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A characterization of the known finite
Minkowski planes in terms of Klein–Kroll
types with respect to G-translations
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Abstract. Klein and Kroll classified Minkowski planes with respect to
subgroups of Minkowski translations. In this paper we investigate finite
Minkowski planes with respect to groups of automorphisms of Klein–Kroll
type at least D with respect to G-translations. We show that type E is
not possible as the type of a finite Minikowski plane and that type F
characterizes the known finite Minkowski planes among finite Minkowski
planes.
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1. Introduction

Klein and Kroll [14] obtained a classification of groups of automorphisms of
Minkowski planes with respect to linearly transitive subgroups of Minkowski
translations contained in them. This is similar to the Lenz classification for
projective planes. Many results have been obtained on the so-called Klein types
of Minkowski planes with respect to Minkowski homotheties, see [11,13,15–
17,27,28], and various restrictions on the groups of automorphisms of the 23
feasible Klein types with respect to homotheties were obtained. In particular,
15 of the 23 types were excluded as the Klein types of the full automorphism
groups of finite Minkowski planes. However, Minkowski translations have not
been investigated further in finite planes. In this paper we begin to close this
gap. We show that the known finite Minkowski planes are characterized by
Klein–Kroll type F with respect to G-translations, see Sect. 2 for a description
of these planes and definitions. Furthermore it is shown that type E cannot
occur as the Klein–Kroll type of a finite Minkowski plane.
In Sect. 2 we recall the basic definitions of Minkowski planes and some results
for finite Minkowski planes. We also give a summary of the classification by
Klein and Kroll of Minkowski planes with respect to G-translations. In Sect. 3
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we investigate finite Minkowski planes of type at least D. This leads to the
exclusion of type E and characterization of type F.

2. Minkowski planes and G-translations
A Minkowski plane M = (P, C,G1 ∪ G2) is an incidence structure consisting of
a point set P , a circle set C, elements of which are non-empty subsets of P ,
and two different partitions G1 and G2 of P . Members of G1 ∪ G2 are called
generators or parallel classes, and two points are called parallel if they belong
to the same member of G1 ∪G2. The generator in Gi that contains p is denoted
by [p]i, and two circles C and D through a point p are said to touch each other
at p if C ∩D = {p} or C = D. Furthermore, the following axioms are satisfied:

– three pairwise non-parallel points can be joined by a unique circle (join-
ing);

– the circles which touch a fixed circle K at p ∈ K partition P\([p]1 ∪ [p]2)
(touching);

– each generator meets each circle in a unique point (parallel projection);
– each generator in G1 intersects each generator in G2 in a unique point;
– there is a circle that contains at least three points (richness);

compare [9] or [23]. Minkowski planes have been treated from a purely algebraic
point of view in [1]. An immediate consequence of the above axioms is that
for each point p of M the incidence structure Ap = (Ap,Lp) whose point set
Ap consists of all points of M that are not parallel to p and whose line set Lp

consists of all restrictions to Ap of circles of M passing through p and of all
generators not passing through p is an affine plane, called the derived affine
plane at p. This affine plane extends to a projective plane Pp, which we call
the derived projective plane at p.
A finite Minkowski plane M is one which has only a finite number of points. In
this case the order of M is the order of any of its derived affine (or projective)
planes. If M has order n, then each generator and each circle have n + 1
points and M has (n + 1)2 points altogether. Furthermore, the plane has
n(n2 − 1) circles. A simple counting argument shows that in an incidence
structure with these number of points, generators and circles the axiom of
touching is automatically satisfied if the other axioms are.
Every Minkowski plane M can be described in the following way. The point
set of M is F×F, where F = F∪{∞} and F is a coordinatizing ternary field of
a derived affine plane, generators are of the form {x0}×F (elements of G1) and
F × {y0} (elements of G2) where x0, y0 ∈ F. Each circle K of M is described
by a function fK : F → F as

K = {(x, fK(x)) | x ∈ F}.

