
J. Geom. (2020) 111:22
c© 2020 Springer Nature Switzerland AG
0047-2468/20/020001-21
published online April 21, 2020
https://doi.org/10.1007/s00022-020-00535-6 Journal of Geometry
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Abstract. This paper studies a generalization of the Euclidean triangle,
the generalized deltoid, which we believe to be the right one for convex
geometry. To illustrate the process, our main result shows that the gen-
eralized deltoid satisfies a convex generalization of the Fermat–Torricelli
theorem. A point that minimizes the sum of distances to the vertices of
a triangle (Fermat–Torricelli point) is the same as one through which
pass three equiangular affine diameters (Fermat–Ceder point). A gener-
alized deltoid is a triangle whose sides are disjoint, outwardly-looking
arcs of convex curves. The Fermat–Torricelli theorem in convex geometry
extends the Fermat–Ceder point of a triangle to a Fermat–Ceder point
of a generalized deltoid. As an application, we show that the Fermat–
Ceder points for the continuous families of affine diameters, area-bisecting
lines, and perimeter-bisecting lines are unique for every triangle, and non-
unique for every pentagon. In the case of quadrilaterals, the uniqueness of
the Fermat–Ceder point for affine diameters holds precisely for all non-
trapezoids, the one for the Fermat–Ceder point for area-bisecting lines
holds for all quadrilaterals, and the one for the Fermat–Ceder point for
perimeter-bisecting lines is open.
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In loose language, a deltoid is a closed curve in the shape of the capital Greek
letter delta, the symbol of a triangle. The classical deltoid was introduced by
Jacob Steiner in 1856; it is the locus of a marked point on a circle rolling inside
a fixed circle that is three times larger, or a tri-hypocycloid; see [52] or [71]. A
second deltoid was introduced in 1972 by J. E. Dunn and J. E. Pretty in [26]—
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see Fig. 1 (Left), as the envelope of all area-bisecting lines of a triangle. It is a
triangle whose sides are outwardly-looking arcs of hyperbolas. This was named
as the area-bisecting deltoid in [8] along with the perimeter-bisecting deltoid,
a third deltoid introduced and studied in that paper—see Fig. 1 (right). The
perimeter-bisecting deltoid is the envelope of the perimeter-bisecting lines of
a triangle; it is a triangle whose sides are outwardly-looking arcs of parabolas
that are smoothly extended with up to two line segments.

This article introduces the generalized deltoid as a triangle whose sides are
outwardly-looking arcs of convex curves—see Fig. 2 (right), which we believe
to be the appropriate triangle for convex geometry, in spite of its not being
a convex curve. In addition to numerous basic properties of this most general
triangle/deltoid, we have one main result, the Fermat–Torricelli theorem in
convex geometry, and an application of it to affine diameters and area or
perimeter-bisecting deltoids.

Before proceeding with the statements of these two theorems, we provide a
few basic definitions, examples and some background. At the end of the Intro-
duction, we look at our results in historical perspective and explore venues for
future research.

Figure 1 (left) The area-bisecting deltoid of a triangle;
(right) the perimeter-bisecting deltoid

Figure 2 (left): Fermat–Torricelli point of a triangle; (right):
Fermat–Ceder point of a generalized deltoid
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Background

Two major areas in convex geometry that reflected all of its more than a
century long history are the theory of equipartitions and the one of affine
diameters. An equipartition is roughly the problem of dividing a convex set into
parts of equal area or perimeter. One of the earliest results on equipartitions
is due to Zindler in [73–75] (1920), proving that each convex set is partitioned
into four pieces of equal area by two perpendicular chords. Buck and Buck’s
result in [18] (1949), that every bounded convex planar set can be divided into
six parts of equal area by three concurrent lines, marked the beginning of the
chapter on sixpartite problems. Neumann in [60] (1945) introduced measure
theory into the subject by allowing the area or perimeter to have non-constant
mass distribution; see also Eggleston [28–30] or Grünbaum [35]. The subject
has grown over the last seven decades, and is still popular today. It now includes
ideas from geometry, measure theory, analysis, topology and combinatorics; see
[2,4,6,11,38,64]. For more on the earlier developments in convex geometry, see
the expository book [70] by Yaglom and Boltyanskii.

Affine diameters

An affine diameter of a convex set is a chord whose endpoints belong to two
parallel lines that support the set. For example, the affine diameters of a
triangle are all its cevians, including sides—see Fig. 3 (left), and the affine
diameters of a quadrilateral with no parallel sides are extensions of the affine
diameters of a triangle determined by three of its vertices—see Fig. 3 (right).
Affine diameters were introduced by Blaschke in [12] (1917), and developed
into a major area of convex geometry in the 1950’s through the work of Ham-
mer [41–43] and Grünbaum [36] on measures of symmetry of convex bodies,
and Klee [47], Neumann [59] and Süss [65] on the critical set of a convex body.
For recent developments, see [3,67,68], the expository article [62] by Soltan and
the books [61] by Schneider and [69] by Toth.

