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Abstract. We continue the investigations of the Thomsen–Bachmann cor-
respondence between metric geometries and groups, which is often sum-
marized by the phrase ‘Geometry can be formulated in the group of mo-
tions’. In the first part (H. Struve and R. Struve in J Geom, 2019. https://
doi.org/10.1007/s00022-018-0465-8) of this paper it was shown that the
Thomsen–Bachmann correspondence can be precisely stated in a frame-
work of first-order logic. We now prove that the correspondence, which
was established by Thomsen and Bachmann for Euclidean and for plane
absolute geometry, holds also for Hjelmslev geometries, Cayley–Klein ge-
ometries, isotropic and equiform geometries, and that these geometries
and the theory of their group of motions are mutually faithfully inter-
pretable (and bi-interpretable, but not definitionally equivalent). Hence
a reflection-geometric axiomatization of a class of motion groups corre-
sponds to an elementary axiomatization of the underlying geometry and
provides with the calculus of reflections a powerful proof method.
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1. Introduction

We continue the investigations in [36] of the Thomsen–Bachmann correspon-
dence between metric geometries and groups, which is often summarized by
the phrase ‘Geometry can be formulated in the group of motions’.1

In [36] we introduced the terminology of model theory, which is necessary to
formulate our results, and defined the geometric notions of a symmetric space2

and of a reflection group. These results will be used without further ado.

1See [7, p. 129 and p. 134] or the preface to the first edition of [4] and [4, §2,4].
2Or Thomsen–Bachmann symmetric spaces to indicate that these structures do not coincide
with the so-called Riemannian symmetric spaces in differential geometry.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-019-0467-1&domain=pdf
http://orcid.org/0000-0001-6915-5623
https://doi.org/10.1007/s00022-018-0465-8
https://doi.org/10.1007/s00022-018-0465-8


14 Page 2 of 19 R. Struve and H. Struve J. Geom.

We then studied the relationship between symmetric spaces and reflection
groups and showed that the theory T ′ of reflection groups is a conservative
extension of the theory T of symmetric spaces (i.e., there is an interpreta-
tion δ of T in T ′ such that a sentence ϕ is a theorem of T if and only if
the interpretation of ϕ is a theorem of T ′; see [36, Theorem 3.14]). This re-
sult describes conceptually the fundamental idea of the Thomsen–Bachmann
correspondence, that the calculus of reflections provides a proof method for
geometric theorems.

The conservative extension T ′ of T induces a faithful translation from the
language of T to the language of T ′ (see [36, Theorem 3.15]). This theorem can
be regarded as a precise formulation of the phrase ‘geometry can be formulated
in the group of motions’.

The paper [36] closes with a vast generalization (see [36, Theorem 3.16]): The
Thomsen–Bachmann correspondence can be established not only for symmet-
ric spaces but also for any definitional extension of a symmetric space, en-
compassing much more than the Euclidean and the classical non-Euclidean
geometries.

In this article we will show that for a wide range of metric geometries an
even stronger correspondence holds. In Sect. 2 we study the correspondence
between plane absolute geometry and the associated motion groups (the so-
called Bachmann groups).3 We show that the theory of Bachmann groups and
the theory of symmetric spaces, which satisfy very basic axioms (essentially,
the existence and uniqueness of joining lines, the existence of perpendiculars,
the local transport of angles and segments, and a dimension axiom) are bi-
interpretable and hence mutually faithfully interpretable. In this sense they
are different representations of the same theory.

In Sect. 3 we study the generalization of plane absolute geometry where the
existence and uniqueness of perpendiculars hold, but not necessarily the ex-
istence and uniqueness of joining lines. These geometries and their groups of
motions are studied in Hjelmslev’s Allgemeine Kongruenzlehre [15]. We call
the groups AKL-groups and show that the theory of AKL-groups and the as-
sociated theory of symmetric spaces are bi-interpretable (see Theorem 3.1). In
this way the notion of a symmetric space allows an elementary axiomatization
of Hjelmslev geometries.

In Sect. 4 we prove analogous results for plane isotropic and equiform geome-
try and for Cayley–Klein geometries (see Theorem 4.1 and Theorem 4.3). An
axiomatization of their motion groups (see R. Struve [35]) leads in this way to
an elementary axiomatization of the associated geometries.

In Sect. 5 the results of this article are summarized: The Thomsen–Bachmann
correspondence between metric geometries and groups states that the theory

3This correspondence is studied by Bachmann [4, §2,3–§2,5] in the framework of second-order
logic, where motions are defined as bijections of the collection of all points and lines.
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of the group of motions is a conservative extension of the underlying geomet-
ric theory. For a wide range of metric geometries, including plane absolute
geometry, isotropic geometry, equiform geometry, Hjelmslev geometries, and
Cayley–Klein geometries an even stronger correspondence holds: the geometric
theory and the theory of their motion groups are sententially equivalent (and
bi-interpretable). In this sense they are different representations of the same
theory. This may be called the strong Thomsen–Bachmann correspondence.

Theorem 5.3 states a general criterion for bi-interpretability of a theory of
motion groups (formulated in the language of reflection groups) and the un-
derlying geometry (formulated in the language of symmetric spaces). For bi-
interpretability two conditions play an important role. The first condition
refers to a property of the group G (namely, every element of G can be repre-
sented as the product of not more than n elements of S∪P , for a fixed number
n). The second condition refers to the language in which axioms are formu-
lated (namely, if axioms are assumed in addition to the axioms of a reflection
group, then they are formulated in the language of reflection groups, restricted
to terms of the sorts S and P ). These conditions are satisfied by all Bachmann
groups, Hjelmslev groups and AKL groups and by the motion groups of the
Cayley–Klein geometries.