The axiom of parallel projection shows that each function fK is a permutation
of F. The axiom of joining implies that the collection of all those permutations
fK is a sharply 3-transitive set of permutations of F. Conversely, each such
incidence structure constructed from a sharply 3-transitive set of permutations
of F is equivalent to a more general hyperbola structure or (B∗)-geometry,
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that is, all axioms of a Minkowski plane are satisfied except the axiom of
touching. Although every finite hyperbola structure is a Minkowski plane there
are infinite hyperbola structurs that are not Minkowski planes, see for example
[22]. The miquelian Minkowski plane over a field F is obtained in the above
fashion when the sharply 3-transitive set of permutations of F is the sharply
3-transitive group PGL(2,F) of all fractional linear maps over F.
There are many models of Minkowski planes, see for example, [23, Section 4]
for planes with point set R×R. However, there is only one family of finite non-
miquelian Minkowski planes known. In the above setting of 3-transitive sets
of permutations, these planes are described by the finite sharply 3-transitive
sets

G(q, α) = PSL(2, q) ∪ ((PGL(2, q)\PSL(2, q))α)

acting in the usual way on Fq where q is a prime power and α is an automor-
phism of the Galois field Fq of order q. We denote the corresponding Minkowski
plane by M(q, α). The sets G(q, α) of permutations of Fq are groups if and
only if α has order at most 2; see Zassenhaus [30] or Passman [19, Theorem
20,5] for a determination of the finite sharply 3-transitive groups. These latter
finite Minkowski planes are coordinatized over nearfields and were character-
ized geometrically by Hartmann [7, Satz 1] and Percsy [21, Theorem B] by the
existence of a reflection at each circle.
The following result on finite Minkowski planes, due to Heise [8] for even order
and Chen and Kaerlein [4] and independently Payne and Thas [20, Section VII]
for odd order, shows that many of the principles of construction for infinite
Minkowski planes do not apply for finite planes. Consequently, the number of
models of finite Minkowski planes of a given order is very limited.

Theorem 1. 1. A finite Minkowski plane of even order is miquelian.
2. A finite Minkowski plane of odd order is miquelian if at least one of its

derived affine planes is desarguesian.

Note that a circle C not passing through the distinguished point p induces
an oval in the derived projective plane Pp at p by removing the two points
[p]1 ∩ C and [p]2 ∩ C and adding in Pp the points ω1 and ω2 at infinity of the
lines that come from the generators [[p]2 ∩ C]1 and [[p]1 ∩ C]2, respectively.
The above theorem combined with the classification of finite projective planes
of small orders and their ovals was used to obtain a complete description of
finite Minkowski planes of orders up to 9; see [24].

Theorem 2. A finite Minkowski plane of order at most 8 is miquelian. Up to
isomorphisms, there are precisely two finite Minkowski planes of order 9, the
miquelian plane M(9, id) and M(9, α) where α is the unique automorphism
x �→ x3 of F9 of order 2. There is no finite Minkowski plane of order 6 or 10.

An automorphism of a Minkowski plane is a permutation of the point set such
that generators are mapped to generators and circles are mapped to circles.
The collection of all automorphisms of a Minkowski plane M forms a group
with respect to composition, the automorphism group Aut(M) of M. A proper
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automorphism is one which preserves each Gi; such an automorphism induces
a permutation of G1 and of G2. The collection of all automorphisms of M that
fix each generator in Gi is a normal subgroup of Aut(M), called the kernel
Ti of M. A central automorphism of a Minkowski plane is an automorphism
that fixes at least one point and a central collineation is induced in the derived
projective plane at this fixed point.
In this paper we are solely interested in central automorphisms of M that
induce translations in derived planes at each fixed point. In particular, we are
investigating Klein-Kroll types with respect to what we shall call G-translations
(indicating that the set of fixed points is a generator, except in case of the
identity). More precisely, let G ∈ Gi be a generator of a Minkowski plane M.
A G-translation of M is an automorphism of M that either fixes precisely
the points of G or is the identity. Note that in this case each G-translation
is a proper automorphism and belongs to the kernel T3−i. A group of G-
translations of M is called G-transitive, if it acts transitively on each generator
H ∈ G3−i without the point of intersection with G. We say that a group of
automorphisms of M is G-transitive if it contains a G-transitive subgroup of
G-translations.
With respect to G-translations Klein and Kroll obtained six types of groups
of automorphisms of Minkowski planes, in fact, the more general hyperbola
structures, see [14, Theorem 3.4].

