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Abstract. We study in this two part paper the Thomsen–Bachmann cor-
respondence between metric geometries and groups which is often sum-
marized by the phrase ‘Geometry can be formulated in the group of mo-
tions’. We show that (1) the correspondence can be precisely stated in a
framework of first-order logic, (2) the correspondence, which was estab-
lished by Thomsen and Bachmann for Euclidean and for plane absolute
geometry, holds also for Hjelmslev geometries, Cayley–Klein geometries,
isotropic and equiform geometries, and (3) these geometries and the the-
ory of their group of motions are not only mutually interpretable but also
bi-interpretable. Hence a reflection-geometric axiomatization of a class of
motion groups corresponds to an elementary axiomatization of the un-
derlying geometry and provides with the calculus of reflections a powerful
proof method. In the first part of the paper we introduce the fundamen-
tal logical and geometric notions and show that the Thomsen–Bachmann
correspondence can be rephrased in first-order logic by ‘The theory of the
group of motions is a conservative extension of the underlying geometric
theory’.
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1. Introduction

There are deep connections between groups and geometries. Klein [17] studies
the relationship between geometry and transformation groups in his Erlangen
Programme (published 1872). He describes his point of view by

Let there be given a manifold and in it a group of transformations;
it is our task to investigate those properties of a figure belonging
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to the manifold that are not changed by the transformations of the
group.1

and proposes a unification of all geometries based on the idea that geometry
should be thought of as a transformation group rather than a space (in the
words of A’Campo and Papadopoulos [1]).

Hilbert [13] and Hjelmslev [14] were the first geometers who used reflections
in points and lines, and the associated group-theoretical calculus as a math-
ematical tool for a Begründung (and algebraic characterization) of Euclidean
and hyperbolic geometry.

Thomsen [34] and Bachmann [2] carried this idea a step further. They studied
the relationship between geometries and their groups of motions and discov-
ered that in classical Euclidean and non-Euclidean geometries points and lines
correspond to elements of the group of motions (the reflections in points and
lines) and geometric relations (such as incidence and orthogonality) to group-
theoretical relations. This Thomsen–Bachmann correspondence is summarized
by Bachmann as follows: “The group of motions contains an image of the prop-
erties of the plane” and “Geometry can be formulated in the group of motions”
(see [8, p. 129 and p. 134]).2

In [4, §2,3–§2,5] it is shown that the Thomsen–Bachmann correspondence holds
if in the underlying geometric structure the existence and uniqueness of joining
lines and perpendiculars hold and if to every line there exists a reflection in
that line (which is, under these assumptions, uniquely determined).

The Thomsen–Bachmann correspondence is open to questions of the following
kind:

(a) What is the natural generality of the correspondence? The Thomsen–
Bachmann correspondence holds, for example, in all real n-dimensional
Cayley–Klein geometries—in spite of the fact that two distinct points
may have several or no joining line at all (see H. Struve and R. Struve
[29]).3

(b) What is the range of the correspondence? Which geometrical relations,
for example, correspond to group-theoretical equations and vice versa?

(c) What is the precise meaning of the correspondence? Since the group of
motions and the underlying geometric structure are formulated in differ-
ent languages, they are not isomorphic structures. In what sense are they
“different representations of the same theory” (as Lingenberg noticed in
the preface of [18])?

(d) Group-theoretical axiom systems are—at first sight—axiomatizations of
motion groups. Do they also provide elementary axiomatizations4 of the

1Translation by Behnke et al. [8, p. 462].
2See also the preface to the first edition of [4] and [4, §2,4].
3Bachmann raised this question in [3]: “I am not so much interested in natural geometry,
but I am interested in the natural generality of the calculus of reflections”.
4In the sense of Tarski’s article What is elementary geometry? [33].
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underlying geometric structures (first-order axiomatizations of the associ-
ated ‘group-planes’)? Or are group-theoretical characterizations “mainly
a technical tool, since elementary axiomatizations . . . will not assume line-
reflections as undefined notions” (see Schnabel [26, p. 183])?

For answering questions of this kind one needs a language and a logic to deduce
consequences. As Pambuccian [21] points out, based on the work of Skolem,
Hilbert and Ackermann, Gödel, and Tarski, a consensus had been reached
by the end of the first half of the 20th century that “if we are interested in
producing an axiomatic system, we can only use first-order logic” (in Skolem’s
words, cp. [12, p. 472]). Following this approach we use in this article only
first-order logic.