As a supplement to the strong Thomsen–Bachmann correspondence one may
ask whether bi-interpretability is the strongest relationship between the the-
ory of motion groups and the underlying elementary geometry or whether the
theories, which are bi-interpretable, are even definitionally equivalent. An ap-
plication of the method of Padoa allows us to prove that this is not the case.
Finally, the article closes with some remarks on the literature.

2. Plane absolute geometry

In this section we proof the following theorem:

Theorem 2.1. The theory of Bachmann groups and the theory of symmetric
spaces, which satisfy the following axioms, are bi-interpretable.

E1′. If a⊥b then there exists C with C |a, b.
E2′. If A |b then there exists c with c |A and c⊥b.
E3′. If a⊥b and a, b |C then Eσaσb = E�C .
E4′. For A,B there exists c with A,B |c.
E5′. If A,B |c, d then A = B or c = d.
E6′. If a, b, c |D then there exists d with �(b, c) ≡ �(a, d).
E7′. If A,B,C |d then there exists D with BC ≡ AD.
E8′. There exist a, b, C with a⊥b and C � a, b.

The axioms make the follwing statements: E1′ states that orthogonal lines
have a point of intersection. E2′ states that if A and b are incident then there
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exists a line through A which is perpendicular to b. Axiom E3′ states an
elementary relationship between the symmetry relations σ and �. Let a be a
line of symmetry of E and E′ and b a line of symmetry of E′ and E′′ and
C a common point of a and b. Then C is a center of symmetry of E and E′′

if a and b or orthogonal lines. This statement can be regarded as an upper
dimension axiom which limits the dimension of the symmetric space to two.
E4′ and E5′ state the existence and uniqueness of joining lines. E6′ states the
local transport of angles, i.e., every oriented angle can be laid off upon a given
line which passes through the vertex of the angle.4 E7′ is the dual axiom of
E6′ and states the local transport of segments (on a given line every oriented
segment can be laid off upon a given point of the line). According to E8′ there
exist two orthogonal lines a and b and a point C which is not incident with a
or b.

We denote the natural translations from LA to LB of E1′, E2′, . . . , E8′ by
E1, E2, . . . , E8. The axioms E1′, E2′, E4′, E5′ and E8′ coincide with their
natural translations, if the incidence relation and the orthogonality relation
are interpreted by the stroke-relation of LB. The translation of E3′ is the
statement “If a | b and a, b |C then Eab = EC” which is, by B6, equivalent to
the following statement:

E3. If a |b and a, b |C then abC = 1.

The axioms E6′ and E7′ correspond in LB to the following three-reflections
theorems:

E6. If a, b, c |D then there exists d with abc = d.
E7. If A,B,C |d then there exists D with ABC = D.

A Bachmann group (G,S, P ) is defined in [4, §3,2] as a group G which is
generated by a set S of involutions of G. This assumption cannot be formulated
in a first-order language but it can be substituted by the following statement
(since every element of G is representable as the product of two elements of
S ∪ P ; see [4, §3,7]):

E0. If α ∈ G then there are a, b with α = ab or A, b with α = Ab.

This allows us, to give a first-order axiomatization of Bachmann groups.

Theorem 2.2. The Bachmann groups are the reflection groups which satisfy
E0, . . . ,E8.

Proof. According to [4, §3,2] a triplet (G,S, P ) is a Bachmann group if G is a
group, which is generated by an invariant subset S of involutions of G, which
satisfies the axioms E4, E5, E6 and E8 and the following variant of E7:

(†) If a, b, c |d then there exists e with abc = e.

4Hilbert [13] assumes with axiom III.4 the global transport of angles. Hartshorne [12, §2.9]
calls Hilbert’s axiom a “transporter of angles” which acts as a substitute for Euclid’s con-

structions with a compass.
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under the assumption that P = I(S2) denotes the set of involutions of G which
can be represented as the product of two elements of S.5

If (G,S, P ) is a Bachmann group then (G,S, P ) is a reflection group and
satisfies E0–E8 according to well-known theorems (B1–B5 hold since G is a
group and since S and P are invariant subsets of involutions of G; B6 holds
according to [4, §3,7 Satz 19]; B7, B8 and B9 hold by [4, §3,11]; E0 holds
according to [4, §3,7]; E1 holds since P = I(S2); E2 holds according to [4, §3,4
Satz 4]; E3 is an immediate implication of [4, §3,4 Satz 1]; E4, E5 and E6 hold
since they are axioms of a Bachmann group; E7 holds by [4, §3,9 Satz 24]; E8
holds according to [4, §3,11]).

Now, conversely, let (G,S, P ) be a reflection group which satisfies E0–E8. Since
(G,S, P ) is a reflection group, G is a group, and S and P are invariant subsets
of involutions of G. According to E0 the group G is generated by S ∪ P . We
show P = I(S2). If a |b then, by E1, there exists C with C |a, b and according
to E3 it is ab = C and hence I(S2) ⊆ P . For a proof of P ⊆ I(S2) let A be an
arbitrary point. According to E8 and E4 there exists a line b through A and,
by E2, a line c with c | A and c | b. According to E3 it is A = bc and hence
P ⊆ I(S2).

We show that (G,S, P ) satisfies the axioms of a Bachmann group, i.e., E4, E5,
E6 and E8 and the statement (†), as a variant of E7. The axioms E4, E5, E6
and E8 hold according to our assumptions.

