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Abstract. We study the geometry of almost contact pseudo-metric man-
ifolds in terms of tensor fields h := 1

2
£ξϕ and � := R(·, ξ)ξ, emphasizing

analogies and differences with respect to the contact metric case. Certain
identities involving ξ-sectional curvatures are obtained. We establish nec-
essary and sufficient condition for a nondegenerate almost CR structure
(H(M), J, θ) corresponding to almost contact pseudo-metric manifold M
to be CR manifold. Finally, we prove that a contact pseudo-metric mani-
fold (M, ϕ, ξ, η, g) is Sasakian pseudo-metric if and only if the correspond-
ing nondegenerate almost CR structure (H(M), J) is integrable and J is
parallel along ξ with respect to the Bott partial connection.
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1. Introduction

In 1969, Takahashi [22] initiated the study of contact structures associated
with pseudo-Riemannian metrics. Afterwards, a number of authors studied
such structures mainly focusing on a special case, namely Sasakian pseudo-
metric manifolds. The case of contact Lorentzian structures (η, g), where η is
a contact 1-form and g a Lorentzian metric associated to it, has a particular
relevance for physics and was considered in [12] and [4]. A systematic study
of almost contact pseudo-metric manifolds was undertaken by Calvaruso and
Perrone [7] in 2010, introducing all the technical apparatus which is needed for
further investigations, and such manifolds have been extensively studied under
several points of view in [1–3,6,9,10,15–17,24], and references cited therein.

The operators h := 1
2£ξϕ and � := R(·, ξ)ξ play fundamental roles in the study

of geometry of contact pseudo-metric manifolds. For contact metric manifolds,
Sharma [21] obtained the following beautiful results (Theorem 1.1 in [21]):
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(a) a contact metric manifold is K-contact if and only if h is a Codazzi tensor;
(b) a contact metric manifold is K-contact if and only if τ , the tensor met-

rically equivalent to the strain tensor £ξg of M along ξ, is a Codazzi
tensor;

(c) the sectional curvatures of all plane sections containing ξ vanish if and
only if the tensor � is parallel.

The proof of these results exploit, in an essential way, the fact that in the
contact Riemannian case, the self-adjoint operator h vanishes if h2 = 0. But
in the contact pseudo-metric case the condition h2 = 0 does not necessarily
imply that h = 0 (see [16]). So the corresponding results fail for general contact
pseudo-metric structures.

Under these circumstances, becomes interesting to explore more the geom-
etry of contact pseudo-metric manifolds. The paper is organized as follows.
In Sect. 2, we give the basics of almost contact pseudo-metric manifolds. In
Sect. 3, we study contact pseudo-metric manifold M with h satisfying Codazzi
condition and we prove that M is Sasakian pseudo-metric manifold if and only
if the Eq. (2.10) is satisfied and h is a Codazzi tensor. In Sect. 4, we investigate
the Codazzi condition for the operator τ , and we obtain a necessary and suffi-
cient condition for τ to be a Codazzi tensor on contact pseudo-metric manifold.
Moreover, if τ is a Codazzi tensor, then h2 = 0 and the Ricci operator Q sat-
isfies Qξ = 2εnξ, and we prove that M is a Sasakian pseudo-metric manifold
if and only if the Eq. (2.10) is satisfied and τ is a Codazzi tensor. In Sect. 5,
we obtain certain identities involving ξ-sectional curvatures of contact pseudo-
metric manifolds. It is proved that the parallelism of the tensor � together with
the condition ∇ξh = 0 on a contact pseudo-metric manifold implies that all
ξ-sectional curvatures vanish. At the end, we investigate the nondegenerate
almost CR structure (H(M), J, θ) corresponding to almost contact pseudo-
metric manifold M , and establish a necessary and sufficient condition for an
almost contact pseudo-metric manifold to be a CR manifold. Finally, we show
that a contact pseudo-metric manifold (M,ϕ, ξ, η, g) is Sasakian pseudo-metric
if and only if the corresponding nondegenerate almost CR structure (H(M), J)
is integrable and J is parallel along ξ with respect to the Bott partial connec-
tion. We note that many of results of this paper are the corresponding results
to those obtained in [14,25] on almost paracontact metric manifolds.