In Sect. 2 the terminology of model theory is introduced, which is necessary
to describe the relationship between theories. Theories are logically equiva-
lent if they have the same logical consequences (and hence the same set of
models). This presupposes that they are formulated in the same language.
Geometric theories T and T ′ are often formulated in different languages. In
this case there may be an interpretation of T in T ′. So, for example, hyper-
bolic geometry is interpretable in Euclidean geometry by the model of Klein.
This interpretation is not faithful, since not every hyperbolic theorem is a Eu-
clidean theorem. Theories in different languages describe the ‘same’ theory,
if they are mutually faithfully interpretable, which is called sentential equiva-
lence.

From a semantical point of view an interpretation of a theory T in a theory
T ′ induces a functor F from the category of models of T ′ into the category
of models of T , which associates, in the above example, to every model M of
Euclidean geometry a model N of hyperbolic geometry (the Klein model).5

If T and T ′ are mutually interpretable and if the associated functors are
denoted by F and G then T and T ′ are bi-interpretable, if the composition of F
and G associates to every model N of T ′ a model NFG of T ′ which is isomorphic
to N, and to every model M of T a model MGF of T which is isomorphic to M.
Bi-interpretable theories are mutually faithfully interpretable, but the converse
does not hold.6

In Sect. 3.1 we define geometric structures which can be regarded as the most
general structures for which the Thomsen–Bachmann correspondence can be
established. They are expressed in a first-order language with points and lines
as undefined notions and a ternary symmetry relation σ(A, b, C) (to be inter-
preted as ‘b is a line of symmetry of the points A and C) and the dual relation

5For categorical aspects we refer to Visser [36].
6Analogously to the well-known fact that isomorphic models are elementarily equivalent but
not conversely (see Button et al. [10, p. 36] or Rothmaler [25, Prop. 6.1.3 and 8.1.1]).
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�(a,B, c). Essentially, the axioms state the symmetry, invariance7 and func-
tionality8 of the relations σ and �. We call these structures symmetric spaces.9

In these spaces the calculus of reflections is replaced by a calculus of relations
(see Tarski [32]).

In Sect. 3.2 the corresponding groups G are defined with two invariant subsets
S and P of involutory elements (to be interpreted as the sets of reflections
in lines and points) and, essentially, one additional assumption, that G can
be represented as a group of permutations of P resp. S. We call (G,S, P ) a
reflection group.

In Sect. 3.3 the relationship between symmetric spaces and reflection groups is
studied and shown that the theory T ′ of reflection groups is a conservative ex-
tension of the theory T of symmetric spaces (i.e., there is an interpretation δ of
T in T ′ such that a sentence ϕ is a theorem of T if and only if the interpretation
of ϕ is a theorem of T ′; see Theorem 3.14). This result describes conceptually
the fundamental idea of the Thomsen–Bachmann correspondence, that the
calculus of reflections provides a proof method for geometric theorems.

The conservative extension T ′ of T induces a faithful translation from the
language of T to the language of T ′ (see Theorem 3.15). This theorem can be
regarded as a precise formulation of the phrase ‘geometry can be formulated
in the group of motions’.

In Sect. 3.4 we study the translation of geometric notions, such as incidence,
orthogonality, segments, and angles, into the associated group-theoretical lan-
guage and establish a dictionary. Theorem 3.16 provides a wide generaliza-
tion: The Thomsen–Bachmann correspondence can be established not only
for symmetric spaces but also for any definitional extensions of a symmetric
space (defined with notions of the dictionary), as for example, Cayley–Klein
geometries and circle geometries (see Remark 3.13).

In the second part of this article [31] we will show that for a wide range of met-
ric geometries, including plane absolute geometry, isotropic geometry, equiform
geometry, Hjelmslev geometries, and Cayley–Klein geometries an even stronger
correspondence holds: the geometric theory and the theory of their motion
groups are sententially equivalent (and bi-interpretable). In this sense they are
different representations of the same theory. This may be called the strong
Thomsen–Bachmann correspondence.

