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Abstract. Solving a problem left open in Hajja and Martini (Mitt. Math.
Ges. Hamburg 33:135–159, 2013), we prove, inside a weak plane absolute
geometry, that, for every point P in the plane of a triangle ABC there
exists a point Q inside or on the sides of ABC which satisfies:

AQ ≤ AP, BQ ≤ BP, CQ ≤ CP. (1)
If P lies outside of the triangle ABC, then Q can be chosen to both lie
inside the triangle ABC and such that the inequalities in (1) are strict.
We will also provide an algorithm to construct such a point Q.
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1. Introduction

Searching for results that bear some similarity to Propositions 20 and 21 of
Book I of Euclid’s Elements, Hajja and Martini arrive in [1, Theorem 12] at
the following theorem, whose validity they prove in the real Euclidean plane

Theorem 1. Let P be a point in the plane of a triangle ABC. Then there exists
a point Q inside or on the boundary of ABC that satisfies (1).

Aware of the discrepancy between the statement of the theorem, whose notions
belong to Hilbert’s absolute geometry (whose axioms are the plane axioms of
incidence, order, and congruence of groups I, II, and III of Hilbert’s Grundlagen
der Geometrie), which is where one expects a proof to be carried through, and

This paper was written while the third author enjoyed the hospitality of Yerevan State
University as a Fulbright Scholar.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-019-0481-3&domain=pdf
http://orcid.org/0000-0003-2263-1471


24 Page 2 of 16 D. Harutyunyan et al. J. Geom.

the methods of proof used, the authors ask: “Its fanciful proof, using Zorn’s
lemma and the Bolzano-Weierstrass theorem, raises the question whether such
a heavy machinery is indeed inevitable” [1, p. 13]. Moreover, since they can
only prove the existence of the point Q, they also ask “whether there is a
procedure (an algorithm) to construct the point Q” [1, p. 14].

It is the purpose of this paper to provide an elementary proof, within a very
weak plane absolute geometry (all of whose axioms can be deduced inside
Hilbert’s plane absolute geometry), of Theorem 1, to provide an algorithm
for constructing Q, and to prove that, for any point P that lies outside of
triangle ABC (for which we will also write �ABC), there exists a point Q in
the interior of triangle ABC, for which all of the inequalities in (1) are strict.
To do this, we will first present the axiom system Σ for a very weak absolute
geometry, as well as an additional axiom to be added to Σ to form an axiom
system Σ′, giving rise to what one would still refer to as a very weak absolute
geometry, followed by the proofs of some basic geometric truths valid in Σ and
Σ′, as preparation for the main results mentioned above.

2. The axiom system

In the spirit of reverse geometry (see [2]), we will set up an axiom system,
consisting precisely of those assumptions needed to ensure that the notions of
Theorem 1 make sense, and in which our proof can be carried through.

The language is a two-sorted one, with variables for points, denoted by upper-
case letters, and lines, denoted by lower-case letters. There are two binary
relation symbols, ∈, for point-line incidence, with P ∈ g to be read as “P is
incident with g,” and ⊥, for line orthogonality, with g ⊥ h to be read “line g is
orthogonal to line h,” there is a ternary relation ζ, with point arguments, with
ζ(A,B,C) to be read as “B lies strictly between A and C,” there is a five-place
operation ξ, and there are six binary operation symbols, ϕ, σ, μ, μ0, π, and π0.
Here ξ has four point variables and a line variable as arguments and a point
variable and value, with ξ(A,M,B,C, g) to be read, in case ζ(A,M,B), M ∈ g,
and C �∈ g holds, as “the intersection point of g with one of the segments AC
or BC,” an arbitrary point, should one of ζ(A,M,B), M ∈ g, and C �∈ g
not be the case, ϕ has two point variables as arguments and a line variable
as value, with ϕ(A,B) standing, for A �= B, for the “line joining A and B,”
an arbitrary line, otherwise, σ has point variables as arguments and a point
variable as value, σ(A,B) to be read, for A �= B, as “the reflection of B in A,”
arbitrary, otherwise, μ has point variables as arguments and a line variable
as value, with μ(A,B) to be read, for A �= B, as “the perpendicular bisector
of AB,” arbitrary, otherwise, μ0 has point variables both as arguments and
as value, with μ0(A,B) to be read, for A �= B, as “the midpoint of AB,” an
arbitrary point, otherwise, π has a point and a line variable as arguments and
a line variable as value, with π(P, g) to be read as “the perpendicular through
P to g,” and π0 has a point and a line variable as arguments and a point