Continuous families of lines. The direction of a line in the plane is the trigono-
metric angle between the positive part of the x-axis and a parallel to the line

Figure 3 Affine diameters: (left) of a triangle; (right) of a
quadrilateral
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that passes through the origin. It is a real number α modulo π or 180◦, depend-
ing on whether α is measured in radians or degrees. Refining the definition of
a family of lines in the plane that admit a continuous selection, given by J.
G. Ceder in [19], we say that a family M of lines in the plane is a continuous
family of lines if (1) for each direction α there is exactly one line Mα of M
in the direction of α; and (2) if αn → α, then Mαn

→ Mα (pointwise). For
example, all area-bisecting lines and all perimeter-bisecting lines of a convex
set, and all affine diameters of a convex set whose perimeter does not contain
parallel segments are three continuous families of lines in the plane. For more
on continuous families of lines, see Chapter 5 of the book [53] by Martini,
Montejano and Oliveros.

The Fermat–Ceder point of a family of lines. Ceder’s main result in [19] says
that if M is a continuous family of lines in the plane, then for each triplet
α1, α2, α3 of positive real numbers such that α1 + α2 + α3 = 180◦, there exist
three concurrent lines of M subtending angles of α1, α2, α3, α1, α2, and
α3 respectively. In particular, by taking αi = 60◦, for i = 1, 2, 3, any con-
tinuous family of lines admits an equiangular sixpartite point. We call this
a Fermat–Ceder point of the family. This implies that each convex set has
three concurrent equiangular area-bisecting lines, three concurrent equiangu-
lar perimeter-bisecting lines, and three concurrent equiangular affine diame-
ters. We call the respective intersection points an area Fermat–Ceder point,
a perimeter Fermat–Ceder point, and an (affine) Fermat–Ceder point of the
convex set.

A tangent to a generalized deltoid is either a line through a point of an open
side that supports the side, or a line through a vertex that separates the
adjacent sides. As all tangents to a generalized deltoid form a continuous family
of lines, a Fermat–Ceder point of a generalized deltoid is one through which
pass three equiangular tangents. In this way, the area and perimeter Fermat–
Ceder points of a triangle are respectively the same as the Fermat–Ceder points
for the triangle’s area or perimeter-bisecting deltoids. Finally, observe that an
interior Fermat–Ceder point of a deltoid is also defined by the property that
it sees the visible part of each side at a 120◦ angle—see Fig. 2 (right).

Results

The classical Fermat–Torricelli theorem says that each triangle admits a unique
point that minimizes the sum of distances to the vertices. In addition, if all
angles are < 120◦, then the Fermat–Torricelli point is an interior point. Other-
wise, it coincides with the obtuse angle vertex. Torricelli’s proof of the theorem
is based on the construction in Fig. 2 (left), which highlights the Fermat–
Torricelli point as being the same as the (affine) Fermat–Ceder point of the
triangle. In this way, the classical Fermat–Torricelli theorem can be restated
in the following convex, equiangular form:
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Each triangle has a unique Fermat–Ceder point. Moreover, (i) if one
angle is ≥ 120◦, then the Fermat–Ceder point is that angle’s vertex;
(ii) otherwise, the Fermat–Ceder point is an interior point of the
triangle.

Our main result generalizes this version of the Fermat–Torricelli theorem for a
triangle to a Fermat–Torricelli theorem for a generalized deltoid. The theorem
is stated as follows:

Theorem 1 (The Fermat–Torricelli theorem in convex geometry). Each gen-
eralized deltoid has a unique Fermat–Ceder point. This falls in one of the
following disjoint cases:

(i) if the deltoid has a vertex angle ≥ 120◦, then the Fermat–Ceder point is
that vertex;

(ii) same conclusion, if there is an angular point on a side whose angle is
≥ 300◦;

(iii) if the deltoid has an angular point on a side whose angle is in the interval
[240◦, 300◦), then either the same conclusion holds true or, otherwise,

(iv) in all other cases, the Fermat–Ceder point is an interior point of the
deltoid.

Cases (i)–(iii) are visualized in Fig. 4; Case (iv) in Fig. 2 (right). The theorem
shows that the Fermat–Ceder point of a generalized deltoid comes with addi-
tional features when compared with the Fermat–Ceder point of a triangle. One
of these is that, unlike the case of a triangle, the condition that all angles of
the deltoid are < 120◦ is neither necessary nor sufficient for the Fermat–Ceder
point to be an interior point of the deltoid. The existence of the Fermat–Ceder
point of a generalized deltoid follows from a sixpartite result of Ceder in [19];
we prove its uniqueness.

The proof of the generalized Fermat–Torricelli theorem is given in Sect. 2. It
uses properties of the generalized deltoid outlined Sect. 1. Of these, a cru-
cial property is that the generalized deltoid admits an inscribed curve as in
Fig. 5 (right) with three loops and the Fermat–Ceder point is the unique self-
intersection point of this curve.

Figure 4 The three types of border Fermat–Ceder points
in Theorem 1: (i) Type 1 (left); (ii) Type 2 (center); and
(iii) Type 3 (right). The points are shown together with a
triplet of equiangular tangents through them, and the range
of directions for all tangents at them
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Our second result, which we state next, is an application of Theorem 1 to
continuous families of affine diameters and area or perimeter-bisecting lines of
convex polygons.

Theorem 2 (Application of the Fermat–Torricelli theorem in convex geome-
try).

(i) The affine, area and perimeter Fermat–Ceder points are unique for every
triangle and not unique for every pentagon.

(ii) The affine Fermat–Ceder points are unique for all quadrilaterals, except
for trapezoids; the area Fermat–Ceder points are unique for all quadri-
laterals; the uniqueness of the perimeter Fermat–Ceder points holds for
elliptic quadrilaterals (including parallelograms), and is unresolved for the
rest.