2. Preliminaries

In the literature on model theory various notions are defined in various ways.
Our notation and terminology is that of Hodges [16], Pinter [23] and Button

7In the words of Schwan [27, § 3]: the mirror image of a symmetric object is symmetric.
8I.e., the ternary relations σ and � induce binary functions.
9Or Thomsen–Bachmann symmetric spaces to indicate that these structures do not coincide
with the so-called Riemannian symmetric spaces in differential geometry.
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and Walsh [10], with a few exceptions as indicated. For example, we shall
prefer to regard functions and constants as special relations and many-sorted
languages as one-sorted languages with unary sort predicates.

2.1. Syntax

A many-sorted first-order language L is given by a signature Σ which defines
the sort symbols, relation symbols, function symbols and constant symbols of
L. Since constant symbols can be regarded as special function symbols and
function symbols as special relation symbols, a signature Σ can be defined
as a pair 〈{σ1, . . . , σm}, {ρ1, . . . , ρn}〉 of a set of sort symbols σi and a set of
relation symbols ρk.

A many-sorted language can be converted into a one-sorted language by the
addition of domain predicate symbols, one for each sort, and a corresponding
modification of quantified formulas (see Monk [19] and Barrett and Halvorson
[7]). Hence we can assume that the sort symbols of a signature Σ are unary
relation symbols.

A theory T is a set of sentences which is closed under deduction,10 i.e., contains
with any set of sentences their consequences. A theory is (finitely) axiomati-
zable if there exists a finite set of sentences, called axioms, with the same
consequences as T . We denote the theory which is associated to an axiom
system A by TA and write T � φ if a sentence φ is derivable from T .

Theories can be formulated in different languages. Their relationship is most
easily stated in terms of interpretations. An interpretation δ of a language L
in a language L′ is a set of sentences (one for each relation ρ of L which is not
in L′) of the following form:

(∀x1, . . . , xn)[ρ(x1, . . . , xn) ↔ φ(x1, . . . , xn)] (2.1)

where φ is a formula of L′. The sentence (2.1), which is formulated in the
language L ∪ L′, is called an explicit definition of ρ.11

We call an interpretation δ sort-preserving if every sort of L is interpreted as
a sort of L′ and if distinct sorts of L are interpreted as distinct sorts of L′.12

An interpretation δ induces a mapping ϕ → ϕδ from formulas of L ∪ L′ to
formulas of L′ which associates to ϕ the formula ϕδ which is obtained from
ϕ by substituting the relations ρ of L with their defining formulas φ of L′

[according to (2.1)]. The restriction of this mapping to formulas of L is a
translation τδ from L to L′.

Let T be a theory of L and T ′ a theory of L′ and δ an interpretation of L
in L′. If T δ ⊆ T ′ then δ is an interpretation of T in T ′ and we say that T

10This conditions implies that a theory T corresponds to the class of models of T .
11For details with respect to associated admissibility conditions, which ensure the existence
of constants and the properties of functions, see [16] or [23].
12In other words, the set of sorts of L can be assumed as a subset of the set of sorts of L′.
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is interpretable in T ′, in symbols T � T ′. Theories T and T ′ are mutually
interpretable if T � T ′ and T ′ � T .

We call an interpretation δ of T in T ′ faithful or conservative if for every
sentence ϕ in T the following holds:

T � ϕ if and only if T ′ � ϕδ. (2.2)

If δ is a faithful interpretation of T in T ′ and ε a faithful interpretation of T ′

in T then the following holds (for all sentences ϕ of L and ψ of L′):

T � ϕ ↔ ϕδε and T ′ � ψ ↔ ψεδ. (2.3)

Two theories are called mutually faithfully interpretable if each faithfully in-
terprets the other.

These notions can be transferred from δ to the associated translation τδ. If
δ is an interpretation of T in T ′ then τδ is called a translation from T in
T ′ (which maps consequences of T into consequences of T ′). If δ is a faithful
interpretation then τδ is called a faithful translation.

2.2. Relationships between theories

Intuitively, T and T ′ are representations of the ‘same’ theory if they are theo-
ries about the same objects (sorts) and if they have the same consequences.13

In order to state this informal notion precisely, let T and T ′ be theories which
are formulated in languages L resp. L′. We consider the cases L = L′ resp.
L � L′ resp. L � L′.

If L = L′ then T and T ′ represent the same theory if T = T ′, i.e., if T and
T ′ are logically equivalent.