Vol. 110 (2019) The Hajja–Martini inequality Page 3 of 16 24

variable as value, with π0(P, g) to be read as “the foot of the perpendicular
from P to g.” Pieri’s ternary notion of congruence of two segments with a
common endpoint, ι, and that of segment inequality of two segments sharing
an endpoint, λ, are defined notions in this set-up. ι(A,B,C) should be read as
AB is congruent to AC, and λ(A,B,C) as AB < AC. Their definitions are

ι(A,B,C) ⇔ (B = C) ∨ μ(B,C) = π(A,ϕ(B,C)) (2)
λ(A,B,C) ⇔ B �= C ∧ A �∈ μ(B,C) ∧ ζ(A, ξ(B,μ0(B,C), C,A, μ(B,C)), C)

(3)

These two definitions are motivated by the follwoing view of the perpendic-
ular bisector μ(A,B) of a non-degenerate segment AB: the points on it are
equidistant from its endpoints, and thus offer a means of defining congruence
for two segments sharing an endpoint, while the points in the two halfplanes
determined by μ(A,B) are precisely those points for which the distances from
the endpoints are different. Those points P in the halfplane determined by
μ(A,B) in which A lies are such that PA < PB, while those points P in the
halfplane determined by μ(A,B) in which B lies are such that PB < PA. In
other words: AB is congruent to AC if the perpendicular bisector of BC goes
through A, and AB < AC if the perpendicular bisector of BC intersects the
open segment AC.

For the reader’s reading convenience, we will write henceforth AB ≡ AC
for ι(A,B,C) and AB < AC for λ(A,B,C). By AB ≤ AC we will mean
AB ≡ AC ∨ AB < AC. The axioms are

A1. A �= B → A ∈ ϕ(A,B) ∧ B ∈ ϕ(A,B)

A2. A ∈ g ∧ B ∈ g → (A = B ∨ g = ϕ(A,B))

A3. a ⊥ b → b ⊥ a

A4. π0(P, g) ∈ g ∧ π0(P, g) ∈ π(P, g)

A5. A ∈ π(A, g) ∧ π(A, g) ⊥ g

A6. A ∈ h ∧ h ⊥ g → h = π(A, g)

A7. ζ(A,B,C) → A �= B ∧ A �= C ∧ B ∈ ϕ(A,C)

A8. A ∈ g ∧ B ∈ g ∧ C ∈ g ∧ A �= B ∧ B �= C ∧ C �= A
→ ζ(A,B,C) ∨ ζ(B,C,A) ∨ ζ(C,A,B)

A9. ζ(A,B,C) → ζ(C,B,A)

A10. ζ(A,B,C) → ¬ζ(A,C,B)

A11. D ∈ g ∧ ζ(A,D,B) ∧ C �∈ g → ξ(A,D,B,C, g) ∈ g
∧(ζ(A, ξ(A,D,B,C, g), C) ∨ ζ(B, ξ(A,D,B,C, g), C))
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A12. A �= B → μ(B,A) = μ(A,B)

A13. A �= B → μ0(A,B) ∈ μ(A,B)

A14. A �= B → π(μ0(A,B), ϕ(A,B)) = μ(A,B)

A15. A �= B → ζ(A,μ0(A,B), B)

A16. A �= B → μ0(σ(B,A), A) = B

A17. AB < AC ∧ AC < AD → AB < AD

A18. ζ(A,B,C) → ζ(A,μ0(A,B), μ0(A,C))

A1 and A2 are the trivial incidence axioms, stating that there exists a unique
line joining two distinct points; A3–A6 are the trivial orthogonality axioms,
stating that orthogonality is a symmetric relation (A3), that the line through P
that is orthogonal to g intersects g (A4), that there is a perpendicular through
every point to every line (A5), that there is no more than one perpendicular
from a point to a line (A6); A7–A10 are some linear order axioms, A11 is the
Pasch axiom, in which ABC is not required to be a non-degenerate triangle,
given that the line g, once it entered through the side AB will have to exit
even a degenerate triangle through one of the open segments AC or BC, if it
does not go through C. A12–A15 introduce μ and μ0, about which we are told
that μ0(A,B) is a point lying between A and B, and that the line μ(A,B)
(which coincides with μ(B,A)) is perpendicular in μ0(A,B) to the line joining
A with B. Axiom A15 also tells us that the order on any line determined by
two points is dense. A16 states that σ(B,A) is the reflection of A in B, in the
sense that B is the midpoint of σ(B,A) and A. A18 states that the half of
a smaller segment is smaller than the half of a larger segment, if the smaller
segment shares an endpoint with the larger one and is contained in it. A17
states that the relation < is transitive.