Theorem 3. If Z = Z(Γ) denotes the set of all generators G for which a group
Γ of automorphisms of a hyperbola structure is G-transitive, then exactly one
of the following statements is valid for Z:

A. Z = ∅;
B. |Z| = 1;
C. Z = {[p]1, [p]2} for some point p;
D. Z = G1 or Z = G2;
E. Z = G1 ∪ {G2} or Z = G2 ∪ {G1} where Gi ∈ Gi;
F. Z = G1 ∪ G2.

We say that a Minkowski plane is of type X if its full automorphism group
is of type X. As noted in [14, Section 3], if a Minkowski plane M admits an
improper automorphism (that is, an automorphism that interchanges G1 and
G2), then M can only be of type A, C or F.

Remark 1. If a finite Minkowski plane M has a point p such that the auto-
morphism group of M is [p]1- and [p]2-transitive, then the derived affine plane
of M at p is a translation plane (compare [10, Theorem 4.19]), and thus M
has order a prime power. In particular, this is the case when M contains a
group of automorphisms of type C, E or F.

There are models of infinite (2-dimensional compact) Minkowski planes of
types A, B, C, D and F; see [23, 4.5.4]. The following Proposition shows that
all known finite Minkowski planes are of type F.
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Proposition 1. A finite Minkowski plane M(q, α) is of type F.

This follows from [25, Theorem 3.2] and the fact that each automorphism of
a finite field of odd order is order-preserving in the sense of [25].
One can also directly verify the above proposition by observing that for each
a ∈ Fq there is a subgroup Ta ≤ PSL(2, q) (a conjugate of the group of trans-
lations x �→ x+ t where t ∈ Fq and ∞+ t = ∞) that acts regularly on Fq\{a}.
Then each of the maps (x, y) �→ (τ(x), y) and (x, y) �→ (x, τ(y)) where τ ∈ Ta,
a ∈ Fq, is a G-translation of M(q, α). (Note that αPSL(2, q) = PSL(2, q)α.)
More precisely, these maps are [(a,∞)]1- and [(∞, a)]2-translations, respec-
tively. Furthermore, varying t ∈ Ta one sees that M(q, α) is [(a,∞)]1-
and [(∞, a)]2-transitive. Thus the Minkowski plane is G-transitive for each
G ∈ G1 ∪ G2 and thus of type F.

3. Finite Minkowski planes of type at least D

We begin with an observation that applies to all (not necessarily finite)
Minkowski planes.

Lemma 1. Let M be a Minkowski plane whose automorphism group is G-
transitive for each G ∈ Gi. Then the group Δ generated by all G-translations
for G ∈ Gi acts 2-transitively on each generator not in Gi. Furthermore, Δ is
contained in the kernel T3−i and the stabilizer of three points no two of which
are on the same generator in Gi is trivial.

Proof. Let M be a Minkowski plane such that the automorphism group of
M is G-transitive for each G ∈ G2. We consider the group Δ generated by
all G-translations for G ∈ G2. Since each G-translation belongs to the kernel
T1 so does Δ. Clearly the G-transitivity for each G ∈ G2 implies that Δ acts
2-transitively on each generator in G1. Note that if δ ∈ T1 fixes three points
no two of which are on the same generator in G2 then δ fixes pointwise three
generators in G2. Therefore δ fixes every circle and so must be the identity. �

In case of finite Minkowski planes there are only four possibilities for the group
Δ from the previous lemma, see [5, 4.3.27]. The list of these groups, given
in Theorem 4 below, also follows from the classification of finite 2-transitive
effective groups; see, for example, the list of such groups with a simple socle
given in [2] and those with elementary abelian socle given in [12].