If L 
= L′ and L ⊆ L′ then T and T ′ represent the same theory if they are
definitionally equivalent, i.e., if every symbol of L′ is explicitly definable in
T ′ in terms of L and if the definitional extensions of T and T ′ to L ∪ L′ are
logically equivalent (see Hodges [16]).14

If L � L′ then T and T ′ are representations of the ‘same’ theory if there
exists a faithful interpretation δ of T in T ′ and a faithful interpretation ε of
T ′ in T which are both sort-preserving. We call T and T ′ in this case mutually
faithfully interpretable (see Button et al. [10, §5.5]) or sententially equivalent.15

Remark 2.1. There exists a stronger (syntactical) criterion for the sameness
of theories with L � L′ (see Pinter [23]): Theories T and T ′ are called defini-
tionally equivalent with respect to δ and ε, in symbols T ≡δ,ε T ′, if there exists

13In the literature theories are considered as ‘equivalent’ with respect to different aspects,
such as provability, definability or the set of models (see, e.g., Barrett and Halvorson [6]).
14Hence a definitional extension of a theory consists of adding some new symbols together
with explicit definitions of them. Thus a definitional extension introduces only ‘abbrevia-
tions’ which can be eliminated at any time.
15Cp. Visser [35] who introduces the notion of sentential congruence.
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an interpretation δ of T in T ′ and an interpretation ε of T ′ in T with

T ∪ ε � T ′ ∪ δ and T ′ ∪ δ � T ∪ ε (2.4)

This, however, is a criterion with respect to definability. If one is interested
in aspects of provability—which are of main interest in the investigations of
the calculus of reflections (see footnote 3)—it seems appropriate to consider
theories as ‘equivalent’ if they are mutually faithfully interpretable.

Next, we want to introduce the notion of an extension of a theory. Intuitively,
a theory T ′, which is formulated in a language L′, is an extension of a theory
T in L if the objects of T are objects of T ′ and if the sentences of T are
sentences of T ′.

If L = L′ then T ′ is an extension of T if T ⊆ T ′.

If L 
= L′ and L ⊆ L′ then T ′ is an extension of T if T ⊆ T ′.

If L � L′ then T ′ is an extension of T , in symbols T � T ′, if there exists a
faithful and sort-preserving interpretation δ of T in T ′.

For theorems, which are given by axiom systems, we provide the following
criterium.

Theorem 2.2. Let A and B be axiom systems which are formulated in languages
L resp. L′. Then TB is a (conservative) extension of TA if and only if there
exists a interpretation δ of L in L′ with the following properties:

(1) The interpretation δ is sort-preserving.
(2) The relations of A are explicitly defined in B.
(3) A � ϕ if and only if B � ϕδ (for every sentence ϕ of TA).16

Proof. If TB is an extension of TA then there exists an interpretation δ of TA in
TB which satisfies the conditions (1), (2) and (3) according to our definitions.

For a proof of the converse statement let δ be an interpretation of the language
L in L′ which satisfies (1), (2) and (3). According to (1) δ is sort-preserving.
It remains to show that δ is an interpretation of the theory TA in TB, that is,
T δ

A ⊆ TB. This holds since A � ϕ implies B � ϕδ for every sentence ϕ of TA
according to (3). The interpretation δ is faithful by (3). �

2.3. Semantics

A Σ-structure A is an ‘interpretation’17 of the symbols of Σ (in the sense of
Chang and Keisler [11]) and assigns to every sort σ a non-empty set Uσ (the
universe of σ) and to every predicate ρ of arity σ1 × · · · × σm a subset of
Uσ1 × · · · × Uσm

.

16This implies that the axioms of A can be derived from the axioms of B if the undefined
notions of A are defined in terms of B.
17Please note that in model theory the notion of an ‘interpretation’ is used in different ways.
In Chang and Keisler [11] an interpretation of a language L associates to every relation of
L a relation of the underlying universe.
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Structures A and B of the same signature are isomorphic, in symbols A ∼= B,
if there exists a family of bijections of the universes of A onto the universes of
B which preserve the predicate relations.

A and B are elementarily equivalent if every (first-order) sentence which holds
in one of these structures holds also in the other (see Tarski [33]).

By a reduct A− of A we understand a structure which is obtained from A by
omitting some of the sorts or relations. A+ is an expansion of A if A is a reduct
of A+.