Usually, axiom systems also contain an axiom stating that three non-collinear
points exist, that is

A19. (∃ABC)A �= B ∧ A �= C ∧ ϕ(A,B) �= ϕ(A,C)

but we will not need such an axiom to prove Theorem 1, for if no three collinear
points exist, Theorem 1 is vacuously true. Let Σ = {A1–A17} and let Σ′ =
{A1–A18}. It is plain that all the axioms of Σ′ hold in Hilbert’s plane absolute
geometry.

The model presented in [3, pp. 83–84] shows that, even in the presence of the
Euclidean parallel postulate, A17 does not follow from the other axioms of Σ′.

When (1) holds with strict inequalities, we will write (1)<. We will say that
the points X and Y satisfy (1) if substituting X for Q and Y for P in (1)
renders the inequalities in (1) valid.
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3. Some basic facts about Σ ∪ {A19} and Σ′ ∪ {A19}
3.1. Facts about Σ ∪ {A19}
We will state and prove some of the basic facts we will need in the sequel
that are true in Σ in the presence of the assumption that there are three non-
collinear points, that is of A19, which, although not part of Σ, is part of the
hypothesis of Theorem 1, and thus can be assumed when proving it.

First, notice that, by A15 and A16, we have

A �= B → ζ(σ(B,A), B,A) (4)

Thus, in the presence of A19, the order axioms A7–A11, together with A15
and (4), form an axiom system for what is referred to in [4] as ordered planes.
This means that all the universal axioms that we expect the betweenness
relation to satisfy on a line hold, as well as that the Crossbar Theorem (see
[5, p. 116]) holds. In addition, from now on, notions of ordered planes such as
half-plane, angle, interior of a triangle, Pasch’s Theorem, etc. are freely used
without explicit definition, and we will say that a result holds “by the axioms
of ordered geometry” or “by ordered geometry” to mean that the result is a
consequence of several axioms of ordered geometry.

An easy consequence of (4) and A7 is

A �= B → σ(A,B) �= B (5)

Notice also that, in the presence of A19, every line can be written as ϕ(A,B)
for some A �= B. This implies that there are no isotropic lines, i.e., that

g �⊥ g (6)

For suppose some g = ϕ(A,B), with A �= B, were such that g ⊥ g. By
A19, we know that there exists C with C �∈ g. Then, by A5, C ∈ π(C, g)
and π(C, g) ⊥ g, and, by A4, π0(C, g) ∈ g and π0(C, g) ∈ π(C, g). Now,
π0(C, g) ∈ g and g ⊥ g imply, by A6, g = π(π0(C, g), g). Also by A6 we have
that π0(C, g) ∈ π(C, g) and π(C, g) ⊥ g imply π(C, g) = π(π0(C, g), g). This
means that π(C, g) = g. However, this cannot be, for C ∈ π(C, g) while C �∈ g.

We now turn to the proof that

μ0(A,B) = μ0(B,A) (7)

For A = B there is nothing to prove, so we assume A �= B. By A13 and A12 we
have that μ0(A,B) ∈ μ(A,B) and μ0(B,A) ∈ μ(A,B). By A15, A7, A9, and
the fact that ϕ(A,B) = ϕ(B,A), we get μ0(A,B) ∈ ϕ(A,B) and μ0(B,A) ∈
ϕ(A,B). By A14 and A12, π(μ0(A,B), ϕ(A,B)) = π(μ0(B,A), ϕ(A,B)) =
μ(A,B). If μ0(A,B) �= μ0(B,A), then, by A5, μ0(A,B) ∈ μ(A,B) and
μ0(B,A) ∈ μ(A,B), so, by A1 and A2, ϕ(μ0(A,B), μ0(B,A)) = μ(A,B). How-
ever, we also have ϕ(μ0(A,B), μ0(B,A)) = ϕ(A,B), so μ(A,B) = ϕ(A,B),
and since, by A14 and A5, we have μ(A,B) ⊥ ϕ(A,B), we get ϕ(A,B) ⊥
ϕ(A,B), contradicting (6).
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An easy consequence of the definition of segment inequality < and of the
uniqueness of the perpendicular from a point to a line is the fact that the
hypotenuse of a right triangle is greater than the leg, i.e., that

O �= A ∧ O �= B ∧ ϕ(O,A) ⊥ ϕ(O,B) → AO < AB (8)

The perpendicular bisector of the segment OB, μ(O,B), intersects, by the
Pasch axiom A11—since it cannot pass through A, as that would imply that
there are two distinct perpendiculars from A to ϕ(O,B), contradicting A6—
one of the sides OA or AB. However, it cannot intersect OA for the same reason
that, from that intersection point there would be two distinct perpendiculars
to ϕ(O,B), contradicting A6. Thus μ(O,B) intersects the side AB, and thus,
by (3), we have AO < AB.