The proof of Theorem 2 is given in Sect. 3. All uniqueness cases are argued by
use of Theorem 1 and showing that the affine diameters, area-bisecting lines,
or perimeter-bisecting lines of the polygon are families of tangents to certain
generalized deltoids. The non-uniqueness proofs are not based on Theorem 1.
Both theorems highlight the subject of area and perimeter-bisecting deltoids,
introduced in [8,10,26], as a concrete deformation of Euclidean geometry in
convex geometry, and the subject of generalized deltoids that we begin in this
paper as a general deformation of Euclidean geometry in convex geometry. We
believe this new chapter on the geometry of generalized deltoids might be the
missing link between convex geometry and the classical Euclidean geometry.
Other unique and non-unique sixpartite points of convex sets are featured in [7]
and [9].

Generalizing the Fermat–Torricelli theorem: our results in historical perspec-
tive. The Fermat–Torricelli problem is one of the richest problems in Euclidean
geometry and optimization theory. It captured the attention of numerous
famous mathematicians, such as Descartes, Fermat, Torricelli, Viviani, Cav-
alieri, Gauss, Simpson, Steiner, Lindelöf, Sturm, and many others. Roughly
speaking, some of these mathematicians generalized the Fermat–Torricelli
problem by replacing the three fixed points in the plane with n non-collinear
points in a d-dimensional normed or non-Euclidean space; others replaced
the fixed points with k-dimensional affine flats, such as lines, planes, and
so on (Steiner-Weber problem). For an accurate history of the problem and
an account of the specific work of each individual mathematician, see the
expository article [50] by Kupitz and Martini, and the book [13] by Boltyanski,
Martini and Soltan. More expository presentations of the Fermat–Torricelli
theorem can be found in the books [24] by Courant and Robbins, and [46] by
Honsberger. Galois theory showed that the Fermat–Torricelli point is non-
constructible when n ≥ 5, and that is why numerical and nonlinear program-
ming methods are important in approximating the point; see [1,23,48,57]. The
Fermat–Torricelli problem is connected to other topics in geometry, such as
the Napoleon problem [39,40,56], the theory of multifocal ellipses [31,34], or
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the one of Steiner minimal trees [21,33]. For more on the geometric or opti-
mizational aspects of the Fermat–Torricelli or Steiner-Weber problems, see
[5,22,25,27,49,51,55,58,66].

Our approach to generalizing the Fermat–Torricelli theorem is different from
any of these ideas. We transform the optimization problem for the sum of
distances to three fixed points in the plane (Fermat–Torricelli point) into an
equivalent equiangular visibility problem relative to the sides of the trian-
gle determined by the three points (Fermat–Ceder point). We then deform the
sides of the triangle in the most general way possible so that the new equiangu-
lar visibility problem has a unique solution. Our final product – the generalized
deltoid – does not only satisfy a natural generalization of the Fermat–Torricelli
theorem, but is opening up a new, geometric chapter in convex geometry, one
where more classical theorems in the Euclidean geometry of the triangle will
find their natural generalizations in the convex geometry of the generalized
deltoid. The concept of visibility in convex geometry was pioneered by N.
M. Stavrakas [63], K. J. Falconer [32] and M. Breen [14–17]. It has become a
major subject through the subsequent work of Marilyn Breen on star-shaped
and other variants of convex sets.

A particular case of the generalized deltoid is when its sides are given by
explicit equations. This is the case of the area and perimeter-bisecting del-
toids of [8,10,26]. The algebraic computation of the Fermat–Ceder or other
sixpartite points in some of these cases have led to non-constructibility [7].
Based on this evidence, our generalization of the Fermat–Torricelli theorem
or its application have the potential of opening up a new chapter in opti-
mization theory, one where many of the above classical and more recent ideas
from the Fermat–Torricelli optimization problem will find their way into the
Fermat–Ceder visibility problem.

1. Properties of generalized deltoids

This section outlines a baker’s dozen properties of a generalized deltoid, some
of which will be used in the proof of Theorem 1, given in Sect. 2. These
properties are divided in two categories.

1.1. Basic properties of the deltoid

The first category has seven easy-to-imagine properties, primarily dealing with
angles and tangents. These are listed as (D1)–(D7).

(D1). The sum of the angles of a generalized deltoid is a number between 0◦

and 180◦, with the sum is zero when the deltoid has cusps at all vertices, and
the sum is 180◦ when the deltoid is a triangle.
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(D2). In each direction there is a unique tangent to the deltoid. The tan-
gency point of a variable tangent, whose directional angle runs continuously
counterclockwise from 0◦ to 180◦, moves continuously clockwise around the
entire perimeter. This means that all tangents to a generalized deltoid form a
continuous family of lines.

(D3). Any two tangents to the deltoid intersect at a point that is either interior
or on the deltoid.

(D4). From each exterior point of the deltoid one can draw exactly one tan-
gent; from each interior point one can draw exactly three tangents. From each
point on the boundary without vertices one can draw at least one tangent to
the current side and exactly one tangent to the union of the remaining two
sides. All tangents at a vertex are tangent to both of the adjacent sides. Infin-
itely many tangents at a point of the deltoid make the point an angular point
of the deltoid. The first part of this property implies that there is only one
tangent line that passes through each point outside the circumscribed circle of
the triangle determined by the vertices of the deltoid. This makes the family
of all tangents to the deltoid an outwardly simple line family. Outwardly sim-
ple line families were introduced by Hammer and Sobczyk in [44] and further
studied in [45] and [20]. Both the continuous families of lines and the outwardly
simple line families were extended to the larger class of continuous families of
curves by Grünbaum in [37]; see also Zamfirescu [72].

