intersection points with E are

(r, s) =

(
a2 b2u + v

√
a2v2 + b2u2 − a2b2

a2v2 + b2u2
, b2

a2v − u
√

a2v2 + b2u2 − a2b2

a2v2 + b2u2

)
,

(r̃, s̃) =

(
a2 b2u − v

√
a2v2 + b2u2 − a2b2

a2v2 + b2u2
, b2

a2v + u
√

a2v2 + b2u2 − a2b2

a2v2 + b2u2

)
.

Since m2 = (r − r̃)2 + (s − s̃)2, we get

4(b2x2 + a2y2 − a2b2)(b4x2 + a4y2) − m2(b2x2 + a2y2)2 = 0, (2.6)

where we substituted x, y instead of u, v, respectively.

3. Sliding a chord around a curve

We denote by N a family of functions ν : [0,+∞) → R of the class C1(0,+∞)
satisfying the following conditions:

ν̇ > 0 for t ∈ (0,+∞), (3.1)
t < ν(t) < t + π for t ∈ [0,+∞), (3.2)
ν(t + 2π) = ν(t) + 2π for t ∈ [0,+∞). (3.3)

Let C be a curve t → z(t) given by (1.1), and ν ∈ N be a function. We
associate with C a vector field Q along the curve C, defined as follows:

Q(t) = z(t) − z(ν(t)). (3.4)

In view of (1.8) we have

Q(t) = B(t, ν(t) − t)eit − b(t, ν(t) − t)ieit. (3.5)

Differentiating (3.5) and using the formulas⎧⎨
⎩

∂b
∂α = R(t + α) cos α,

∂B
∂α = R(t + α) sin α,

∂b
∂t = B(t, α) + R(t + α) cos α − R(t),

∂B
∂t = −b(t, α) + R(t + α) sin α

(3.6)
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given in [7], we obtain

Q̇ = ν̇R(ν) sin(ν − t)eit + (R − ν̇R(ν) cos(ν − t))ieit. (3.7)

We note that

〈Q, Q̇〉 = ν̇BR(ν) · sin(ν − t) − (R − ν̇R(ν) · cos(ν − t)) b

= ν̇R(ν) (B sin(ν − t) + b cos(ν − t)) − bR

= (ν̇R(ν) · f(t, ν − t) − Rg(t, ν − t)) sin(ν − t).

Hence we have equivalence of the following conditions:

〈Q, Q̇〉 = 0, (3.8)

ν̇ =
R(t) · g(t, ν − t)
R(ν) · f(t, ν − t)

. (3.9)

With respect to (3.9) we consider the implicit equation

p (t) sin Γ + ṗ (t + Γ) − ṗ (t) cos Γ = 0.

Differentiating the above equation and using the formulas (1.2) and (1.4), we
get

(R(t + Γ) − λ sin Γ)Γ̇ = λ sin Γ − R(t + Γ) + R cos Γ,

and therefore

Γ̇ =
R(t) cos Γ

R(t + Γ) − λ(t,Γ) sin Γ
− 1. (3.10)

If the maximal width is attained at t = t0, then Γ(t0) = π. We note that
Γ(t) > π

2 , since for the orthoptic curve we have f = −μ 	= 0 and the considered
function Γ is differentiable.

We associate with the curve C and ν ∈ N a curve Cν defined by

t → wν (t) = z (t) + λ (t, ν (t) − t) ieit for t ∈ [0, 2π] . (3.11)

Theorem 3.1. The integral formula∫ 2π

0

[
wν (t) , Q̇ (t)

]
dt = 0 (3.12)

holds, where [a + bi, c + di] = ad − bc.

Proof. Let α (t) = ν (t) − t. Using (1.10), (1.7), and (1.8), we obtain∫ 2π

0

[
wν , Q̇

]
dt

=
∫ 2π

0

[
peit + (ṗ + λ) ieit, ν̇R(ν) · sin αeit + (R − ν̇R(ν) · cos α) ieit

]
dt

=
∫ 2π

0

(
p (R − ν̇R(ν) · cos α) − p(ν) − p cos α

sin α
ν̇R(ν) · sin α

)
dt

=
∫ 2π

0

(pR − ν̇R(ν) · p(ν)) dt = 0.

�
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4. The main theorem

Now we assume that a chord of constant length m slides around with both
endpoints on C which is given by formula (1.1). The endpoints of the sliding
chord determine an increasing function ν ∈ N . We assume that |z(0)−z(t0)| =
m for some t0 ∈ (0, 2π). Thus the function ν satisfies the differential equation
(3.9) with the initial condition ν(0) = t0. For a fixed ξ ∈ [0, 1] we consider a
curve C(m, ξ) given by the formula

t → vξ(t) = z(t) − ξQ(t) for t ∈ [0, 2π]. (4.1)

Obviously, we have |Q| ≡ m. We note that

[vξ, v̇ξ] = [z, ż] − 2ξ[z, Q̇] + ξ[z,Q]. + ξ2[Q, Q̇].