For a proof of (†) let a, b, c | d. Then ad, bd, cd ∈ P and ad, bd, cd | d. By E7
there exists E with ad · bd · cd = E and hence abc = Ed. If E �= d then E | d
and Ed ∈ S (since E ∈ I(S2) and E6 holds). Hence abc ∈ S and (†) holds.
Suppose E = d. Then abc = 1 and a | b | c and ab, bc, ca ∈ P and ab, bc, ca | d
(the assumption, for example, ab = d leads to a contradiction since ab = c,
but c | d implies c �= d). According to E7 it is ab · bc · ca ∈ P and 1 ∈ P .
This is a contradiction since P is a set of involutions. Hence E �= d and (†)
holds. �
Let (G,S, P ) be a Bachmann group. For a given number n one can introduce an
equivalence relation �n on the set {(α1, . . . , αk) : 1 ≤ k ≤ n and α1, . . . , αk ∈
S ∪ P} of k-tuples over S ∪ P by (α1, . . . , αk) �n (β1, . . . , βm) if α1 · · · αk =
β1 · · · βm. We denote the equivalence class of (α1, . . . , αk) by 〈α1, . . . , αk〉 or,
more precisely, by 〈α1, . . . , αk〉n.

In a Bachmann group every element of G is representable as the product
of not more than two elements of S ∪ P (see [4, §3,7]). Hence, for a given
number n ≥ 2, every element α ∈ G can be represented by 〈α1, . . . , αk〉 with
α1, . . . , αk ∈ S ∪ P and α1 · · · αk = α. The elements of P are represented
by the equivalence classes 〈A〉 with A ∈ P and the elements of S by the
equivalence classes 〈a〉 with a ∈ S. A product of elements of G corresponds in
this representation of G to the product of the associated equivalence classes

5The existence axiom D for Bachmann groups (see [4, §3,2]) is equivalent with E8 according
to Struve, H. [33, Chap. I, Proposition 11].
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〈α1 ···αk〉◦〈β1 ···βm〉 = 〈δ1 ···δj〉 with (α1 ···αk)·(β1 ···βm) = δ1 ···δj . Obviously,
the set of equivalence classes, endowed with this operation, is isomorphic to
(G,S, P ). Following the terminology of Button [9, Definition 5.2] we say that
(G,S, P ) is represented as a quotient structure of (G,S, P ). We formulate this
result as a theorem.

Theorem 2.3. A Bachmann group (G,S, P ) is isomorphic to the quotient struc-
ture of (G,S, P ) with respect to the equivalence relation �n on the set of k-
tuples over S ∪ P with 1 ≤ k ≤ n (for a given number n ≥ 2).

Proof of Theorem 2.1. The theory T of symmetric spaces, which satisfy the
axioms E1′–E8′, and the theory T ′ of Bachmann groups are bi-interpretable if
there exists an interpretation δ of T in T ′ and an interpretation ε of T ′ in T
such that M ∼= Mδε and N ∼= Nεδ (for all models M of T ′ and for all models
N of T ).

Let δ be the interpretation of LA in LB which is defined by the equations (3.1)
of [36], i.e., the elements of S are called ‘lines’ and the elements of P are called
‘points’ and a line b is a ‘line of symmetry’ with respect to points A and C if
Ab = C and a point B is a ‘center of symmetry’ of lines a and c if aB = c.
According to Theorem 3.14 and Theorem 3.16 of [36] the interpretation δ is
an interpretation of T in T ′.

For a definition of the interpretation ε of LB in LA we define (for a given
number n) an equivalence relation ≈n on the set {(α1, . . . , αk) : 1 ≤ k ≤ n
and α1, . . . , αk ∈ L ∪ P} of k-tuples over L ∪ P by (α1, . . . , αk) ≈n (β1, . . . ,
βm) if α1 · · · αk = β1 · · · βm where “·” denotes the product which is defined
by the equations (3.2)∗ of [36]. In other words, two ordered tuples of elements
of L ∪ P are considered as ‘equivalent’ if the compositions of the associated
relations σ, resp. �, operate identically on P. We denote the equivalence class
of (α1, . . . , αk) by [α1, . . . , αk].

Let ε be the interpretation of LB in LA where the elements of G are interpreted
by the equivalence classes of ≈2 and the elements of P by the equivalence
classes [A] with A ∈ P and the elements of S by the equivalence classes [a] with
a ∈ L and the group operation on G by the product [α1, . . . , αk]	[β1, . . . , βm] =
[δ1, . . . , δj ] with (α1 · · · αk) · (β1 · · · βm) = δ1 · · · δj .

According to Theorem 3.16 of [36], the theory T ′ is a conservative extension
of T . Hence a sentence ϕ, which is formulated in the language of symmetric
spaces, is a theorem of T , if the natural translation τ(ϕ) is a theorem of T ′.

Thus, Theorem 2.3 and Theorem 3.16 of [36] imply that ε is an interpretation
of T ′ in T , i.e., the axioms of a Bachmann group, given in Theorem 2.2, are
derivable from the axioms of T .

If M = (G,S, P ) is a model of T ′ then M ∼= Mδε since the set of lines and the
set of points of M are bijectively mapped onto the set of lines and the set of
points of Mδε, and since the group operations are preserved.
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If N = (L,P, σ, �) is a model of T then N ∼= Nεδ since the set of lines and the
set of points of N are bijectively mapped onto the set of lines and the set of
points of Nεδ, and since the symmetry relations σ and � are preserved.

Hence T and T ′ are bi-interpretable. �

3. Hjelmslev geometries

In plane absolute geometry any two points have a unique joining line. Hjelmslev
[14] admitted the existence of different lines which have several points—but not
all points—in common. This originated in his interest in “natural geometry”
where, as he pointed out, such lines occur.

In his “Allgemeine Kongruenzlehre” [15] he studies these geometries and their
group of motions, which we call AKL-groups. They are reflection groups
(G,S, P ) which satisfy the axiom system of a Bachmann group, but substitute
the existence and uniqueness of joining lines by the existence and uniqueness
of perpendiculars (see [15, 1. Mitteilung, p. 5]). More precisely, E4 and E5 are
replaced by

E9. For A, b there exists c with A, b |c.
E10. If A, b |c, d then A = b or c = d.