(D5). None of the three tangent rays from an interior point to the deltoid is
contained in the proper angle determined by the other two.

(D6). The part of the perimeter of the deltoid that is visible from an interior
point is the union of three subarcs, one on each side. The dividers are the three
tangents from the point to the deltoid—see Fig. 2 (right).

(D7). A variable point on a side of a generalized deltoid, moving from an end-
point to the other, sees the incoming side at an increasing angle. Equivalently,
it sees the outgoing side at a decreasing angle—see Fig. 5 (left). In particu-
lar, by allowing each angular point on a side to see another side at the range
of angles between the tangent from the point and the range of tangents at
the point, with the notation in Fig. 5 (left), a variable point P , moving on
AB from A to B, sees BC at a continuously increasing (shaded) angle, from
∠A to 180◦ − ∠B, while P sees AC at a continuously decreasing angle, from
180◦ − ∠A to ∠B.

1.2. Curves and arcs capable of given angles subtended by sides

The second category of properties of a generalized deltoid, listed as (D8)–
(D13), refer to an interesting curve associated with any generalized deltoid,
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Figure 5 (left) Property (D7); (right) Properties (D8)–
(D13): The curve C(θ) = DEFGHI capable of angle θ relative
to the sides of a generalized deltoid ABC, drawn for θ = 120◦.
Solid line arcs are those capable of angle θ. The sides of the
highlighted angle θ are Q(α)B = t(α) and Q(α)C = t(α + θ)

whose self-intersection point is the Fermat–Ceder point of the deltoid. We pro-
vide proofs to most of these properties. Unless otherwise stated, the properties
are illustrated in Fig. 5 (right).

(D8). For each angle θ between the smallest angle of the deltoid and its sup-
plement, the set of points of the deltoid that see a side either at angle θ or
180◦ − θ is a closed curve C(θ) = C(180◦ − θ), the curve capable of angle θ (or
180◦ − θ) relative to the sides of the deltoid. To prove this, observe that the
locus C(θ) of points that see either side at angles θ or 180◦ − θ is generated by
the intersection point Q(α) between the tangents t(α) and t(α + θ) that have
directional angles α and α + θ, for a real number α modulo 180◦. Since the
map α �→ t(α) is continuous, so is α �→ Q(α), making C(θ) a closed curve.

(D9). The curve C(θ) meets the perimeter of its deltoid ABC at six points,
labeled in order as D,E, F,G,H, I, so that D,G are the points on side AB
that see side BC at angles θ and 180◦−θ, F, I on BC see AC at θ and 180◦−θ,
and H,E on AC see AB at θ and 180◦ − θ. By (D7), the point D exists only
for ∠A ≤ θ ≤ 180◦ − ∠B, with D = A precisely when θ = ∠A, and D = B
precisely when θ = 180◦ − ∠B. For simplicity, we allow D to exist for all
θ ∈ [0, 180◦], by taking D = A when θ < ∠A and D = B when θ > 180◦ −∠B.
A similar extension is given for the remaining points E – I.

(D10). Each of the six arcs determined by the points D − I on the curve C(θ)
in (D9) is either the locus of all points on the deltoid that see a side at angle θ,
the arc capable of angle θ relative to that side, or the locus of all points on the
deltoid that see a side at angle 180◦ − θ, the arc capable of 180◦ − θ relative
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Figure 6 (left): the curve C(120◦) for the triangle in Fig. 2
(left); (right): property (D12). Here QB = t(α), QN = t(α +
θ), QA = t(α + θ + η)

to the side. In this way, arc DE is capable of angle θ relative to side BC, EF
is capable of 180◦ − θ relative to AB, FG is capable of θ relative to AC, and
so on. To prove the property, with the setting in the proof of (D8), on each
of the six arcs, the map α �→ (γ,Γ), where γ ∈ {θ, 180◦ − θ}, Γ is one of the
sides, and Q(α) sees Γ at angle γ, is locally constant, hence constant. The rest
is easy, by looking at the figure. Non-degenerate arcs capable of obtuse angles
in a generalized deltoid occur more often than non-degenerate arcs capable
of their supplements. For example, the curve C = C(120◦) for the triangle in
Fig. 2 (left) has three (proper) arcs capable of 120◦ and only one arc capable
of 60◦ relative to the sides—see Fig. 6 (left).

(D11). Each interior point of a generalized deltoid sees each side at an angle
strictly larger than the vertex angle opposite to the side. Indeed, let θA be the
angle an interior point P sees the side BC of a generalized deltoid ABC. Then
P belongs to the proper arc DE capable of angle θA relative to BC. By (D9),
we must have θA > ∠A. Similarly, θB > ∠B and θC > ∠C.

(D12). A point moving from one endpoint to the other on an arc capable of
an angle relative to a side of a generalized deltoid, sees the incoming side
at a strictly increasing angle and the outgoing side at a strictly decreasing
angle—see Fig. 6 (right). To prove this, note that a variable point Q on arc
DE capable of angle θ relative to side BC sees AC at angle η, a continuous
function of Q, whose monotonicity is equivalent to injectivity. Suppose two
points Q1 and Q2 on DE, with Q1 < Q2 in the sense that Q1 is closer to D
and Q2 is closer to E, see AC at the same angle η, and argue by contradiction.
With the notation in the proof of (D8), for i = 1, 2, Qi is the intersection of
tangents t(αi) and t(αi + θ), for a directional angle αi. Since the tangent t(α)
at a variable point on the path DBCE sweeps DE from E to D for increasing
α, the assumption Q1 < Q2 translates into α1 > α2. Then the third tangent
from Qi to the deltoid has direction βi = αi + θ + η, with β1 > β2. As the
tangent t(β) at a variable point on the path DAE sweeps arc DE from D to
E for increasing β, we must have Q1 > Q2, a contradiction.