A17 implies that the foot of the altitude to the hypotenuse in a right triangle
lies between the endpoints of the hypotenuse, i.e., that

O �= A ∧ O �= B ∧ ϕ(O,A) ⊥ ϕ(O,B) → ζ(A, π0(O,ϕ(A,B)), B) (9)

For suppose D = π0(O,ϕ(A,B)) lies outside of the segment AB (that D �= A
and D �= B follows from A2–A6), say ζ(D,A,B). According to (8), BD < BO.
Since ζ(D,A,B), we also have BA < BD, so, by A17, BA < BO. However, by
(8), BO < BA, a contradiction, for, by Pasch’s Theorem, a line (in this case
μ(O,A)) cannot intersect all three sides of a triangle (in this case �OAB).

With the axioms from Σ, we can prove, as in [6, p. 486], that (9) is equivalent
with the statement RR: “A right angle cannot be included inside another right
angle with the same vertex.” Thus (9), by means of RR, allows for a meaningful
introduction of the concept of an acute angle and of that of an obtuse angle.

We say that ̂AOB is acute (and write α(AOB)) if
−→
OB, lies inside the angle

formed by
−→
OA and the ray emanating from O, which is part of π(O,ϕ(O,A)),

and which lies in the same half-plane determined by ϕ(O,A) as B. By RR, in
the definition of the notion of an acute angle one can interchange A and B,
so that the definition does not depend on the side of the angle on which one
raises the perpendicular. We say that ̂AOB is obtuse (and write ω(AOB)) if
the ray emanating from O, which is part of π(O,ϕ(O,A)), and which lies in
the same half-plane determined by ϕ(O,A) as B, lies inside ̂AOB. Again, by
RR, we can switch A and B in the definition and get the same notion. An easy
consequence of the definition of < and the independence of the definition of
an obtuse angle on the side on which one raises the perpendicular is the fact
that

ω(AOB) → AO < AB ∧ BO < BA (10)

We also have: If P is a point on the side AB of a triangle ABO then AP < AO
or BP < BO. Formally
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O �= A ∧ O �= B ∧ ϕ(O,A) �= ϕ(O,B) ∧ ζ(A,P,B)
→ (AP < AO ∨ BP < BO) (11)

Since μ0(P,O) is a point in the interior of triangle ABO, and since μ(P,O)
passes through μ0(P,O) and μ(P,O) �= ϕ(P,O) (by (6)), by the axioms for
ordered geometry, μ(P,O) will have to intersect at least one of the open seg-
ments OA and OB. Thus one of AP < AO and BP < BO holds.

The variant of Proposition 21 of Book I of Euclid’s Elements that we will need
is:

If P �= C is a point inside or on the boundary of triangle ABC,

then PA < CA or PB < CB. (12)

Applying the Pasch axiom to triangles PBC and PAC with secant μ(P,C),
we get that μ(P,C), unless it passes through one of A and B. and then, by
the Crossbar Theorem, must intersect the side BC respectively the side AC of
triangle ABC, intersects the sides PB or BC, as well as the sides AC or PA.
The only way in which we would not have one of PA < CA and PB < CB
would be if μ(P,C) were to intersect the open segments PB and PA in points

E and F , respectively. By the Crossbar Theorem, ray
−→
CP intersects AB in

a point D, and by the same Crossbar Theorem, ray
−→
PD intersects EF in a

point G with ζ(P,G,D). Since we have, by A15, ζ(P, μ0(P,C), C), the lines
ϕ(E,F ) and ϕ(C,P ) have two points in common: μ0(P,C) and G, and thus
must coincide, which cannot be the case, as neither E nor F are on ϕ(P,C).