These axioms correspond in LA to the following statements

E9′. For A, b there exists c with A |c and b ⊥ c.
E10′. If A |c, d and b ⊥ c, d then π(A, b) or c = d.

With this definition of AKL-groups the following holds.

Theorem 3.1. The theory of AKL-groups and the theory of symmetric spaces,
which satisfy E1′,E2′,E3′,E6′,E7′,E8′,E9′,E10′ are bi-interpretable.

We will prove this theorem in the framework of Hjelmslev groups, a notion
which was introduced by Bachmann [3] (see also [6]), who was interested in
the natural generality of the calculus of reflections. For this reason he replaced
in the axiom system for Bachmann groups the existence and uniqueness of
joining lines (E4 and E5) by the existence and uniqueness of perpendiculars
(E9 and E10) and the existence axiom E8 by a slightly weaker axiom, which
states the existence of two orthogonal lines.

Every AKL-group is a Hjelmslev group, but the converse statement does not
hold, since a Hjelmslev group (G,S, P ) may contain two distinct lines a, b ∈ S
which are incident with the same points A ∈ P (i.e., A |a if and only if A | b;
this implies Aa = Ab = A for all A ∈ P with A |a), whereas Hjelmslev assumes
in [15, 1. Mitteilung, p. 5], that there is one and only one motion α ∈ G with
α �= 1, which leaves all points of a given line a fixed, i.e., with Aα = A for all
A ∈ P with A | a. For examples of Hjelmslev groups, which contain distinct
lines which carry the same points, we refer to Bachmann [3, §3.3] and [6,
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§14.6]. In a reflection group this phenomenon cannot occur, since axiom B8
holds, which states that for a, b with a �= b there exists C with C |a and C � b
(see [36, Sect. 3.2]).

Theorem 3.2. For a Hjelmslev group (G,S, P ) are equivalent:

(a) (G,S, P ) is a reflection group.
(b) (G,S, P ) satisfies B8 and E8.

Proof. (a) ⇒ (b): Let (G,S, P ) be a Hjelmslev group, which is a reflection
group. B8 is satisfied since (G,S, P ) is a reflection group. E8 is an immedi-
ate consequence of the existence axioms B7, B8 and B9 and the existence of
perpendiculars.

(b) ⇒ (a): Let (G,S, P ) be a Hjelmslev group, which satisfies B8 and E8. Ac-
cording to the definition of a Hjelmslev group the axioms B1–B5 of a reflection
group hold. By B8 two distinct lines are not incident with the same points.
Hence, if Aα = A for all A ∈ P then α = 1 (according to [6, Theorem 3.10 and
Theorem 9.30]). If bα = b for all b ∈ S then α ∈ Z(G) (since G is generated by
S) and since there exist three lines, which have neither a common point nor a
common line, it is α = 1 (by [6, Theorem 3.29]) and B6 holds. Axiom B7 is a
consequence of E8. Axiom B8 holds according to our assumptions. For a proof
of B9 let us assume that A and B are two distinct points with the property that
every line through A is incident with B. Since orthogonal lines e, f through A
have a unique point of intersection, it is A = B, which is a contradiction to our
assumption A �= B. Hence B9 holds and (G,S, P ) is a reflection group. �
Theorem 3.3. The AKL-groups are the Hjelmslev groups with B8 and E8.

Proof. If (G,S, P ) is an AKL-group then (G,S, P ) satisfies the variant of the
axiom system of Bachmann groups where E4 and E5 are substituted by E9
and E10. Hence (G,S, P ) is a Hjelmslev group with E8. Axiom B8 holds since
every AKL-group is a reflection group.

If, conversely, (G,S, P ) is a Hjelmslev group with B8 and E8, then (G,S, P )
is a reflection group (by Theorem 3.2) and hence a AKL-group. �
For a proof of Theorem 3.1 we proceed in the same steps as in the last section:
We give a first-order axiomatization of AKL-groups (see Theorem 3.4), show
that every AKL-group (G,S, P ) can be represented as a quotient structure of
(G,S, P ) (see Theorem 3.5), and prove Theorem 3.1.

Hjelmslev groups (G,S, P ) are defined in [6, §1.3] by an axiom system which
starts with the assumption that G is a group which is generated by a set S
of involutions of G. This cannot be formulated in a first-order language but
it can be substituted by the following statement (since every element of G is
representable as the product of three elements of S ∪ P ; see [6, §3.2]):
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E0’. If α ∈ G then there are a, b, c with α = abc or a,B, c with α = aBc.

This allows a first-order axiomatization of AKL-groups.

Theorem 3.4. The AKL groups are the reflection groups which satisfy E0’ and
E1–E3 and E6–E10.

Proof. The AKL-groups (G,S, P ) are the Hjelmslev groups with B8 and E8 (by
Theorem 3.3), which are reflection groups according to Theorem 3.2. Now the
proof of the theorem proceeds completely analogously to the proof of Theorem
2.2, if in that proof E0, E4, E5 are substituted by E0’, E9 and E10, respectively.

�
Theorem 3.5. An AKL-group (G,S, P ) can be represented as the quotient
structure of (G,S, P ) with respect to the equivalence relation �n on the set
of k-tuples over S ∪ P with 1 ≤ k ≤ n (for a given number n ≥ 3).