Vol. 111 (2020) The Fermat–Torricelli theorem in convex geometry Page 11 of 21 22

(D13). A generalized deltoid admits an interior Fermat–Ceder point if and
only if the three arcs capable of 120◦ angles relative to the sides meet at an
interior point.

2. Proof of Theorem 1

Recall that the existence of Fermat–Ceder points in a generalized deltoid, or,
more precisely, the existence of Fermat–Ceder points for the continuous family
of tangents to a generalized deltoid, is assured by a result of Ceder from the
1960s, and that we are only proving uniqueness. The proof of Theorem 1 is
divided into four easy-to-follow steps.

Step 1: Uniqueness of interior Fermat–Ceder points. Suppose Φ1 and Φ2 are
two interior Fermat–Ceder points of the generalized deltoid ABC. Then Φ1

and Φ2 belong to arc DE capable of 120◦ angle relative to side BC. Since
they both see side AC at a 120◦ angle, by continuity and (D12), they must
coincide.

Step 2: Three types of border Fermat–Ceder points. By property (D3), the
three equiangular tangents to the deltoid at a border Fermat–Ceder point
can either be all tangent at the point, or two tangents at the point and one
tangent from the point. The range of directions for tangents at a border point
is a connected set. In the first case, this is a closed interval of directions at least
120◦ wide; and in the second case, the interval is at least 60◦ wide. The first
case splits into two subcases: when the angle at the point is proper ≥ 120◦,
hence the point is a vertex; and when the angle at the point is improper ≥ 300◦.
In the second case, the proper angle subcase is impossible, leading to the only
possibility of an improper angle ≥ 240◦. Summarizing, a border Fermat–Ceder
point of a generalized deltoid falls in one of the following three types:

Type 1: A vertex whose angle is ≥ 120◦.
Type 2: An angular point (on an open side) whose angle is ≥ 300◦.
Type 3: An angular point whose angle belongs to the interval [240◦, 300◦).

These three types of border Fermat–Ceder points of a generalized deltoid
respectively correspond to Cases (i)-(iii) in Theorem 1. They are illustrated in
Fig. 4.

Note that a Type 1 or 2 angular point must be a Fermat–Ceder point, while a
Type 3 may not. For example, the deltoid in Fig. 6 (right) has a 240◦ angular
point at K that is not a Fermat–Ceder point.

Step 3: Uniqueness of border Fermat–Ceder points. The next lemma is use-
ful in proving uniqueness for border Fermat–Ceder points. It says that, by
smoothening Types 2 or 3 border Fermat–Ceder points, these will turn into
nearby interior Fermat–Ceder points.
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Figure 7 Proof of Lemma 3. The old deltoid � is marked
by dotted lines. The new deltoid �(ε) is obtained from � by
having the solid line curve replace the two dotted segments
from its endpoints to V

Lemma 3 Let V be a Type 2 or 3 Fermat–Ceder point of a generalized del-
toid �. Then for each ε > 0, there exists a generalized deltoid �(ε) such that:

(i) �(ε) = � outside the ball B centered at V and with radius ε.
(ii) �(ε) ∩ B is smooth;
(iii) �(ε) admits an interior Fermat–Ceder point contained inside B.

Proof Let V be a Type 3 Fermat–Ceder point, and let V XY Z be a tripod made
with three equiangular tangents to � that pass through V —see Fig. 7. Type 3
means that one of the tangents, say V Z, is a tangent from V , and the remaining
two, V X and V Y , are tangents at V and the 240◦ angle ∠XV Y is contained
in the angle ∠V of �. We translate the tripod V XY Z to V X ′Y ′Z ′ by a vector
−ε

−−→
V Z, for some small ε > 0, such that V ′X ′ ∩ � = {μ} and V ′Y ′ ∩ � = {ν}.

We smoothen the angular points V ′, μ, ν so that V ′X ′ and V ′Y ′ remain tangent
to the new curve. For small ε, all changes made to � will fit inside B. The
new deltoid �(ε) satisfies (i) and (ii), and has V ′ as an interior Fermat–Ceder
point that belongs to B. Type 2 is similar. �

By the uniqueness in Step 1 and Lemma 3, each generalized deltoid has up
to one Type 2 or 3 border Fermat–Ceder point. Suppose now that there are
two border Fermat–Ceder points. Then one of the points must be Type 1,
and has a range of directions for the tangents at it an interval length ≥ 120◦.
The second point is of either type, and has a range of directions an interval
length ≥ 60◦—see Fig. 4. Since the union of the two ranges is a set of measure
≤ 180◦, by inclusion-exclusion, the common range falls in one of two cases.
First, if the intersection of ranges (intervals) has positive measure, then there
are two distinct common directions for tangents at each of the two points.
Then the two (unique, by (D2)) tangents to the deltoid in these directions
pass through both points, making them coincide with the intersection point
of the two tangents. Second, if the intersection of the ranges is measure zero,
then the two closed interval ranges concatenate to cover the whole spectrum
of directions, and there will be no direction left for tangents at other points
on the deltoid, a contradiction. This finishes the proof of Step 3.
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Figure 8 Proof of Step 4: Type 2 (left); and Type 3 (right)