2. Preliminaries

In this section, we briefly recall some general definitions and basic properties
of almost contact pseudo-metric manifolds. For more information and details,
we recommend the reference [7].

A (2n + 1)-dimensional smooth connected manifold M is said to be an almost
contact manifold if there exists on M a (1, 1) tensor field ϕ, a vector field ξ,
and a 1-form η such that
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ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0. (2.1)

It is known that the first relation along with any one of the remaining three
relations in (2.1) imply the remaining two relations. Also, for an almost contact
structure, the rank of ϕ is 2n. For more details, we refer to [5].

If an almost contact manifold is endowed with a pseudo-Riemannian metric g
such that

g(ϕX,ϕY ) = g(X,Y ) − εη(X)η(Y ), (2.2)

where ε = ±1, for all X,Y ∈ TM , then (M,ϕ, ξ, η, g) is called an almost
contact pseudo-metric manifold. The relation (2.2) is equivalent to

η(X) = εg(X, ξ) along with g(ϕX, Y ) = −g(X,ϕY ). (2.3)

In particular, in an almost contact pseudo-metric manifold, it follows that
g(ξ, ξ) = ε and so, the characteristic vector field ξ is a unit vector field, which
is either space-like or time-like, but cannot be light-like.

The fundamental 2-form of an almost contact pseudo-metric manifold
(M,ϕ, ξ, η, g) is defined by

Φ(X,Y ) = g(X,ϕY ),

which satisfies η ∧ Φn �= 0. An almost contact pseudo-metric manifold is said
to be a contact pseudo-metric manifold if dη = Φ, where

dη(X,Y ) =
1
2
(Xη(Y ) − Y η(X) − η([X,Y ])).

The curvature operator R is given by

R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ].

This sign convention of R is opposite to the one used in [7,9,15–17]. The Ricci
operator Q is determined by

S(X,Y ) = g(QX,Y ).

In an almost contact pseudo-metric manifold (M,ϕ, ξ, η, g) there always exists
a special kind of local pseudo-orthonormal basis {ei, ϕei, ξ}n

i=1, called a local
ϕ-basis.

In a contact pseudo-metric manifold, the (1, 1) tensor h = 1
2£ξϕ is self-adjoint

and satisfies

hξ = 0, ϕh + hϕ = 0, tr(h) = tr(ϕh) = 0.

Further, one has the following formulas:

∇Xξ = −εϕX − ϕhX, (2.4)
(£ξg)(X,Y ) = 2g(hϕX, Y ), (2.5)

(∇ξh)X = ϕX − h2ϕX + ϕR(ξ,X)ξ, (2.6)

R(ξ,X)ξ − ϕR(ξ, ϕX)ξ = 2(h2 + ϕ2)X, (2.7)
tr ∇ϕ = 2nξ. (2.8)
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A contact pseudo-metric manifold M is said to be a K-contact pseudo-metric
manifold if ξ is a Killing vector field (or equivalently, h = 0), and is said to be
a Sasakian pseudo-metric manifold if the almost complex structure J on the
product manifold M × R defined by

J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)
,

is integrable, where X ∈ TM , t is the coordinate on R and f is a C∞ function
on M × R. It is well known that a contact pseudo-metric manifold M is a
Sasakian pseudo-metric manifold if and only if

(∇Xϕ)Y = g(X,Y )ξ − εη(Y )X (2.9)

for all X,Y ∈ TM . A Sasakian pseudo-metric manifold is always K-contact
pseudo-metric. A 3-dimensional K-contact pseudo-metric manifold becomes a
Sasakian pseudo-metric manifold, which may not be true in higher dimensions.
Further on a Sasakian pseudo-metric manifold we have

R(X,Y )ξ = η(Y )X − η(X)Y. (2.10)

In contact metric case, the condition (2.10) implies that the manifold is
Sasakian, which is not true in contact pseudo-metric case [15]. However, we
have the following:

Lemma 2.1 [15]. Let M be a K-contact pseudo-metric manifold. Then M is a
Sasakian pseudo-metric manifold if and only if the curvature tensor R satis-
fies (2.10).