Theorem 4. Let Π be a 2-transitive permutation group of degree n + 1 such
that only the identity fixes more than two points. Then one of the following is
true:

1. Π is sharply 2-transitive (and so is isomorphic to the group of all per-
mutations x �→ xa + b, where a 
= 0, of a finite nearfield of order n + 1).

2. Π is isomorphic to an affine semilinear group AΓL(1, n + 1) where n =
2q − 1 and q is a prime.

3. Π contains PSL(2, n) as a normal subgroup of index at most 2.
4. Π is isomorphic to a Suzuki group Sz(22r+1) where n = 22(2r+1) ≥ 64.
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Note that in the first two cases n + 1 is a prime power and in the latter two
cases n is a prime power. Also the first two cases are the only ones where Π
contains a regular normal subgroup.

Remark 2. When applying the above Theorem to finite Minkowski planes we
are interested in the case where n, the order of the plane, is odd. In case 1 of
Theorem 4 the degree n+1 then is a power of 2. Furthermore, either n is not a
prime power or n is a Mersenne prime n = 2k−1 where k necessarily is a prime,
compare [19, Lemma 19.3]. From the classification of finite nearfields; see [6]
and [31], one then sees that the nearfield is regular and, in fact, a field. Hence
the 2-transitive group Π is isomorphic to the affine linear group AGL(1, n+1)
in this case.

Proposition 2. Let M be a finite Minkowski plane whose automorphism group
is G-transitive for each G ∈ Gi. If the group Δ generated by all G-translations
for G ∈ Gi is non-solvable, then the order of M is a prime power q and M is
isomorphic to a plane M(q, α).

Proof. A miquelian Minkowski plane of order q is isomorphic to M(q, id).
Hence the proposition is true for finite Minkowski planes of even order. Let
M be a finite Minkowski plane of odd order n and assume that the automor-
phism group of M is G-transitive for each G ∈ G2. We consider the group Δ
generated by all G-translations for G ∈ G2. From Lemma 1 we know that Δ
is contained in the kernel T1 and that Δ acts 2-transitively on each genera-
tor in G1 such that the stabilizer of three points on a generator in G1 is the
identity.
By Theorem 4 and because n is odd and Δ is non-solvable we see that Δ
contains a subroup Σ isomorphic to PSL(2, n). In particular, n must be a
power of an odd prime. Moreover, Σ has two orbits on C.
We introduce coordinates in M such that the automorphisms in Σ are given
by (x, y) �→ (x, σ(y)) where σ ∈ PSL(2, n), and such that the diagonal D =
{(x, x) | x ∈ F} is a circle where F = Fn is the Galois field of order n. Then
the graphs

Cσ = {(x, σ(x)) | x ∈ F}
of members σ in PSL(2, n) all describe circles in M. The other orbit of Σ
comes from a circle Cf = {(x, f(x)) | x ∈ F} where without loss of generality
we may assume that f is a permutation of F that fixes ∞ and 0. The circles
in this orbit are then of the form

Cσf = {(x, σ(f(x))) | x ∈ F}
where σ ∈ PSL(2, n).
Since n is odd, the set F(2) of the non-zero squares is a subgroup of the multi-
plicative group F\{0} of index 2, that is, F is a half-ordered field in the sense
of [25]. For a ∈ F\{0} we write a > 0 if a ∈ F

(2) and a < 0 otherwise. Fur-
thermore, PSL(2, n) consists of order-preserving permutations of F, that is,
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in the notation from [25] one has for all pairwise distinct x1, x2, x3 ∈ F that
ε(σ(x1), σ(x2), σ(x3))ε(x1, x2, x3)−1 > 0 where

ε(x1, x2, x3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x1 − x2)(x2 − x3)(x3 − x1), if x1, x2, x3 
= ∞
x3 − x2, if x1 = ∞
x1 − x3, if x2 = ∞
x2 − x1, if x3 = ∞

.