We can define the operation of line reflection �g in line g as a unary operation
with point variables as both arguments and values, by �g(P ) = P if P ∈ g
and �g(P ) = σ(π0(P, g), P ) if P �∈ g. There is no reason to think that �g is
collinearity-preserving, to say nothing of orthogonality-preserving, so it is very
likely a significantly weaker notion than the standard one. What we can prove
about it is that

O ∈ g → OP ≡ O�g(P ) (13)

If P ∈ g, then �g(P ) = P , so (13) holds by (2). If P �∈ g, then we
will have to show that μ(P, �g(P )) = π(O,ϕ(P, �g(P )). Notice that, since
P �= π0(P, g) (for, by A4, π0(P, g) ∈ g, so if π0(P, g) were P , we would have
P ∈ g), by (5), �g(P ) �= P . By (7) and A16, μ0(P, �g(P )) = μ0(�g(P ), P ) =
μ0(σ(π0(P, g), P ), P ) = π0(P, g). Let m = ϕ(P, �g(P )) and h = π(π0(P, g),m).
By A4 and A5, π0(P, g) ∈ h, π0(P, g) ∈ g, and h ⊥ m. By A14, h =
μ(P, �g(P )). By (4), A1, A2, and A7, we have ϕ(P, π0(P, g)) = m. By
A1, A2, and A4, ϕ(P, π0(P, g)) = π(P, g), thus m = π(P, g), so m ⊥ g,
and, by A3, g ⊥ m. By A6, h = g. Thus, the equality we have to show,
μ(P, �g(P )) = π(O,ϕ(P, �g(P )), has become g = π(O,m), which follows from
A6. We incidentally also proved that

P �∈ g → μ(P, �g(P )) = g (14)
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3.2. Facts about Σ′ ∪ {A19}
A16 tells us that σ and μ0 are some sort of inverse operations, but it tells only
half of that story. The other half

A �= B → σ(μ0(A,B), A) = B (15)

can be proved in Σ′. Let A �= B and let σ(μ0(A,B), A) = B′. By (4), we have
ζ(B′, μ0(A,B), A). Since, by A15, we have ζ(A,μ0(A,B), B), and since we
also have ζ(B′, μ0(A,B), A), by the axioms of ordered geometry, we have that
B = B′ ∨ ζ(A,B,B′) ∨ ζ(A,B′, B). By (7) and A16, μ0(A,B′) = μ0(B′, A) =
μ0(A,B). By A18, ζ(A,B,B′) → ζ(A,μ0(A,B), μ0(A,B′)), which contradicts
A7, since μ0(A,B′) = μ0(A,B). The same contradiction follows if we assume
ζ(A,B′, B), so B = B′, which proves (15).

An easy consequence of (15) is that reflections in points are involutory trans-
formations, i.e., that

O �= A → σ(O, σ(O,A)) = A (16)

This can be seen by first noticing that, by A16, μ0(σ(O,A), A) = O. By (5)
and (15), σ(μ0(σ(O,A), A), σ(O,A)) = A, which proves (16).

Next, we will show that the reflection in a point preserves the betweenness
relation, i.e., that

ζ(O,A,B) → ζ(O, σ(O,A), σ(O,B)) (17)

Let A′ = σ(O,A) and B′ = σ(O,B). By (4) and A9, we have ζ(A,O,A′) and
ζ(B,O,B′). Since we also have ζ(O,A,B), by the axioms of ordered geome-
try (in the presence of A19), we have A′ = B′ or ζ(O,A′, B′) or ζ(O,B′, A′).
Now A′ = B′ is impossible, for, by A16, μ0(A′, A) = μ0(B′, B) = O. By
(15), σ(μ0(A′, A), A′) = A and σ(μ0(B′, B), B′) = B. By (7), μ0(A′, A) =
μ0(A,A′) = O and μ0(B′, B) = μ0(B,B′) = O, so σ(μ0(A′, A), A′) =
σ(O,A′) = A and σ(μ0(B′, B), B′) = σ(O,B′) = B. If A′ = B′, then
A = σ(O,A′) = σ(O,B′) = B, contradicting A7 (given that, by A9, we have
ζ(B,A,O)). Suppose now ζ(O,B′, A′). By the axioms of ordered geometry,
we have ζ(B,B′, A′) and ζ(A′, A,B), and, by A18, ζ(B,μ0(B,B′), μ0(B,A′))
and ζ(A′, μ0(A′, A), μ0(A′, B)). Since μ0(A′, A) = μ0(B,B′) = O, this means
that, bearing in mind that, by (7), μ0(A′, B) = μ0(B,A′), ζ(B,O, μ0(A′, B))
and ζ(A′, O, μ0(A′, B)). By ordered geometry, the latter implies, together with
ζ(A′, μ0(A′, B), B) (by A15), ζ(O,μ0(A′, B), B), which, after applying A9,
contradicts A10.