Step 4: Uniqueness of all Fermat–Ceder points. To finish the proof of Theo-
rem 1, we need to show that each of the three types of border Fermat–Ceder
points is mutually exclusive with an interior Fermat–Ceder point. If there is a
Type 1 Fermat–Ceder point then, by (D11), each interior point of the deltoid
sees the side opposite the Fermat–Ceder point at > 120◦, so the deltoid has
no interior Fermat–Ceder points. Let now P be a Type 2 or 3 Fermat–Ceder
point, and let T be the tangency point of the (unique, by (D2)) tangent from
P to the deltoid—see Fig. 8. The direction of this tangent does not belong
to the range of directions for all tangents at P . In either type, segment PT
divides the deltoid into two deltoids for which P is an angular vertex with
angle ≥ 120◦. By (D11), the interior points of the smaller deltoids, as well as
those on the open segment PT , will see their sides opposite to P at angles
> 120◦. Since each such side is a portion of a side in the larger deltoid, each
interior point of the larger deltoid sees a side at an angle > 120◦. Thus there
are no interior Fermat–Ceder points in these two types as well.

This completes the proof of Theorem 1. Note that although the Fermat–Ceder
point of a generalized deltoid is unique, the three equiangular tangents through
it might not be unique. For example, a slight rotation of the three equiangu-
lar tangents through the border Fermat–Ceder point P in Fig. 8 (left) leads
to another triplet of equiangular tangents through P . In general, the three
equiangular tangents through a Fermat–Ceder point of a generalized deltoid
are not unique if and only if the Fermat–Ceder point is a border point, either
Type 1 with > 120◦ angle or Type 2 with > 300◦ angle.

3. Proof of Theorem 2

The proof is organized in three parts: (1) the case of a triangle, where the
uniqueness follows easily from Theorem 1; (2) the case of a quadrilateral,
which comes in subcases with different uniqueness outcomes; and (3) the case
of a pentagon, where we prove non-uniqueness for the Fermat–Ceder points.

3.1. Fermat–Ceder points of a triangle

As we have seen in the Introduction, examples of generalized deltoids include
all triangles, their area-bisecting deltoids, and their perimeter-bisecting del-
toids.
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Affine Fermat–Ceder point. When a generalized deltoid is a triangle, all tan-
gents to it are its affine diameters, and the affine Fermat–Ceder point is the
Fermat–Torricelli point, whose uniqueness comes from Theorem 1, which in
this case is the same as the classical Fermat–Torricelli theorem.

Area Fermat–Ceder point. The area-bisecting deltoid of a triangle, or the
envelope of all its area-bisecting lines, see Fig. 1 (left), was studied in [26].
It is a tri-cusped generalized deltoid whose sides are arcs of hyperbolas. By
Theorem 1, this admits a unique interior Fermat–Ceder point, which is the
triangle’s area Fermat–Ceder point.

Perimeter Fermat–Ceder point. The perimeter-bisecting deltoid of a triangle,
shown in Fig. 1 (right), was studied in [8]. It is a tri-cusped generalized deltoid
whose each side is an arc of a parabola that is smoothly connected with up to
one line segment at either end. By Theorem 1, the perimeter-bisecting deltoid
also admits a unique interior Fermat–Ceder point, the perimeter Fermat–Ceder
point of the triangle.

By the last observation in Sect. 2, each triangle admits three unique equiangu-
lar area-bisecting lines and three unique equiangular perimeter-bisecting lines;
it admits three unique equiangular affine diameters precisely when the largest
angle is ≤ 120◦.

3.2. Fermat–Ceder points of a quadrilateral

The notions of affine Fermat–Ceder points (resp. area Fermat–Ceder points,
or perimeter Fermat–Ceder points) extend from triangles to polygons as the
points through which pass three equiangular affine diameters (resp. area-
bisecting lines, or perimeter-bisecting lines).

Affine Fermat–Ceder point. All quadrilaterals fall in three classes relative to
their affine Fermat–Ceder points: parallelograms, trapezoids and neither. The
affine Fermat–Ceder point of a parallelogram is its center. Suppose a convex
quadrilateral ABCD has no parallel sides, and assume without loss of gen-
erality that the points of intersection of opposite sides are positioned on the
sides, as shown in Fig. 3 (right). Then the affine diameters of the quadrilat-
eral are extensions of the affine diameters of triangle BCD. In particular, the
quadrilateral has a unique affine Fermat–Ceder point, the Fermat–Ceder point
of triangle BCD. The Fermat–Torricelli point of a quadrilateral, or the point
that minimizes the sum of the distances to the vertices, is the intersection of
the diagonals. Unlike the case of a triangle, the affine Fermat–Ceder point of a
quadrilateral is in general different from the Fermat–Torricelli point. Since all
its affine diameters do not form a continuous family of lines, the trapezoid may
be exempted from the study of affine Fermat–Ceder points of quadrilaterals.
On the other hand, the affine diameters of a trapezoid satisfy the weaker prop-
erty of a family with a continuous selection, given in [19], which means that it
contains a continuous family. For example, if ABCD is a trapezoid labeled as
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Figure 9 (left): a trapezoid with a continuous family of affine
diameters. (right): the area-bisecting deltoid of a trapezoid. Its
vertices are the midpoints of the area-bisecting lines through
A,B,C,D

in Fig. 9 (left), with small base AB, O is the intersection of diagonals, and P
is any point on the closed triangle OAB, then, as the figure shows, the affine
diameters of triangle PCD extend to a continuous family of affine diameters
of the trapezoid. By the case of a triangle, this particular family has a unique
affine Fermat–Ceder point, and by varying P , the trapezoid has infinitely many
affine Fermat–Ceder points. As a parenthesis, we observe that the property of
the triangle that through each interior point pass the same number of affine
diameters does not carry over to quadrilaterals. In fact, the triangle is the
only convex polygon in the plane that enjoys this property. More generally,
the d-dimensional simplex is the only d-dimensional convex polytope whose
each interior point belongs to the same maximal number γ = 2d − 1 of affine
diameters [54].