Proof. For a proof we can refer to the proof of Theorem 2.3, which is com-
pletely analogously, if the equivalence relation in that proof is replaced by the
equivalence relation of Theorem 3.5. �
Proof of Theorem 3.1. The AKL-groups (G,S, P ) are the Hjelmslev groups
with B8 and E8 (cp. Theorem 3.3), which are reflection groups according to
Theorem 3.2. Now the proof of the theorem proceeds completely analogously
to the proof of Theorem 2.1, if in that proof E0, E4, E5 are substituted by
E0’, E9 and E10, respectively. �

4. Cayley–Klein geometries

Cayley [10] and Klein [18] discovered that Euclidean and non-Euclidean ge-
ometries can be introduced as geometries living inside of a projective space
which is endowed with a projective metric. They recognized that from a pro-
jective point of view there are 3n (in the n-dimensional case) ‘autonomous’
geometries which are in no way inferior or subservient to the Euclidean one.
These geometries are commonly referred to as Cayley–Klein geometries (see
Yaglom [39], Giering [11] and H. Struve and R. Struve [34]).

A common axiomatic characterization of the group of motions of all plane
Cayley–Klein geometries6 over fields of characteristic �= 2 is given in R. Struve
[35]. To this end the notion of a Cayley–Klein group is introduced, which
generalizes the notion of a Bachmann group. The most important aspect is
that the principle of duality holds: the dual of a Cayley–Klein group (which is
obtained by interchanging ‘points’ and ‘lines’; see the precise definition below)
is a Cayley–Klein group, corresponding to the fact that the dual of a Cayley–
Klein geometry is a Cayley–Klein geometry.

Let C denote the axiom system for Cayley–Klein groups (see [35, §3.1]). The
group of motions of a plane Cayley–Klein geometry satisfies C and one of the

6For reasons of simplicity with the exception of the doubly-hyperbolic case.
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following axioms, which are expressed in the language L+
B (see Remark 3.17

of [36]):

I. For A,B there exists c with A,B |c.
I∗. For a, b there exists C with a, b |C.

E. For A, b with A � b there is one and only one line through A which has no
common point with b.

E∗. For a,B with a � B there is one and only one point on a which has no
joining line with B.

The axioms make the following statements: According to I any two points have
a joining line. Dually, I∗ states that any two lines have a point of intersection.
E states that through a point A, which is not incident with a line b, there is
one and only one line which has no common point with b. This is the affine
parallel axiom (see, e.g., Hartshorne [12]). Axiom E∗ is the dual statement of
E, i.e., on a line a, which is not incident with a point B, there is one and only
one point which has no joining line with B.

Theorem 4.1. The Cayley–Klein groups (G,S, P ), which satisfy one of the ax-
ioms I, I∗,E or E∗, are reflection groups and every element of G is representable
as the product of not more than six elements of S ∪ P .

For a proof of this theorem we recall that a Cayley–Klein group is defined by
the following axiom system K which consists of the Basic Assumption (that G
is a group and S and P invariant subsets of involutions of G which generate
G) and the following axioms

K0. If a |b then ab ∈ P and if A |B then AB ∈ S.
K1. For every pair (A, b) there exists (a,B) with a |A and B |b and Aa = bB

and if A �= b then (a,B) is unique.
K2. If A,B |c, d then A = B or c = d.
K3. If A,B,C |d then ABC ∈ P and if a, b, c |D then abc ∈ S.
K4. If A |a and B |b and C |c and Aa = Bb = Cc then ABC ∈P and abc∈S.
K5. There exists a quadrangle.

The axioms make the following statements (in the language L+
B ; see Re-

mark 3.17 of [36]): Axiom K0 states that the product of two orthogonal line-
reflections is a point-reflection and that the dual statement holds also. Axiom
K1 states the existence and uniqueness of parallel flags (which generalizes the
existence and uniqueness of perpendiculars). K2 is the axiom E5 of Bachmann
groups and states the uniqueness of joining lines. K3 is the conjunction of
the three-reflections axioms E6 and E7 of Bachmann groups. K4 is a three-
reflections axiom for parallel flags. According to K5 there exists a quadrangle.

If (G,S, P ) is a Cayley–Klein group, then we get by interchanging points and
lines again a Cayley–Klein group (G,S′, P ′) with S′ = P and P ′ = S which
we call the dual Cayley–Klein group.
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Proof of Theorem 4.1. Let (G,S, P ) be a Cayley–Klein group. We note that
every line (resp. point) of a Cayley–Klein group is incident with at least two
points (resp. lines) according to K5 and K1. For a proof of the theorem we
consider three cases.

If there exist a, b with a | b then P = I(S2) and (G,S, P ) satisfies the axioms
of a Hjelmslev group (since K1 and K2 imply the existence and uniqueness of
perpendiculars, and K3 the three-reflections theorems E6 and E7). Moreover,
E8 and B8 hold according to K5 and K2. Hence (G,S, P ) is a reflection group
(see Theorem 3.2). According to [6, §3.2] it is G = (S ∪ P )3.

Dually, if there exist A,B with A�B then in the dual Cayley–Klein group
(G,S′, P ′) with S′ = P and P ′ = S there exist a, b ∈ S′ with a | b. Hence
(G,S′, P ′) is a reflection group and G = (S′ ∪P ′)3. This implies G = (S ∪P )3.
Since in the theory of reflection groups the principle of duality holds, (G,S, P )
is a reflection group.

Now, let us assume that there are no a, b ∈ S with a |b and no A,B ∈ P with
A�B. In this case (G,S, P ) does not satisfy I or I∗, since the Cayley–Klein
groups with axiom I (resp. I∗) are Bachmann groups (which contain a, b ∈ S
with a | b) resp. dual Bachmann groups (which contain A,B ∈ P with A�B;
see [35, §4 and §5]).

Hence we can assume that (G,S, P ) satisfies E∗ (if E is satisfied, then the
dual Cayley–Klein group satisfies E∗). Let J be the set of involutions of S · P
and S∗ = S ∪ J . Then (G,S∗, P ) satisfies the axioms of a Hjelmslev group,
according to [35, Theorem 7.7].7 By [6, §3.2 Satz 3.2] it is G = (S∗ ∪ P )3 ⊆
(S ∪ J ∪ P )3 ⊆ (S ∪ P )6 and every element of G representable as the product
of not more than six elements of S ∪ P .