3. The Codazzi condition for h

A self-adjoint tensor A of type (1, 1) on a pseudo-Riemannian manifold is
known to be a Codazzi tensor if

(∇XA)Y = (∇Y A)X (3.1)

for all X,Y ∈ TM . Now, we prove the following:

Theorem 3.1. Let M be a contact pseudo-metric manifold. Then the following
statements are true:

(i) If h is a Codazzi tensor, then h2 = 0.
(ii) M is a Sasakian pseudo-metric manifold if and only if M satisfies (2.10)

and h is a Codazzi tensor.

Proof. (i) Suppose that h is a Codazzi tensor, that is,

(∇Xh)Y = (∇Y h)X, X, Y ∈ TM.

For Y = ξ, using (2.4) in the above equation, we obtain

(∇ξh)X = −εϕhX − h2ϕX.
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In view of (2.6), the above equation turns into

ϕR(ξ,X)ξ = −εϕhX − ϕX. (3.2)

Operating ϕ on both sides of (3.2), it follows that

R(ξ,X)ξ = ϕ2X − εhX. (3.3)

Making use of (3.3) in (2.7), shows that h2 = 0.

(ii) If M is a Sasakian pseudo-metric manifold, then h = 0 and M satis-
fies (2.10); and the result is trivial. Conversely, suppose that (2.10) is true and
h is a Codazzi tensor. From (2.10), we obtain that

R(ξ,X)ξ = ϕ2X, X ∈ TM. (3.4)

Equations (3.3) and (3.4) imply that h = 0, that is, M is a K-contact pseudo-
metric manifold. Thus, the result follows from Lemma 2.1. �

Remark 3.2. In a contact metric manifold, if h is a Codazzi tensor, then h = 0,
that is, the manifold becomes K-contact manifold [21]. In the Riemannian case,
as h2 = 0 implies h = 0, Theorem 3.1 (a) holds in a stronger form, that is,
M is K-contact if and only if h is a Codazzi tensor. But, in the case of M
being contact pseudo-metric, the condition h2 = 0 does not imply that h = 0,
because h may not be diagonalizable (see [16]). Note that the result (ii) of
Theorem 3.1 is stronger than the Lemma 2.1 which was proved in [15].

In a contact Lorentzian manifold, just like the case of contact metric manifold,
the condition h2 = 0 implies h = 0 (see [6]). Hence, we immediately have the
following

Corollary 3.3. Let M be a contact Lorentzian manifold. If h is a Codazzi ten-
sor, then h = 0, that is, M is K-contact Lorentzian manifold.

4. The Codazzi condition for τ

We denote by τ , the tensor metrically equivalent to the strain tensor £ξg along
ξ, that is,

g(τX, Y ) = (£ξg)(X,Y )

for all X,Y ∈ TM . As pointed out in the introduction, in a contact metric
manifold, if τ satisfies the Codazzi condition, then h = 0, that is, the manifold
is a K-contact manifold. This fact need not be true in the case of contact
pseudo-metric manifolds. So, it is quite interesting to study contact pseudo-
metric manifolds, which satisfy the Codazzi condition for τ . Now we prove the
following:

Lemma 4.1. In a contact pseudo-metric manifold, τ is a Codazzi tensor if and
only if the curvature tensor R satisfies

R(ξ,X)Y = ε(∇Xϕ)Y. (4.1)
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Proof. Treating ∇ξ as a tensor of type (1, 1), that is ∇ξ : X �→ ∇Xξ, one can
see that

R(X,Y )ξ = (∇X∇ξ)Y − (∇Y ∇ξ)X,

which together with (2.4) gives

R(X,Y )ξ = −ε(∇Xϕ)Y − (∇Xϕh)Y + ε(∇Y ϕ)X + (∇Y ϕh)Y. (4.2)

On the other hand, if τ is a Codazzi tensor, then from (2.5) we have

(∇Xhϕ)Y = (∇Y hϕ)X.