4. Theorem 1 holds in Σ

Lemma 1. Let P be a point outside of triangle ABC and let P and C lie on
different sides of ϕ(A,B). Then π0(P,ϕ(A,B)) and P satisfy (1)<.



Vol. 110 (2019) The Hajja–Martini inequality Page 9 of 16 24

Figure 1 H and P satisfy (1)<

Proof. In our proof it will not matter whether H = π0(P,ϕ(A,B)) belongs or
does not belong to the segment AB (see Fig. 1).

First, we will compare AP with AH and BP with BH. In �PHA and
�PHB—cone of which may be degenerate if H = A or H = B—where
AH, BH are legs and AP, BP are hypotenuses, so, by (8), we get AH < AP
and BH < BP , regardless of whether one of the triangles is non-degenerate or
not. Now consider �PHC. Since ̂PHC includes right angle ̂PHB or ̂PHA, it
is, by our definition, obtuse, so, by (10), CH < CP . �

The following two theorems represent a strengthening of [1, Theorem 11, p.
13], which states, inside Euclidean geometry, that “P lies outside the (closed)
triangle ABC if and only if there exists Q �= P satisfying (1).”

Theorem 2. For any point P inside or on the boundary of triangle ABC, there
is no point Q, different from P , such that Q and P satisfy (1).

Proof. If P �= Q, the validity of (1) is equivalent with the statement that
the closed triangle ABC is contained in the closed halfplane determined by
μ(Q,P ) which contains Q. If P is inside or on the boundary of �ABC, then,
for (1) to hold, P would have to lie in the closed halfplane determined by
μ(Q,P ) which contains Q. Yet this would mean that both P and Q lie in the
same closed halfplane determined by μ(Q,P ), which is not possible, for, by
A13–A15, A5, and (6), P and Q lie on different sides of μ(Q,P ).

Theorem 3. For every point P outside of triangle ABC there exists a point Q
inside or on the boundary of triangle ABC, such that Q and P satisfy (1)<.

Proof. By the axioms of ordered geometry, one of the vertices of �ABC and
P lie on opposite sides of the line determined by the other two vertices of
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Figure 2 Both ̂HBC and ̂HCB are acute

Figure 3 ̂HBC is not acute

�ABC. We may assume that vertex is C, so the line determined by the other
two vertices is ϕ(A,B).

Let H = π0(P,ϕ(A,B)). There are two possibilities: (i) H belongs or (ii) H
does not belong to the segment AB. In case (i), we are done, since, by Lemma 1,
the points H and P satisfy (1)<, and H lies on the boundary of �ABC.

In case (ii), we still get from Lemma 1 that H and P satisfy (1)<. Considering
�HBC, we notice that there are three possible cases.

1. Both ̂HBC and ̂HCB are acute. Let H ′ = π0(H,ϕ(B,C)) (see Fig. 2).

We have ζ(B,H ′, C) (otherwise we get a contradiction by using the Cross-
bar Theorem and A6)) and by Lemma 1 we deduce that H ′ and H satisfy
1<. We also have that H and P satisfy (1)<, so, by A17, H ′ and P satisfy
(1)<.

2. ̂HBC is not acute. Let H ′ = π0(B,ϕ(H,C)) (see Fig. 3). By (9), the
Crossbar Theorem and the linear properties of betweenness, H ′ belongs
to the segment HC.

Now we are going to prove that H ′ and H satisfy (1)<. Given that
ζ(H,H ′, C), by (3), we have CH ′ < CH. Since BH is the hypotenuse in
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Figure 4 H ′′ and P satisfy (1)<

Figure 5 H ′′ and P satisfy (1)<

�HH ′B, by (8), BH ′ < BH. Given ζ(A,B,H) and the definition of H ′,
̂HH ′A is obtuse, implying AH ′ < AH by (10), so we get that H ′ and H
satisfy (1)<. We know that H and P also satisfy (1)<, so, by A17, H ′

and P also satisfy (1)<.

Let H ′′ = π0(H ′, ϕ(B,C)) (see Fig. 4). By (9), we have ζ(B,H ′′, C), so,
by Lemma 1, H ′′ and H ′ satisfy (1)<. Since H ′ and P satisfy (1)<, by
A17, H ′′ and P satisfy (1)<.