The circles Cσ are the same as in the miquelian Minkowski plane M(n, id) of
order n. In this miquelian plane one has that positive triples of points, that is,
points (xi, yi), i = 1, 2, 3, such that ε(y1, y2, y3)ε(x1, x2, x3)−1 > 0, are on cir-
cles described by permutations in PSL(2, n) and negative triples of points, that
is, points (xi, yi), i = 1, 2, 3, such that ε(y1, y2, y3)ε(x1, x2, x3)−1 < 0, are on
circles described by permutations in PGL(2, n)\PSL(2, n). Hence the circles Cσ

cover all positive triples of points, and the circles Cσf must therefore cover all
negative triples of points (xi, yi). In particular, all triples of points (xi, f(xi))
of the circle Cf are negative. Hence f is order-reversing. But then M is iso-
morphic to a Minkowski plane M(F, σ0f, id) in the notation from [25] where
σ0 is a fixed element of PGL(2, n)\PSL(2, n). (In [25] only order-preserving
permutations where used to describe the Minkowski planes.) We choose σ0

such that it also fixes ∞ and 0. Then σ0f is an order-preserving permutation
which fixes ∞ and 0. By [3] such a permutation is an automorphismα of F.
Hence M is of the form M(n, α). �

Remark 3. The case where the group Δ is solvable leads to a Minkowski plane
of prime order or one whose order is not a prime power, compare Remark 2.

Theorem 5. Let M be a finite Minkowski plane whose automorphism group
contains a group of type D. If at least one derived affine plane of M is an
affine translation plane then M is isomorphic to a plane M(q, α).

Proof. By Heise’s result (Theorem 1.1) and Proposition 2 we only need to
consider the case of a finite Minkowski plane M of odd order n and assume that
the group Δ generated by all G-translations for G ∈ G2 is solvable. Theorem 4
then shows that n = 2m − 1 where m ≥ 2.
Since by assumption there is a point at which the derived affine plane of M
is an affine translation plane, the order n of M is a power of some prime r.
Hence n = re = 2m − 1 for some e ≥ 1. It is well known, see [19, Lemma 19.3],
that this equation implies e = 1 so that n = r is a Mersenne prime. In par-
ticular, the order of M is an odd prime. But a translation plane of prime
order is desarguesian; see [18, Theorem 1.13]. Therefore M is miquelian by
Theorem 1.2, that is, M ∼= M(n, id). �

Remark 4. In the above Theorem we do not assume that each translation of the
derived affine plane that is a translation plane is induced by an automorphism
of the Minkowski plane. Indeed, in the proof we only used the fact that a
translation plane has prime power order and that a translation plane of prime
order is desarguesian.
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If the Prime Power Conjecture for finite projective planes is true (see, for
example, [29] for a survey on the Prime Power Conjecture for projective planes
and various other geometries), the first step would be covered without the need
for translation planes. It is also a longstanding conjecture that a projective
plane of prime order is desarguesian. Hence, if these two conjectures are true,
then Theorem 5 can be strenghtened to the following. A finite Minkowski plane
whose automorphism group contains a group of type D is isomorphic to a plane
M(q, α). Moreover, this then implies that there is no finite Minkowski plane
of Klein–Kroll type D.

Corollary 1. Let M be a finite Minkowski plane whose automorphism group
contains a group of type E. Then M is isomorphic to a plane M(q, α).
In particular, there is no finite Minkowski plane of Klein–Kroll type E.

Proof. In type E the automorphism group of M is G-transitive for all G ∈ G2

and there also is a generator H ∈ G1 for which the automorphism group of M
is H-transitive. This implies that each derived affine plane at a point of H is
an affine translation plane; compare Remark 1. Thus the result follows from
Theorem 5 and Proposition 1. �
Corollary 2. A finite Minkowski plane is of Klein–Kroll type F if and only if
it is isomorphic to a plane M(q, α).

Remark 5. It remains open whether or not there are Minkowski planes of
Klein–Kroll type E. By Corollary 1 they have to be infinite. In [26, Corollary
4.3] it was shown that such a plane cannot be a topological, 2-dimensional,
compact Minkowski plane.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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