If a Σ-structure A satisfies a sentence ψ, then we write A |= ψ. A Σ-structure
M is a model of a Σ-theory T if M |= ψ for all ψ ∈ T . We denote the class of
models of T by Mod(T ). According to the Completeness Theorem of Gödel, a
sentence φ of first-logic is derivable from an axiom system A (that is A � φ)
if and only if φ is satisfied by every model M of A (that is M |= φ).

The notion of an ‘interpretation of a theory’ is a purely syntactical one. From
a semantical point of view an interpretation δ of T in T ′ associates to every
model of T ′ a model of T : If M is a model of T ′ then there exists a unique
expansion of M to a model M∗ of L∪L′ with M∗ |= δ and the reduct of M∗ to L
is a model of T (which is denoted by Mδ). Let χδ : Mod(T ′) → Mod(T ),M �→
Mδ be the associated mapping. In the general case χδ is neither injective nor
surjective (see Pinter [23]).

Mod(T ) and Mod(T ′) are called bi-interpretable if there exists an interpreta-
tion δ of T in T ′ and an interpretation ε of T ′ in T such that M ∼= Mδε and
N ∼= Nεδ (for all models M of T and for all models N of T ′).

Theories T and T ′ are called bi-interpretable if Mod(T ) and Mod(T ′) are
bi-interpretable (see Button et al. [10, Definitions 5.4 and 5.5]).18

It is well-known that isomorphic structures are elementarily equivalent and
that the converse does not hold (see Tarski [33]). An analogous relationship
exists between bi-interpretable structures and sentential equivalence.

Theorem 2.3. If Mod(T ) and Mod(T ′) are bi-interpretable by sort-preserving
interpretations then T and T ′ are sententially equivalent.

Proof. See Proposition 5.9 of [10]. �
According to [10, Proposition 5.10] bi-interpretability of theories is a strictly
stronger notion than sentential equivalence.

18The mapping χδε : M �→ Mδε is a functor of the category of models of T and χεδ : N �→
Nεδ is a functor of the category of models of T ′. The relationship between T and T ′ can
be described by properties of these functors: If M = Mδε and N = Nεδ then T and T ′ are
definitional equivalent. If M ∼= Mδε and N ∼= Nεδ then T and T ′ are bi-interpretable. If M
and Mδε (and also N and Nεδ) are elementarily equivalent then T and T ′ are sententially
equivalent. For references see Pinter [23, Theorem (3.3) and (3.5)] and Button and Walsh
[10, § 5.4 and § 5.5] and Visser [35].
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3. Symmetric spaces and reflection groups

3.1. Symmetric spaces

We present the axiom system for symmetric spaces in a language with two sorts
of individual variables (elements a, b, c, . . . of a set L and elements A,B,C, . . .
of a set P) and two ternary relations σ on P × L × P and � on L × P × L.
The elements of L are to be interpreted as ‘lines’ and the elements of P as
‘points’ and σ(A, b, C) as ‘b is a line of symmetry of the points A and C’ (or
equivalently ‘the points A and C are symmetric with respect to the line b’)
and, dually, �(a,B, c) as ‘B is a center of symmetry of the lines a and c’ (or
equivalently ‘the lines a and c are symmetric with respect to the point B’).

To improve the readability of the axioms, we introduce the following abbrevi-
ations:

• π(A, a) :⇔ (∀Bb)[(σ(B, b,B) ∧ σ(B, a,C) ∧ �(b, A, c)) → σ(C, c, C)]
• σ(a, b, c) :⇔ (∀A)[(¬π(A, a) ∧ σ(A, a,A) ∧ σ(A, b, C)) → σ(C, c, C)]
• �(A,B,C) :⇔ (∀a)[(¬π(A, a) ∧ �(a,A, a) ∧ �(a,B, c)) → �(c, C, c)]

π(A, a) stands for ‘A and a are polar to each other’. The point A is called
the pole of a, the line a is called the polar of A and the relation π(A, a)
the pole–polar relation. The intended interpretation of π(A, a) is that points
(resp. lines) are ‘symmetric to A’ if and only if they are ‘symmetric to a’ see
Theorem 3.2(6)].

σ(a, b, c) stands for ‘b is a line of symmetry of a and c’ and �(A,B,C) stands
for ‘B is a center of symmetry of A and C’.

We present the axioms in informal language (their formalization being straight-
forward) and divide them in four groups.