It remains to show that (G,S, P ) is a reflection group. Since (G,S, P ) is a
Cayley–Klein group, S and P are invariant subsets of involutions of a group
G, which is generated by S ∪P . Hence the axioms B1–B5 of a reflection group
are satisfied. B7 is a consequence of K5. Axiom B8 and B9 hold according to
K2 and since every line (resp. point) of a Cayley–Klein group is incident with
at least two points (resp. lines).

For a proof of B6 we recall that (G,S∗, P ) is a Hjelmslev group. Let Aα = A
for all A ∈ P . For every line e ∈ S the elements e, eα are incident with the
same elements of P (according to [6, Theorem 3.10 and §9.5]). This implies
e = eα (by K2) for all e ∈ S, and α ∈ Z(G) (since G is generated by S ∪ P )
and α = 1 (by [6, Theorem 3.29]). If, dually, aα = a for all a ∈ S then Eα = E
for all E ∈ P (since every point E is the unique point of intersection of two
lines e, f ∈ S according to K1 and K5). �
Theorem 4.2. A Cayley–Klein group (G,S, P ), which satisfies one of the ax-
ioms I, I∗,E,E∗ is isomorphic to the quotient structure of (G,S, P ) with respect

7In [35, Theorem 7.7] it is assumed that the given Cayley–Klein group satisfies E and E∗,
but for the proof of the axioms of a Hjelmslev group—which are denoted in that proof by
G0, G1, G2, G5 and G6—the Euclidean parallel axiom E is not used.
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to the equivalence relation �n on the set of k-tuples over S ∪P with 1 ≤ k ≤ n
(for a given number n ≥ 6).

Proof. Let (G,S, P ) be a Cayley–Klein group, which satisfies one of the axioms
I, I∗, E or E∗. Then G ⊆ (S ∪ P )6 according to Theorem 4.1. Hence for
a proof of Theorem 4.2 we can refer to the proof of Theorem 2.3, which is
completely analogously, if the equivalence relation in that proof is replaced by
the equivalence relation of Theorem 4.2. �
Theorem 4.3. The theory of Cayley–Klein groups, which satisfy one of the
axioms I, I∗, E, E∗, and the theory of symmetric spaces, which satisfy one of
these axioms and the following ones, are bi-interpretable.

C1. If a⊥b then there exists C with C |a, b.
C2. If A�B then there exists c with c |A,B.
C3. If a⊥b and a, b |C then Eσaσb = E�C .
C4. If A�B and A,B |c then e�A�B = eσc.
C5. To (A, b) there exists (a,B) with a |A and B | b and (A, a) ‖ (b,B), and

if A �= b then (a,B) is unique.
C6. If A,B |c, d then A = B or c = d.
C7. If a, b, c |D then there exists d with �(b, c) ≡ �(a, d).
C8. If A,B,C |d then there exists D with BC ≡ AD.
C9. If (A, a) ‖ (B, b) ‖ (C, c) then there exists (D, d) with (D, d) ‖ (A, a) and

BC ≡ AD and bc ≡ ad.
C10. There exists a quadrangle.

The axioms make the following statements: C1 states that orthogonal lines
have a point of intersection. C2 states that polar points have a joining line.
C3 is an upper dimension axiom which limits the dimension of the symmetric
space to two. If a is a line of symmetry of E and E′ and b a line of symmetry
of E′ and E′′ and C a common point of a and b then C is a center of symmetry
of E and E′′ if a and b are orthogonal lines. C4 is the dual statement of C3.
Axiom C5 states that to a point A and a line b there exist a line a and a
point B such that (A, a) and (b,B) are parallel flags and if A �= b then a and
B are unique. C6 states the uniqueness of joining lines. C7 states the local
transport of angles, i.e., every oriented angle can be laid off upon a given line
which passes through the vertex of the angle. C8 states the local transport of
segments. C9 states that a class F of parallel flags contains with three flags
(A, a), (B, b) and (C, c) a fourth flag (D, d) with BC ≡ AD and bc ≡ ad.
According to C10 there exists a quadrangle.

Proof of Theorem 4.3. A Cayley–Klein group, which satisfies one of the axioms
I, I∗,E or E∗ is a reflection group (according to Theorem 4.1) and can be
represented as a quotient structure as shown in Theorem 4.2. Now the proof of
Theorem 4.3 proceeds completely analogously to the proof of Theorem 2.1. �
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Table 1 An axiomatic characterization of Cayley–Klein geometries

I∗ E H

I elliptic plane Euclidean plane hyperbolic plane
E∗ co-Euclidean plane Galilean plane co-Minkowskian plane
H∗ cohyperbolic plane Minkowskian plane –

The axiomatic characterization of the group of motions of the eight Cayley–
Klein geometries is summarized in Table 1 (see [35]).

The axiom H is formulated in the language L+
B and states that through a point

A, which is not incident with a line b, there are two and only two lines which
have neither a common point nor a common line with b. The axiom H∗ is the
dual statement of H.

H. For A, b with A � b there are exactly two lines through A which have
neither a common point nor a common perpendicular with b.

H∗. For a,B with a � B there are exactly two points on a, which are neither
incident with a line through B, nor polar to a point which is polar to B.

The Cayley–Klein groups with axiom I are the Bachmann groups, i.e., the
group of motions of plane absolute geometry. The Cayley–Klein groups with
axiom I∗ are the dual Bachmann groups. The Cayley–Klein groups with axiom
E are the group of motions of equiform geometry. The Cayley–Klein groups
with axiom E∗ are the group of motions of isotropic geometry (see [35]).