Thus, (4.2) shows that τ is a Codazzi tensor if and only if

R(X,Y )ξ = ε{(∇Y ϕ)X − (∇Xϕ)Y }. (4.3)

Now if τ is a Codazzi tensor, then by using Bianchi identity and (4.3), we get

R(ξ,X, Y, Z) = ε{g(X, (∇Xϕ)Y ) − g(Y, (∇Xϕ)Z) + g(Z, (∇Xϕ)Y )

− g(X, (∇Zϕ)Y )}
= −2εg((∇Xϕ)Z, Y ) + R(Z, Y, ξ,X),

and so
R(ξ,X, Y, Z) = −εg((∇Xϕ)Z, Y ),

which gives (4.1).

Conversely, if (4.1) is true, then from Bianchi identity we have

R(X,Y, ξ, Z) = R(ξ, Z,X, Y ) = −R(Z,X, ξ, Y ) − R(X, ξ, Z, Y )

= −R(ξ, Y, Z,X) + R(ξ,X,Z, Y )

= −ε{g((∇Y ϕ)Z,X) − g((∇Xϕ)Z, Y )},

which leads to (4.3), and hence τ is a Codazzi tensor. �

Now we prove the contact semi-Riemannian version of Theorem 3.3 of [14].

Theorem 4.2. Let M be a contact pseudo-metric manifold. Then the following
statements are true.

(i) If τ is a Codazzi tensor, then h2 = 0 and the Ricci operator Q satisfies

Qξ = 2εnξ. (4.4)

(ii) M is Sasakian if and only if M satisfies (2.10) and τ is a Codazzi tensor.

Proof. (i). If τ is a Codazzi tensor, then (4.1) gives

R(ξ,X)ξ = ε(∇Xϕ)ξ = ϕ2X − εhX,

where we used (2.4). This implies

ϕR(ξ, ϕX)ξ = −ϕ2X − εhX,

and so
R(ξ,X)ξ − ϕR(ξ, ϕX)ξ = 2ϕ2X. (4.5)

Comparing (2.7) and (4.5), we obtain h2 = 0.
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Now, if {ei}2n+1
i is any local pseudo-orthonormal basis, then considering (4.1)

we get

S(X, ξ) =
2n+1∑
i=1

εiR(ei,X, ξ, ei) = ε
2n+1∑
i=1

εig((∇ei
ϕ)ei,X)

= εg(tr(∇ϕ),X),

which by using (2.8) we have (4.4).

(ii). Suppose that M is a Sasakian pseudo-metric manifold, then M satis-
fies (2.10) and h = 0.

Conversely, suppose that M satisfies (2.10) and τ is a Codazzi tensor. Then (4.1)
shows that

g((∇Xϕ)Y,Z) = εR(ξ,X, Y, Z) = −εR(Z, Y, ξ,X)

= −ε{η(Y )g(Z,X) − εg(Z, ξ)g(X,Y )}
which gives (2.9). Hence M becomes a Sasakian pseudo-metric manifold. �

Corollary 4.3. Let M be a contact Lorentzian manifold. If τ is a Codazzi ten-
sor, then h = 0, that is, M is K-contact Lorentzian manifold.

5. ξ-Sectional curvatures

The ξ-sectional curvature K(ξ,X) of a contact pseudo-metric manifold is de-
fined by

K(ξ,X) = εεXg(R(ξ,X)X, ξ),

where X is a unit vector field such that X ∈ Ker η and g(X,X) = εX = ±1.

It is well known that a contact metric manifold is K-contact if and only if all
ξ-sectional curvatures are equal to +1 (see [5]). We recall that for a K-contact
pseudo-metric manifold, all ξ-sectional curvatures are equal to ε (see [15, The-
orem 3.3]).

Now we prove the following result which is related to Theorem 3.5 of [14].

Theorem 5.1. On a contact pseudo-metric manifold M , the ξ-sectional curva-
tures satisfy

K(ξ,X) = ε{1 − εXg(h2X,X) − εXg((∇ξh)X,ϕX)}, (5.1)
K(ξ,X) = K(ξ, ϕX) − 2εεXg((∇ξh)X,ϕX) (5.2)

for any unit vector X ∈ Ker η.

Proof. Using (2.6), we have

K(ξ,X) = −εεXR(ξ,X, ξ,X)

= −εεXg(−ϕ(∇ξh)X − X + h2X,X)

= ε{εXg(ϕ(∇ξh)X,X) + εX
2 − εXg(h2X,X)},
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which gives (5.1).