Hence we get immediately

AreaC − AreaC(m, ξ) = −ξ

2π∫
0

[ż, Q]dt − πξ2m2. (4.2)

We note that the graphs of the curves C(m, 0) and C(m, 1) coincide with the

graph of C. Thus for ξ = 1 from (4.2) it follows immediately that
2π∫
0

[ż, Q]dt =

−πm2. Now formula (4.2) can be rewritten in the form

AreaC − AreaC(m, ξ) = πm2ξ(1 − ξ). (4.3)

Letting m = a + b and ξ = a
a+b , we get the well-known Holditch formula

Area C − Area C

(
a + b,

a

a + b

)
= πab.

Now we associate with C and Cν a certain curve Dν,γ defined as follows:

t → v (t) = wν (t) + γQ (t) for t ∈ [0, 2π] , (4.4)

where γ is a nonnegative constant.

Let us fix ξ ∈ (0, 1). We consider a curve Cν,ξ, t → vν,ξ(t) = (1 − ξ)z(t) +
ξz(ν(t)) for t ∈ [0, 2π], see Fig. 4.

Theorem 4.1. If C ∈ C, ν ∈ N , ξ ∈ (0, 1) and γ 	= 0, then the following
formula holds:

Area Dν,γ − Area Cν

Area C − Area Cν,ξ
=

γ2

ξ(1 − ξ)
. (4.5)

Proof. We have

[v, v̇] = [wν , ẇν ] − 2γ
[
wν , Q̇

]
+ γ [wν , Q]· + γ2

[
Q, Q̇

]
.

Applying Theorem 3.1, we obtain

2Area Dν,γ − 2Area Cν = γ2

∫ 2π

0

[
Q (t) , Q̇ (t)

]
dt. (4.6)
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Figure 4 The curves C, Cν,ξ, Cν , Dν,γ

It was proved in [5] that

2Area C − 2Area Cν,ξ = ξ(1 − ξ)
∫ 2π

0

[
Q (t) , Q̇ (t)

]
dt. (4.7)

Comparing the formulas (4.6) and (4.7), we get (4.5). �

As corollaries of Theorem 4.1 we have the following Holditch-type formulas.

Corollary 4.2. If a + b < ww(C), then

Area D b
a+b

− Area Ca+b = πb2. (4.8)

Corollary 4.3. If m < ww (C), then

AreaD 1
m

− Area Cm = π. (4.9)

Figure 5 illustrates Corollary 4.2

5. Crofton-type integral formulas

In this section we provide an interesting application of the developed theory
and derive a new, geometrically justified Crofton-type formula.
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Figure 5 Curves C, Cm, D 1
m

Let us fix C ∈ C and r < ww (C). The function ν (t,m) determined by m ∈
(0, r) satisfies the condition (3.4). Differentiating (3.4) with respect to m, we
obtain

m =
〈

Q,
∂Q

∂m

〉
= −R(ν) · ∂ν

∂m

〈
Q, ieiν

〉
= R(ν) · ∂ν

∂m

[
Q, eiν

]
.

Let α (t,m) = ν (t,m) − t. With respect to (3.5) and (1.15) we have[
Q, eiν

]
=

[
Beit − bieit, cos α · eit + sin α · ieit

]
= B sin α + b cos α = F sin α.

The above calculations imply that

∂ν

∂m
=

m

R(ν) · F sin α
. (5.1)

Now, we consider the ring domain CCr , and we introduce the notations as in
Fig. 6, maintaining at the same time the notations of Santaló from [17].

Let R1(x, y), R2(x, y) denote the radii of curvature of C at the tangent points
A1, A2, respectively.

Crofton proved the integral formula∫∫
extC

sinω

t1t2
dxdy = 2π2,

where ext C denotes the exterior of C, see [13]. We will prove some Crofton-
type theorem, namely
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Figure 6 Notations for Theorem 5.1

Theorem 5.1. If C ∈ C and r < ww (C), then the following integral formula
holds: ∫∫

CCr

R2F1
sin3 ω

t1t2
dxdy = πr2. (5.2)

Proof. We consider a mapping T : (0, 2π) × (0, r) → interior of CCr \{some
segment} defined by the formula

T (t,m) = z (t) + λ (t, ν (t,m) − t) ieit.

We note that T is a bijection and

∂T

∂m
=

∂λ

∂m
ieit,

∂T

∂t
= −λeit + hieit ,

where h is some function. Thus the Jacobian JT of T at (t,m) is given by the
formula

JT (t,m) =
[
∂T

∂t
(t,m) ,

∂T

∂m
(t,m)

]
= −λ (t,m)

∂λ

∂m
(t,m) .

On the other hand, since α (t,m) = ν (t,m) − t, so ∂ν
∂m = ∂α

∂m and

sin2 α
∂λ

∂m
= sin2 α

∂

∂m

(
p(ν) − p cos α

sinα
− ṗ

)

=
(

ṗ(ν) · ∂ν

∂m
+ p sin α

∂α

∂m

)
sinα − (p(ν) − p cos α) cos α

∂α

∂m
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= (ṗ(ν) · sin α − p(ν) · cos α + p)
∂ν

∂m

= −μ
∂ν

∂m
=

−μm

R(ν) · F sin α
.

Thus the Jacobian of T at (t,m) has the form

JT (t,m) =
−μλm

R(ν) · F sin3 α
.

Now we have
∫∫

CCr

R2F1
sin3 ω

t1t2
dxdy =

2π∫
0

r∫
0

R(ν) · F
sin3 α

−μλ

−μλm

R(ν) · F sin3 α
dmdt = πr2.

�
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