3. ̂HCB is not acute. Let H ′ = π0(C,ϕ(B,H)). Since ̂HCB is not acute,
by the Crossbar Theorem, (9), and the linear order axioms, we have
ζ(B,H ′,H). Thus BH ′ < BH and AH ′ < AH. CH being the hypotenuse
of �HH ′C, we have, by (8), CH ′ < CH, so we get that H ′ and H satisfy
(1)<. Since H and P also satisfy (1)<, by A17, H ′ and P also satisfy (1)<.

Let H ′′ = π0(H ′, ϕ(B,C)) (see Fig. 5). By (9), ζ(B,H ′′, C), and by
Lemma 1 we have that H ′′ and H ′ satisfy (1)<. Since H ′ and P also
satisfy (1)<, we have, by A17, that H ′′ and P also satisfy (1)<.

�
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Figure 6 F is inside �ABC and F and P satisfy (1)<

Thus, if ABC is a triangle and P is a point, then, by Theorem 3, if P lies outside
of �ABC, then there is a point Q inside or on the boundary of �ABC, such
that Q and P satisfy (1)<, while, by Theorem 2, if P lies inside or on the
boundary of �ABC, then the only point Q such that Q and P satisfy (1) is
Q = P (and thus no Q and P can satisfy (1)<).

We thus have in Theorems 2 and 3 characterizations of the interior points and
of the exterior points of a triangle, which can be summed up as follows:

Corollary 1. If ABC is a triangle, then a point P lies inside or on the boundary
of triangle ABC if and only of there is no point Q such that Q and P satisfy
(1)<; a point P lies outside of triangle ABC if and only if there exists a point
Q such that Q and P satisfy (1)<.

Thus Theorem 12 of [1], which is our Theorem 1, holds in Σ. It is plain that,
given a point P , the proof of Theorem 3 amounts to an algorithm, a flow-chart
with questions to be answered with Yes and No, that leads to the point Q in
at most four steps. Put differently, Q is one of 12 terms (4 if P and C are on
different sides of ϕ(A,B), and 4 for each of the other two possibilities) in the
variables A,B,C, and P , using only the operation symbols ϕ and π0.

5. A strenghtened version of Theorem 3 holds in Σ′

Lemma 2. If P is a point outside of triangle ABC, such that P and C on
different sides of ϕ(A,B) and such that ζ(A, π0(P,ϕ(A,B)), B), then there
exists a point Q inside the triangle ABC, such that Q and P satisfy (1)<.

Proof. Let P ′ = �ϕ(A,B)(P ) and H = π0(P,ϕ(A,B)). If P ′ is inside �ABC,
then, we let E = P ′. If P ′ is on the boundary or outside of the triangle, then by
the Pasch axiom, ϕ(P, P ′), having intersected side AB of �ABC in H, must
also intersect AC or BC. We will denote the intersection point by E (E may
be P ′). Without loss of generality we may assume that ζ(A,E,C) or E = C.
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Figure 7 The cases in which H is outside of the closed seg-
ment AB

Let F = μ0(H,E) (see Fig. 6). We will prove that Q can be chosen to be F .
Let F ′ = σ(H,F ). By (17) and (16), we have ζ(H,F ′, P ). Since ζ(F,H, F ′)
(by (4) and A9) and ζ(H,F ′, P ), we have, by the axioms of ordered geometry,
ζ(F, F ′, P ). By A18, we have ζ(F, μ0(F, F ′), μ0(F, P )). Since μ0(F, F ′) = H,
we have ζ(F,H, μ0(F, P )), so μ(F, P ), having intersected the side FP of
�FPA, must, by the Pasch axiom, also intersect one of AP or AF . Since
ζ(F,H, μ0(F, P )) and μ0(F, P ) ∈ μ(F, P ), the line μ(F, P ) cannot intersect
AF , for if it did, it would have to intersect, by the Pasch axiom applied to
�AHF with secant μ(F, P ), its side AH, and from that intersection point
there would be two perpendiculars to π(P,ϕ(A,B)), namely ϕ(A,B) and
μ(F, P ), contradicting A6. Thus μ(F, P ) intersects side AP , so AF < AP .
Applying the Pasch axiom to �BPF with secant μ(F, P ) we get, analogously,
that BF < BP . If E = C, then ζ(C,F, P ) and so CF < CP . Suppose now
ζ(A,E,C). A halfline of π(E, π(P,ϕ(A,B)) has to lie inside ̂PEC, for else it
would, by the Crossbar Theorem, have to intersect the segment AH, and from
that point of intersection there would be two perpendiculars to π(P,ϕ(A,B)),
namely ϕ(A,B) and π(E, π(P,ϕ(A,B)), contradicting A6. By the Crossbar
Theorem, π(E, π(P,ϕ(A,B)) intersects segment PC, and, by the Pasch axiom,
so does π(F, π(P,ϕ(A,B)), so we have ω(PFC). By (10), we have CF < CP .
�

Theorem 4. For every point P outside of triangle ABC there exists a point Q
inside of triangle ABC, such that Q and P satisfy (1)<.

Proof. We can assume, without loss of generality, that P and C lie on opposite
sides of ϕ(A,B). Let H = π0(P,ϕ(A,B)). There are three possibilities.

1. ζ(A,H,B). This is the case solved in Lemma 2.
2. ζ(A,B,H) or ζ(H,A,B).

Looking at case (ii) (H does not lie on AB) of the proof of The-
orem 3, we notice that in all cases (see Fig. 7) we find a point X with
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Figure 8 The open segment PP ′ contains a point F inside
�ABC

Figure 9 The open segment PP ′ contains points of the open
segment AC

Figure 10 The intersection of the closed triangle ABC with
the open segment PP ′ is A

ζ(B, π0(X,ϕ(B,C)), C), such that X and P satisfy (1)<, so we can use
Lemma 2, with X playing the role of its P , to obtain a point Q in the
interior of �ABC, such that Q and X satisfy (1)<. We can now use A17
to conclude that Q and P satisfy (1)<.
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3. H = A or H = B. Without loss of generality we may assume that H = A.
Let P ′ = �ϕ(A,B)(P ). We distinguish several cases.
(a) The segment PP ′ contains at least one inner point of �ABC. We

denote by F an inner point of �ABC that belongs to the open seg-
ment PP ′ (see Fig. 8).

The proof that BF < BP and CF < CP is the same as the proof
that AF < AP and BF < BP in Lemma 2. That AF < AP
follows from the fact that ζ(F, F ′, P ) and thus, by A18 and given
that μ0(F, F ′) = A, ζ(F,A, μ0(F, P )). We can thus choose Q to be
F .

(b) The segment PP ′ does not contain any inner point of �ABC, but
it contains a boundary point of �ABC which is different from A (it
can only be a point from the side AC of �ABC)

Let H = π0(A,ϕ(B,P )) and H ′ = π0(H,ϕ(A,B)) (see Fig. 9). By
(9), we have ζ(P,H,B) and ζ(A,H ′, B), so that H plays the role of
P in Lemma 2, so there exists a Q inside �ABC, such that Q and
H satisfy (1)<. We also have that AH < AP by (8), BH < BP
since ζ(P,H,B), and CH < CP by (10), since ω(CHP ). By A17,
Q and P satisfy (1)<.

(c) The segment PP ′ does not contain any interior or boundary point
of �ABC besides A.

Let D = μ0(A,P ′), D′ = μ0(D,P ), and E = μ0(A,D). By the
axioms of ordered geometry, we deduce from the fact that PP ′ does
not contain any interior or boundary point of �ABC besides A

that the open segment PC and
−→
AB intersect in a point G. By

A18, ζ(P,D′, A), and by A15 and the axioms of ordered geome-
try ζ(D,A,D′). By the Pasch axiom and A6, π(D′, ϕ(P,A)) inter-
sects the open segment PG in H (see Fig. 10). By (3), CD < CP ,
AD < AP , and BD < BP . Analogously, we get CE < CP ,
AE < AP , and BE < BP .

Notice that we cannot have ϕ(P, P ′) ⊥ ϕ(A,C), for, if this were
the case, then both ϕ(A,C) and ϕ(A,B) would be perpendiculars
through A to ϕ(P, P ′), contradicting A6. Nor does our hypothesis
allow ϕ(P, P ′) = ϕ(A,C). Thus, at most one of π0(D,ϕ(A,C)) and
π0(E,ϕ(A,C)), can be C and none can be A. Thus, there is X ∈
{D,E} for which π0(X,ϕ(A,C)) �∈ {A,C}. By cases 1 and 2 of this
theorem, we have that there is a point Q in the interior of �ABC,
such that Q and X satisfy (1)<. Since X and P also satisfy (1)<,
by A17, Q and P satisfy (1)<.

�
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