The results of this section are summarized by the following theorem:

Theorem 4.4. The theories of the group of motions of plane absolute geome-
try, dual absolute geometry, equiform geometry, isotropic geometry and of the
Cayley–Klein geometries of Table 1 are bi-interpretable with the theories of
their associated symmetric spaces.

Proof. This is an immediate consequence of Theorem 4.3. �
Particularly, the axiomatizations of the group of motions lead to elementary
axiomatizations of the underlying geometries.

5. The Thomsen–Bachmann correspondence

The Thomsen–Bachmann correspondence between geometries and their group
of motions states—in the terminology of first-order logic—that the theory of
the group of motions is a conservative extension of the underlying geometric
theory (see Sect. 3.3 of [36]). The Thomsen–Bachmann correspondence cap-
tures in this way the fundamental idea that the calculus of reflections provides
a proof method for geometric theorems.
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For a wide range of metric geometries, including plane absolute geometry,
isotropic geometry, equiform geometry, Hjelmslev geometries, and Cayley–
Klein geometries an even stronger correspondence holds: the geometric the-
ory and the theory of their motion groups are sententially equivalent (and
bi-interpretable; see Sects. 2–4). In this sense they are different representa-
tions of the same theory. This may be called the strong Thomsen–Bachmann
correspondence.

For bi-interpretability apparently two conditions play an important role (let n
denote a fixed natural number):

Gn. For α∈G there exist α1, . . . , αm ∈ S ∪ P with α = α1 · · · αm and m ≤ n.

According to this condition every element of G can be represented as a product
of not more than n elements of S ∪P (for a fixed number n). This condition is
well-known from Cartan–Dieudonne theorems (see, e.g., Snapper and Troyer
[30]). We will use this condition as an axiom which we denote by Gn (the
notation shall indicate that the elements of G can be represented by k-tuples
of elements of S ∪ P with k ≤ n).

Definition 5.1. A reflection group (G,S, P ) is of rank n (or n-reflective)8 if
axiom Gn is satisfied for a fixed number n.

The second condition, which plays an important role for bi-interpretability,
refers to the language in which the axioms are formulated.

(2) Axioms, which are assumed in addition to the Basic Assumption of a
reflection group (B1—B5), are formulated in the language LB, restricted
to terms of the sorts S and P .9

Condition (2) is satisfied by all Bachmann groups, Hjelmslev groups, AKL
groups and Cayley–Klein groups (see Sects. 2–4).

On the other hand condition (2) is in no way necessary. So, for example, finite
Hjelmslev groups (G,S, P ) can be characterized by properties with respect to
mobility and rigidity, such as ‘To any two points there exists a motion which
maps one point onto the other one’ or ‘The centralizer of a flag is a Klein
four-group’ (see Bachmann and Knüppel [5] and Bachmann [6, §6]).

We now show that the strong Thomsen–Bachmann correspondence holds for
metric geometries of a wide generality.

Theorem 5.2. Let B ∪ {P1, . . . ,Pn} be an axiom system which allows the
derivation of Gn (for a natural number n) and let P1, . . . ,Pn be formulated in
the laguage LB, restricted to terms of the sorts S and P .

8Cp. Bachmann [4, §3,7] who calls—following H. Wiener—a group “zweispiegelig” if every
group element is the product of two involutions; please note that there is no first-order
definition for reflection groups of finite rank.
9Please note that this is not a reduction of the language LB.
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Then there exists an interpretation ε of LB in LA such that the theory of
B ∪ {P1, . . . ,Pn} and the theory of A ∪ {Q1, . . . ,Qn} are bi-interpretable,
where Qi denotes the interpretation of Pi by ε.

Proof. For a proof we can refer to the proof of Theorem 2.1 which is completely
analogously. �
In other words, starting from the geometry of involutory group elements [4,
§20,2] with a group G and two invariant subsets S and P of involutions of G,
the following theorem holds.

Theorem 5.3. Let D be an axiom system, which consists of the Basic Assump-
tion (G is a group and S and P are two invariant subsets of involutions of G),
and additional axioms D1, . . . ,Dn.

If the following conditions hold, then there exists a natural translation of D
into an elementary axiom system E, whose theory is sententially equivalent
(and bi-interpretable) with the theory of D:

(1) The axioms D1, . . . ,Dn are formulated in the language LB, restricted to
terms of the sorts S and P .

(2) The axioms allow the derivation of the following statements (where n
denotes a fixed natural number):
(a) Every α ∈ G is a product of not more than n elements of S ∪ P .
(b) G can be faithfully represented as a group of permutations of P , and,

dually, as a group of permutations of S.
(c) Every line (point) is determined by the set of incident points (lines).
(d) There are at least two distinct lines and two distinct points.

Proof. According to the Basic Assumption, the axioms B1–B5 of a reflection
group hold. According to the conditions (2), (a), (b) and (c) the axioms B6–
B9 are satisfied. Hence (G,S, P ) is a reflection group which is of rank n (by
condition (2), (a)). The theorem is a now a consequence of Theorem 5.2. �
The theorem shows that reflection-geometric axiom systems, which are at first
sight axiomatizations of motion groups, also provide elementary axiomatiza-
tions of the underlying geometric structures and hence are much more than
only a technical tool.

One may ask whether bi-interpretability is the strongest relationship between
an elementary geometric theory and the theory of the associated motion groups
or whether the theories of Theorems 5.2 and 5.3 are even definitionally equiv-
alent (see Remark 2.1 of [36]). Definitional equivalence explicates the thought
that two theories are mere ‘notational variants’ of each other or synonymous
(in de Bouvère’s terminology [8]). So, for example, the theory of lattices can
be developed with the ≤-relation as primitive notion or by taking the meet
and join operations as primitives. Definitionally equivalent theories are always
bi-interpretable, but not vice versa (see Button [9, §5.5]).