Now, plugging X by ϕX in (5.1) keeping hϕ = −ϕh and ∇ξϕ = 0 in mind,
we obtain

K(ξ, ϕX) = ε{1 − εXg(h2X,X) + εXg((∇ξh)X,ϕX)}. (5.3)

Now, from (5.1) and (5.3), we get (5.2). �

As we discussed in introduction, due to the fact that h2 = 0 does not imply
h = 0 in a contact pseudo-metric manifold, the parallel condition of � does not
imply that ξ-sectional curvatures vanish. However, in the following we show
that this is true with an additional assumption ∇ξh = 0.

Theorem 5.2. Let M be a contact pseudo-metric manifold with ∇ξh = 0. Then
the following are true.

(i) The tensor h2 = 0 if and only if all ξ-sectional curvatures are equal to ε.
(ii) If ∇� = 0, then all ξ-sectional curvatures vanish.

Proof. (i). Taking the inner product of the unit vector field X ∈ Ker η with (2.7)
yields the following formula for sectional curvatures:

K(ξ,X) + K(ξ, ϕX) = 2ε{1 − εXg(h2X,X)}. (5.4)

Now, since ∇ξh = 0, (5.2) yields

K(ξ,X) = K(ξ, ϕX) (5.5)

for any unit vector X ∈ Ker η. From (5.4) and (5.5) we see

K(ξ,X) = ε if and only if g(h2X,X) = 0.

This concludes the proof of (i).

(ii). Applying by ϕ on both sides of (2.6) and using ∇ξh = 0, it follows that

�X = −h2X + X − η(X)ξ, (5.6)

for any X ∈ TM . Now, in view of (∇X�)ξ = 0 and (5.6), we have

εh2ϕX − h3ϕX − εϕX + hϕX = 0. (5.7)

If X ∈ Ker η is a unit vector field, then taking the inner product of ϕX
with (5.7) leads to

εg(h2X,X) + g(h3X,X) − εg(X,X) − g(hX,X) = 0. (5.8)

Now replacing X by ϕX in (5.7) and then taking inner product of X with the
resulting equation gives

− εg(h2X,X) + g(h3X,X) + εg(X,X) − g(hX,X) = 0. (5.9)

Now subtracting (5.8) from (5.9) yields

g(h2X,X) = g(X,X) = εX (5.10)

for any unit vector X ∈ Ker η. Using (5.10) and ∇ξh = 0 in (5.1) we conclude
that K(ξ,X) = 0. �
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Corollary 5.3. A contact Lorentzian manifold is a K-contact Lorentzian man-
ifold if and only if all ξ-sectional curvatures are equal to −1.

6. Almost CR structures

First, we recall few notions of almost CR structures (see [11,16,18]). Let M
be a (2n + 1)-dimensional (connected) differentiable manifold. Let H(M) be a
smooth real subbundle of rank 2n of the tangent bundle TM (also called Levi
distribution), and J : H(M) → H(M) be a smooth bundle isomorphism such
that J2 = −I. Then the pair (H(M), J) is called an almost CR structure on
M . An almost CR structure is called a CR structure if it is integrable, that is,
the following two conditions are satisfied

[JX, Y ] + [X,JX] ∈ H(M), (6.1)
J([JX, Y ] + [X,JY ]) = [JX, JY ] − [X,Y ] (6.2)

for all X,Y ∈ H(M).

On an almost CR manifold (M,H(M), J), we define a 1-form θ such that
Ker θ = H(M), and such a differential 1-form θ is called a pseudo-Hermitian
structure on M . Then on H(M), the Levi form Lθ is defined by

Lθ(X,Y ) = dθ(X,JY )

for all X,Y ∈ H(M). Furthermore, we define a (0, 2)-tensor field on H(M) by

α(X,Y ) = (∇Xθ)(JY ) + (∇JXθ)(Y )

for all X,Y ∈ H(M).