Area Fermat–Ceder point. All quadrilaterals have been classified in [10]
according to the shape of their area-bisecting deltoids. The deltoid of a par-
allelogram is reduced to a point, its center; the one for a trapezoid is a two-
cusps/one-angle generalized deltoid—see Fig. 9 (Right); and the area-bisecting
deltoid for the remaining quadrilaterals is a three-cusped generalized deltoid.
By Theorem 1, each quadrilateral admits a unique area Fermat–Ceder point,
the Fermat–Ceder point of its area-bisecting deltoid. This is an interior point
of the deltoid in all cases, except for the trapezoid whose area-bisecting deltoid
has an angle ≥ 120◦, that is, a trapezoid whose area-bisecting lines through the
endpoints of the smaller base make ≥ 120◦ vertical angles looking at the bases.
This is the angle ∠AMB in Fig. 9 (right), shown acute. The area Fermat–Ceder
point of such trapezoid is the angular vertex M of its area-bisecting deltoid.

Perimeter Fermat–Ceder point. All quadrilaterals are classified in [10] accord-
ing to the shape of their perimeter-bisecting deltoids. The deltoid of a paral-
lelogram is reduced to a point, its center; the one for the elliptic quadrilateral
– the quadrilateral whose one diagonal bisects the perimeter – is a tri-cusped
generalized deltoid; and the perimeter-bisecting deltoid for each of the remain-
ing quadrilaterals is not a generalized deltoid. By Theorem 1, each elliptic
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quadrilateral admits a unique perimeter Fermat–Ceder point, the Fermat–
Ceder point of its perimeter-bisecting deltoid, which is an interior point of the
deltoid. The parallelogram has the center as its perimeter Fermat–Ceder point.
For the remaining quadrilaterals, by Ceder’s result, perimeter Fermat–Ceder
points exist, but we cannot use Theorem 1 directly to prove their uniqueness,
due to the perimeter-bisecting deltoid not being a generalized deltoid. Never-
theless, Theorem 1 can be adapted to work in that case as well. We leave this
as exercise to the interested reader.

3.3. Non-uniqueness of Fermat–Ceder points

An area or perimeter sixpartite point of a convex set is the point of intersec-
tion of three concurrent lines that divide the area or the perimeter of the set
in six equal parts. It was shown in [7] that the area and perimeter sixpartite
points are unique for triangles, and in [9] that they are not unique for general
polygons. The counterexample in [9] is constructed in two steps: first, con-
struct a dodecagon A1B1A2B2 . . . A6B6 such that the hexagons A1A2 . . . A6

and B1B2 . . . B6 are regular and have distinct centers P and Q; and second,
double up the number of sides of the dodecagon by bordering it with isosceles
triangles so that the main diagonals of the two hexagons above bisect the area
(perimeter) of the 24-gon. Since the three main diagonals in each of the two
hexagons are equiangular and bisect the area (perimeter) of the 24-gon, the
points P and Q are distinct area (perimeter) Fermat–Ceder points of the 24-
gon. The same construction can be modified slightly so that the 24-gon has no
parallel sides and the main diagonals in the two hexagons are affine diameters
of the 24-gon. This will make P and Q distinct affine Fermat–Ceder points
of the new 24-gon. We conclude that the area, perimeter and affine Fermat–
Ceder points are not unique for general polygons, hence for general convex
sets. The above proof shows that if n1, n2, n3 denote the smallest number of
sides that a convex polygon may have such that respectively its affine, area, or
perimeter Fermat–Ceder point is not unique, then n1, n2, n3 ≤ 24. The next
example shows that the exact values of these numbers are n1 = n2 = n3 = 5,
with n1 = 4 if we include all quadrilaterals whose all affine diameters do not
form a continuous family of lines (all trapezoids), and n3 = 4 if we include all
quadrilaterals whose perimeter-bisecting deltoid is not a generalized deltoid
and, additionally, the extension to them of Theorem 1, which we left as an
exercise, will turn false for at least one such quadrilateral.