By an application of the method of Padoa (see Tarski [37]) we will prove that
the theories of Theorem 5.2 (resp. Theorem 5.3) are bi-interpretable, but not
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definitionally equivalent. To this end let M = (G,S, P ) be the algebraic model
of the group of motions of the real Euclidean plane with the orthogonality
constant k = 1, which is given in [4, §13,1] by (3 × 3)—matrices. We show
that in this model two distinct symmetry relations σ and σ′ can be defined on
P × S × P .

Let A denote the real affine coordinate plane with the set P of points and
the set L of lines. Points are pairs (x, y) of real numbers and lines are classes
of proportional triplets [u, v, w] of real numbers with (u, v) �= (0, 0) (see [4,
§13,1]). We show in a first step that in A two distinct symmetry relations σ
and σ′ can be defined on P × L × P.

The group M of motions induces on P × L × P a symmetry relation σ (in
the standard way, i.e., if A is an element of P and b an element of L then
σ(A,b,A′) if A is mapped onto A′ by the reflection in b, which is given by the
associated (3×3)—matrix of S; see [4, §13,1]). Dually, M induces on L×P ×L
a symmetry relation �.

We now define a symmetry relation σ′ on P × L × P which is distinct from σ.
To this end let M′ = (G′, S′, P ′) be the algebraic model of (3 × 3)—matrices
of the group of motions of the real Euclidean plane with the orthogonality
constant k = 2. The Bachmann groups M and M′ are isomorphic (since the
quotient of k and k′ is a square).

M′ induces on P × L × P a symmetry relation σ′ (in the same way as M
induces σ) and, dually, on L × P × L a symmetry relation �′. We show that
σ �= σ′. A point (x, y) ∈ P is mapped by the reflection in a line [u, v, w] ∈ L
onto a point (x∗, y∗) which satisfies the equation (8) of [4, §13,1]. Hence the
point (0, 0) is mapped by the reflection in the line [1, 1,−1] onto the point
(1, 1), if the orthogonality constant k = 1. If k = 2 then (0, 0) is mapped onto
the point (43 , 2

3 ). Hence σ �= σ′. The relations � and �′ are identical (see [4,
§13,1]).

The structures (L,P, σ, �) and (L,P, σ′, �′) are symmetric spaces (according
to Theorem 2.1). Since the elements of L and P can be identified with the
elements of S resp. P (by the equation (11) resp. (12) in [4, §13,1]) this shows
that M allows expansions (G,S, P, σ, �) and (G,S, P, σ′, �′) with distinct sym-
metry relations σ and σ′. According to Padoa’s method this proves that the
symmetry relation σ is not definable in M.

M is a model of a Bachmann group and hence a model of a reflection group,
of a Hjelmslev group and of a Cayley–Klein group. Thus our non-definability
result holds for the corresponding theories (see Sects. 2–4 and [36]).

We close this article with some remarks on the literature. The relationship
between elementary geometries and their group of motions was of interest
for many geometers as, for example, Thomsen [38], Schmidt [28], Hjelmslev
[15], Bachmann [1], Klingenberg [19], Schütte [29], Sperner [32], Karzel [17],
Lingenberg [20] and Pambuccian [24]. For historical and bibliographic notes
we refer to Bachmann [4, §2,3] and Karzel and Kroll [16].
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Most geometers used the reflection-geometric approach as a “Zeichensprache”
(in the words of Hjelmslev [15, 1. Mitt., §2]) by which points and lines are
‘identified’ with reflections in points and lines. Thomsen studies this relation-
ship more explicitly in the case of Euclidean geometry and Bachmann general-
izes Thomsen’s approach to plane absolute geometry. He proves the Thomsen–
Bachmann correspondence (in the framework of second-order logic) for ‘metric
planes’ which satisfy the axioms of the existence and uniqueness of joining lines
and perpendiculars, and a ‘reflection axiom’, which states that to every line
there exists a reflection in that line (see [2] and [4, §2,3 ff]). It is worthy to note
that he shows in [4, p. 40] that the class of models of metric planes and the
associated class of motion groups are—in modern terminology—second-order
bi-interpretable.

First-order axiomatizations of Bachmann groups and the associated planes
of absolute geometry are given, e.g., by Pambuccian [22–26], Müller [21] and
Sörensen [31]. The relationship between groups and plane geometry is studied,
particularly, by Pambuccian [24] and Prusińska and Szczerba [27].

Our results show, in addition, that (1) the Thomsen–Bachmann correspon-
dence can be precisely stated in the framework of first-order logic, (2) the
correspondence is not restricted to plane absolute geometry but holds also
for Hjelmslev geometries, Cayley–Klein geometries, isotropic geometries and
equiform geometries, and (3) the group of motions and the underlying geome-
tries are sententially equivalent, which is a much stronger notion than mutually
interpretability which is commonly referred to in the literature (see Button et.
al. [9, §5.5]).

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Bachmann, F.: Zur Begründung der Geometrie aus dem Spiegelungsbegriff. Math.
Ann. 123, 341–344 (1951)

[2] Bachmann, F.: Axiomatischer Aufbau der ebenen absoluten Geometrie. In:
Henkin, L., Suppes, P., Tarski, A. (eds.) The Axiomatic Method, pp. 114–126.
North-Holland, Amsterdam (1959)

[3] Bachmann, F.: Hjelmslev planes. Atti del Convegno di Geometria Combinatoria
e sue Applcazioni, Perugia, 43–56 (1970)

[4] Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn.
Springer, Heidelberg (1973)
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[27] Prusińska, A., Szczerba, L.: Geometry as an extension of the group theory. Log.
Log. Philos. 10, 131–135 (2002)

[28] Schmidt, A.: Die Dualität von Inzidenz und Senkrechtstehen in der absoluten
Geometrie. Math. Ann. 118, 609–625 (1943)
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