Then we have the following:

Proposition 6.1. For an almost CR structure (H(M), J, θ), the following state-
ments are equivalent :

(i) Lθ is Hermitian, that is, Lθ(JX, JY ) = Lθ(X,Y );
(ii) Lθ is symmetric, that is, Lθ(X,Y ) = Lθ(Y,X);
(iii) [JX, Y ] + [X,JY ] ∈ H(M);
(iv) α is symmetric, that is, α(X,Y ) = α(Y,X).

Proof. It is immediate that (i)⇔(ii) and (ii)⇔(iii) follows from the fact that

dθ(X,Y ) = −1
2
θ([X,Y ])

for all X,Y ∈ H(M). On the other hand, as in general

dθ(X,Y ) =
1
2
((∇Xθ)Y − (∇Y θ)X),

the condition (ii) is equivalent to

(∇Xθ)(JY ) + (∇JXθ)Y = (∇Y θ)(JX) + (∇JY θ)X,

and so (ii)⇔(iv). �
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The authors came to know from the reviewer that, the equivalence of (ii) with
(iv) is related to Lemma 1 of [25], and the equivalence of (i), (ii) and (iii) can
be found, for example, in [19] (see Proposition 6, p.17).

An almost pseudo-Hermitian CR structure (H(M), J, θ) is said to be nonde-
generate if the Levi form Lθ is a nondegenerate Hermitian form, and so the
1-form θ is a contact form.

Let (M,H(M), J, θ) be a nondegenerate pseudo-Hermitian almost CR mani-
fold. We extend the complex structure J to an endomorphism ϕ of the tangent
bundle TM in such a way that θ = J on H(M) and ϕξ = 0, where ξ is the Reeb
vector field of θ. Then the Webster metric gθ, which is a pseudo-Riemannian
metric, is defined by

gθ(X,Y ) = Lθ(X,Y ), gθ(X, ξ) = 0, gθ(ξ, ξ) = ε

for all X,Y ∈ H(M). In this case, (ϕ, ξ, η = −θ, g = gθ) defines a contact
pseudo-metric structure on M . Conversely, if (ϕ, ξ, η, g) is a contact pseudo-
metric structure, then (H(M), J, θ), where H(M) = Ker η, θ = −η, and J =
ϕ|H(M), defines a nondegenerate almost CR structure on M . Thus, we have:

Proposition 6.2 ([16]). The notion of nondegenerate almost CR structure
(H(M), J, θ) is equivalent to the notion of contact pseudo-metric structure
(ϕ, ξ, η, g).

Now, we prove the following result which is related to Theorem 1 of [25].

Theorem 6.3. An almost contact pseudo-metric manifold M is CR manifold
if and only if

(∇XJ)Y − (∇JXJ)JY = α(X,Y )ξ (6.3)

for all X,Y ∈ H(M).

Proof. Applying J to (6.2) gives

(∇Y J)X − (∇XJ)Y = J(∇JXJ)Y − J(∇JY J)X

for all X,Y ∈ H(M). Since J(∇JXJ)Y = −(∇JXJ)JY , the above equation
becomes

(∇Y J)X − (∇XJ)Y = (∇JY J)JX − (∇JXJ)JY (6.4)

for all X,Y ∈ H(M). If we define a (0, 3)-tensor field A on H(M) as

A(X,Y,Z) = g((∇JXJ)JY − (∇XJ)Y,Z) (6.5)

for all X,Y ∈ H(M), then from (6.4) one obtain

A(X,Y,Z) = A(Y,X,Z). (6.6)
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Next, a simple computation shows that

A(X,Y,Z) + A(X,Z, Y )
= g((∇JXJ)JY − (∇XJ)Y,Z) + g((∇JXJ)JZ − (∇XJ)Z, Y )
= −g((∇JXJ)Z, JY ) + g((∇JXJ)JZ, Y )
= −g(∇JXJZ, JY ) − g((∇JXZ), J2Y )

+g(∇JXJ2Z, Y ) − g(J(∇JXJZ), Y )
= 0,

where the skew-symmetry of J and ∇J are used. This together with (6.6) gives
the following:

A(X,Y,Z) = −A(X,Z, Y ) = −A(Z,X, Y ) = A(Z, Y,X)

= A(Y,Z,X) = −A(Y,X,Z) = −A(X,Y,Z).