For a regular pentagon, an affine diameter passes through its center if and only
if it is an angle bisector. By analyzing the area or perimeter-bisecting deltoid,
described in [9] and the first of which is shown in Fig. 10 (left), the same is
true about an area or perimeter bisector. The angle bisectors corresponding to
consecutive vertices of a regular pentagon meet at 72◦ angles. They are at the
same time affine diameters, area bisectors, perimeter bisectors and symmetry
axes for the pentagon. The acute angles determined by any two diagonals
are either 36◦ or 72◦. Let AA1 be an angle bisector of the regular pentagon
ABCDE. Then the two affine diameters (resp. area or perimeter bisectors)
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Figure 10 (Left): area-bisecting deltoid of a regular penta-
gon. Its vertices are the midpoints of the angle bisectors of the
much larger, not shown pentagon (dashed lines); its sides are
arcs of hyperbolas. The tangent at each non-cuspidal point X
separates the adjacent side and the center. (Right): a regu-
lar pentagon with its affine diameters and five affine Fermat–
Ceder points, one of which is the intersection of equiangular
affine diameters AA1, BF and EG

that make 60◦ angles with it are symmetric, hence all three intersect at an affine
Fermat–Ceder point (resp. area Fermat–Ceder point, or perimeter Fermat–
Ceder point), which is not the center of the pentagon—see Fig. 10 (right). Its
orbit under the action of the dihedral group consists of five affine Fermat–Ceder
(resp. area Fermat–Ceder, or perimeter Fermat–Ceder) points. Thus neither
of these three kinds of Fermat–Ceder points is unique for the pentagon. This
finishes the proof of Theorem 2.
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[5] Beńıtez, C., Fernández, M., Soriano, M.L.: Location of the Fermat–Torricelli
medians of three points. Trans. Am. Math. Soc. 354(12), 5027–5038 (2002)

[6] Bereg, S.: Equipartitions of measures by 2-fans. Discrete Comput. Geom. 34(1),
87–96 (2005)

[7] Berele, A., Catoiu, S.: The perimeter sixpartite center of a triangle. J. Geom.
108(3), 861–868 (2017)

[8] Berele, A., Catoiu, S.: Bisecting the perimeter of a triangle. Math. Mag. 91(2),
121–133 (2018)

[9] Berele, A., Catoiu, S.: Nonuniqueness of sixpartite points. Am. Math. Mon.
125(7), 638–642 (2018)

[10] Berele, A., Catoiu, S.: Bisecting envelopes of convex polygons, preprint.
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(2019)

[54] Martini, H., Nguyen, M.H., Soltan, V.P.: On Eggleston’s theorem about affine
diameters. Mathematika 37(1), 81–84 (1990)

[55] Martini, H., Swanepoel, K.J., Weiss, G.: The Fermat–Torricelli problem in
normed planes and spaces. J. Optim. Theory Appl. 115(2), 283–314 (2002)

[56] Martini, H., Weissbach, B.: Napoleon’s theorem with weights in n-space. Geom.
Dedic. 74(2), 213–223 (1999)

[57] Mehlhos, S.: Simple counter-examples for the unsolvability of the Fermat and
Steiner–Weber problem by compass and ruler. Beiträge Algebra Geom. 41(1),
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[65] Süss, W.: Über eine Affininvariante von Eibereichen. Arch. Math. (Basel) 1,
127–128 (1948/49)

[66] Tan, T.V.: An extension of the Fermat–Torricelli problem. J. Optim. Theory
Appl. 146, 735–744 (2010)



Vol. 111 (2020) The Fermat–Torricelli theorem in convex geometry Page 21 of 21 22

[67] Toth, G.: Asymmetry of convex sets with isolated extreme points. Proc. Am.
Math. Soc. 137(1), 287–295 (2009)

[68] Toth, G.: On the structure of convex sets with symmetries. Geom. Dedic. 143,
69–80 (2009)

[69] Toth, G.: Measures of Symmetry for Convex Sets and Stability. Universitext,
Springer, Cham (2015)

[70] Yaglom, I. M., Boltyanskii, V.G.: Convex Figures. (Kelly, P. J., Walton, L. F.,
trans.) New York: Holt, Rinehart and Winston (1960)

[71] Yates, R.C.: A Handbook on Curves and Their Properties. J. W. Edwards, Ann
Arbor, MI (1947)

[72] Zamfirescu, T.: On planar continuous families of curves. Can. J. Math. 21, 513–
530 (1969)

[73] Zindler, K.: Ueber konvexe Gebilde, I. Monatsh. Math. 30, 87–102 (1920)

[74] Zindler, K.: Ueber konvexe Gebilde, II. Monatsh. Math. 31, 25–56 (1921)

[75] Zindler, K.: Ueber konvexe Gebilde, III. Monatsh. Math. 32, 107–138 (1922)

Allan Berele and Stefan Catoiu
Deparment of Mathematics
DePaul University
Chicago
IL 60614
USA
e-mail: scatoiu@depaul.edu

Allan Berele
e-mail: aberele@depaul.edu

Received: January 5, 2020.

Revised: March 28, 2020.


	The Fermat–Torricelli theorem in convex geometry
	Abstract
	
	Background
	Affine diameters
	Continuous families of lines
	The Fermat–Ceder point of a family of lines


	Results
	1. Properties of generalized deltoids
	1.1. Basic properties of the deltoid
	(D1)
	(D2)
	(D3)
	(D4)
	(D5)
	(D6)
	(D7)

	1.2. Curves and arcs capable of given angles subtended by sides
	(D8)
	(D9)
	(D10)
	(D11)
	(D12)
	(D13)


	2. Proof of Theorem 1
	3. Proof of Theorem 2
	3.1. Fermat–Ceder points of a triangle
	Affine Fermat–Ceder point
	Area Fermat–Ceder point
	Perimeter Fermat–Ceder point

	3.2. Fermat–Ceder points of a quadrilateral
	Affine Fermat–Ceder point
	Area Fermat–Ceder point
	Perimeter Fermat–Ceder point

	3.3. Non-uniqueness of Fermat–Ceder points

	Acknowledgements
	References