I. Axioms regarding the relation σ

A1. If σ(A, b,A′) then σ(A′, b, A) and if σ(a, b, a′) then σ(a′, b, a).
A2. For A, b there exists a unique element A′ with σ(A, b,A′).
A3. For a, b there exists a unique element a′ with σ(a, b, a′).
A4. If σ(A, b, C) and σ(A, a,A′), σ(b, a, b′), σ(C, a,C ′) then σ(A′, b′, C ′).

II. Axioms regarding the relation �

A1∗. If �(a,B, a′) then �(a′, B, a) and if �(A,B,A′) then �(A′, B,A).
A2∗. For a,B there exists a unique element a′ with �(a,B, a′).
A3∗. For A,B there exists a unique element A′ with �(A,B,A′).
A4∗. If �(a,B, c) and �(a,A, a′), �(B,A,B′), �(c,A, c′) then �(a′, B′, c′).

III. Axioms regarding the compatibility of σ and �

A5. σ(A, a,A) if and only if �(a,A, a).
A6. If σ(A, b, C), �(A,B,A′), �(b,B, b′), �(C,B,C ′) then σ(A′, b′, C ′).
A6∗. If �(a,B, c), σ(a, b, a′), σ(B, b,B′), σ(c, b, c′) then �(a′, B′, c′).
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IV. Existence assumptions

A7. There exist at least a point and a line.
A8. For every line b there exist two distinct points A and A′ with σ(A, b,A′).
A8∗. For every point B there exist two distinct lines a and a′ with �(a,B, a′).

The axioms make the following statements: A1 states that the symmetry of
points (resp. lines) with respect to a given line is symmetric. A2 states that for
every point A and every line b there exists one and only one point A′ such that
b is a line of symmetry of A and A′. A3 states that for every line a and every
line b there exists one and only one line a′ such that b is a line of symmetry
of a and a′. A4 states that the relation σ(A, b, C) is preserved if A, b, C are
substituted by elements A′, b′, C ′ which correspond to A, b, C by a line a of
symmetry.

The axioms A1∗, A2∗, A3∗, A4∗ are the dual statements of A1, A2, A3 and
A4, i.e., they are obtained by interchanging the words ‘point’ and ‘line’ and
the relations σ and �.

A5 states that a is a line of symmetry of the pair of points A,A if and only
if A is a center of symmetry of a, a. A6 states that the relation σ(A, b, C) is
preserved if A, b, C are substituted by elements A′, b′, C ′ which correspond to
A, b, C by a center B of symmetry. A6∗ is the dual statement of A6. According
to A7 there exist at least a point and a line. A8 states that the symmetry of
points with respect to a given line b is not the identity on P. A8∗ is the dual
statement of A8.

We denote the unique point F with σ(E, x, F ), for brevity, by Eσx.

The axiom system, which we denote by A, contains with each axiom the dual
statement (obtained by interchanging ‘points’ and ‘lines’ and the relations
σ and �; the relation π(A, a) is self-dual since σ(A, a,A) and �(a,A, a) are,
according to A5, equivalent). Hence the principle of duality holds.

Definition 3.1. An isomorphism of symmetric spaces (L,P, σ, �) and (L′,P ′, σ′,
�′) is a bijection ϕ from L to L′ and from P to P ′ which preserves the relations
σ and �.19

We now study the pole–polar relation. To a line a of a symmetric space there
may exist a point A with the property that two points B and C (resp. two
lines b and c) are symmetric with respect to a if and only if they are symmetric
with respect to A. This is the case if and only if a and A are polar to each
other.

Theorem 3.2. For a point A and a line a of a symmetric space are equivalent:

(1) A is a pole of a.
(2) σ(B, a,C) implies �(B,A,C) for all points B and C.

19I.e., if σ(A, b, C) then σ′(Aϕ, bϕ, Cϕ) and, dually, if �(a, B, c) then �′(aϕ, Bϕ, cϕ) for all
points A, B, C and lines a, b, c. The converse implications hold since ϕ is bijective and A1
and A1∗ hold.
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(3) �(B,A,C) implies σ(B, a,C) for all points B and C.
(4) �(b, A, c) implies σ(b, a, c) for all lines b and c.
(5) σ(b, a, c) implies �(b, A, c) for all lines b and c.
(6) The relation σ, restricted to (P×{a}×P)∪(L×{a}×L), and the relation

�, restricted to (L × {A} × L) ∪ (P × {A} × P), induce identical relations
on (P × P) ∪ (L × L).