Hence it follows that A = 0, and so (6.5) implies

(∇JXJ)JY − (∇XJ)Y = γ(X,Y )ξ (6.7)

for all X,Y ∈ H(M), for certain (0,2)-tensor field γ on H(M). It remains to
show that γ = α. From (6.7), it follows that

γ(X,Y ) = εg((∇JXJ)JY − (∇XJ)Y, ξ)

= ε{−g((∇JXJ)ξ, JY ) + g((∇XJ)ξ, Y )}
= ε{g(∇JXξ, Y ) − g(J∇Xξ, Y )}
= (∇JXθ)Y + (∇Xθ)JY

= α(X,Y ).

Conversely, suppose that (6.3) holds true. Then projecting (6.3) onto ξ, it
follows that α is symmetric and is equivalent to (6.1). The symmetry of α
together with (6.3) gives (6.4), which yields

−[JX, Y ] − [X,JY ] = J [JX, JY ] − J [X,Y ],

for all X,Y ∈ H(M), and so satisfies the Eq. (6.2). �

Let (M,ϕ, ξ, η, g) be an almost contact pseudo-metric manifold with (H(M), J)
as the corresponding almost CR structure. For Y ∈ TM , we denote Y|H(M) to
the orthogonal projection on H(M). Then, the Bott partial connection ∇̆ on
H(M) (along ξ) is the map ∇̆ : S(ξ) × H(M) → H(M) defined by

∇̆ξX := (£ξX)|H(M) = [ξ,X]|H(M)

for any X ∈ H(M) (see, [20, p. 18]), where S(ξ) is the 1-dimensional linear
subspace of TM generated by ξ.

Theorem 6.4. Let (M,ϕ, ξ, η, g) be an almost contact pseudo-metric manifold,
and ξ a geodesic vector field. Then h = 0 if and only if ∇̆ξJ = 0.
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Proof. As hξ = 0, we may observe that, h = 0 if and only if hX = 0 for any
X ∈ H(M).

Now using ∇ξξ = 0, for any X ∈ H(M), we have

η([ξ,X]) = εg(ξ,∇ξX − ∇Xξ) = 0,

which means £ξX ∈ H(M). Thus, we get

2hX = £ξ(ϕX) − ϕ(£ξX) = ∇̆ξ(ϕX) − ϕ(∇̆ξX)

= ∇̆ξ(JX) − J(∇̆ξX) = (∇̆ξJ)X

for any X ∈ H(M), completing the proof. �

Note that the proof of Theorem 6.4 is related to the formula (4.3) of [14]. For
contact pseudo-metric manifold, the structure vector field is geodesic. So we
have the following:

Corollary 6.5. A contact pseudo-metric manifold is K-contact pseudo-metric
if and only if ∇̆ξJ = 0.

For paracontact metric manifolds the result of the following Theorem was
proved in Corollary 4.9 of [14].

Theorem 6.6. A contact pseudo-metric manifold (M,ϕ, ξ, η, g) is Sasakian
pseudo-metric if and only if the corresponding nondegenerate almost CR struc-
ture (H(M), J) is integrable and ∇̆ξJ = 0.

Proof. First we observe that, following the same proof given in [23] for the
Riemannian case, the integrable condition (that is, (6.1) and (6.2)) of the
corresponding CR structure (H(M), J) is equivalent to

(∇Xϕ)Y = −{(∇Xη)ϕY }ξ − η(X)ϕ(∇Xξ), (6.8)

where

(∇Xη)ϕY = −g(X,Y ) + εη(X)η(Y ) − εg(hX, Y ),

and
ϕ(∇Xξ) = εX − εη(X)ξ + hX.

Thus, (6.8) becomes

(∇Xϕ)Y = g(X + εhX, Y )ξ − εη(Y )(X + εhX). (6.9)

If the contact pseudo-metric manifold (M,ϕ, ξ, η, g) is Sasakian, then (6.9)
satisfies with h = 0, and so corresponding nondegenerate almost CR structure
(H(M), J) is integrable and ∇̆ξJ = 0.

Conversely, as ∇̆ξJ = 0 implies h = 0, Eq. (6.9) reduces to (2.9), and so the
structure is Sasakian pseudo-metric. �
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