Proof. (1) → (2): Let a be a polar of A and σ(B, a,C). We show �(B,A,C).
Let b be a line with ¬π(B, b) and �(b,B, b). If c is the line with �(b, A, c)
then �(c, C, c) (since σ(B, a,C) holds and since a is a polar of A). This shows
�(B,A,C).

(2) → (3): Let �(B,A,C). If σ(B, a,B′) then by (2) it is �(B,A,B′). By A3∗

it is B′ = C and σ(B, a,C).

(3) → (1): Let (A, a) be a pair which satisfies (3) and let (B, b) be a pair with
σ(B, b,B). By A2 and A2∗ there exist a unique point C with σ(B, a,C) and
a unique line c with �(b, A, c). For a proof of (1) we have to show σ(C, c, C).

If �(B,A,B′) then by (3) it is σ(B, a,B′). By A2 it is B′ = C and �(B,A,C).
Hence σ(B, b,B) and �(b, A, c) and �(B,A,C) and this implies σ(C, c, C) by
A6.

(4) and (5) are the dual statements of (2) and (3), which are equivalent with
(1). Since (1) is self-dual, the statements (4) and (5) are equivalent with (1).

Statement (6) is the conjunction of the equivalent statements (2), (3), (4) and
(5) and hence equivalent with each of them. �
Theorem 3.3. For a point A and a line a the following holds:

(1) σ(a, a, a) and �(A,A,A)
(2) The line a has at most one pole.
(3) The point A has at most one polar.
(4) If π(A, a) then σ(A, a,A) and �(a,A, a).

Proof. (1) σ(a, a, a) holds (according to our definitions), if σ(A, a,A) and
σ(A, a,C) imply σ(C, a,C). If σ(A, a,A) and σ(A, a,C) then A = C (by A2)
and hence σ(C, a,C). The second statement of (1) is dual to the first one.

(2) Let a be a polar of A and A′. Then �(A,A,A′) (according to our definitions)
since �(b, A, b) implies σ(b, a, b), according to Theorem 3.2(4), and this implies
�(b, A′, b) by Theorem 3.2, (5). Hence �(A,A,A) [by (1)] and �(A,A,A′) and
by A3∗ it is A = A′.

(3) is the dual statement of (2).

(4) Let a be a polar of A. By (1) it is σ(a, a, a) and by Theorem 3.2(5) it is
�(a,A, a). The second statement of (4) is dual to the first one. �
The next theorem states that the relation π(A, a) is preserved if A, a are sub-
stituted by elements C, c which correspond to A, a by a line of symmetry or
by a center of symmetry.
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Theorem 3.4. In a symmetric space the following holds:

(1) If π(A, a) and σ(A, b, C) and σ(a, b, c) then π(C, c).
(2) If π(A, a) and �(A,B,C) and �(a,B, c) then π(C, c).

Proof. (1) and (2) are immediate consequences of Theorem 3.2(6) and A4, A4∗,
A6 and A6∗. �
Next we show that a symmetric space can be regarded as an incidence structure
with orthogonality. An incidence relation can be introduced in the following
way.

A |b ⇔ ¬π(A, b) ∧ σ(A, b,A) ∧ �(b, A, b) (∗)

A | b stands for ‘A and b are incident ’. The definition is self-dual. The condi-
tions σ(A, b,A) and �(b, A, b) are equivalent (according to A5).

Theorem 3.5. For a point A and a line b the following holds:

(1) σ(A, b,A) is equivalent with: π(A, b) or A |b.
(2) �(A, b,A) is equivalent with: π(A, b) or A |b.

Proof. (1) and (2) are immediate consequences of Theorem 3.3(4) and the
definition of the incidence relation. �
Theorem 3.6. For all lines a, b, c and points A,B,C the following holds:

(1) σ(a, b, c) is equivalent with: A |a and σ(A, b, C) imply C |c.
(2) �(A,B,C) is equivalent with: a |A and �(a,B, c) imply c |C.

Proof. (1) Let σ(a, b, c) and A | a and σ(A, b, C). Then ¬π(A, a) and hence
¬π(C, c) [by Theorem 3.4(1)]. According to our definitions σ(a, b, c) implies
σ(C, c, C) and hence C |c.
For a proof of the converse let a, b, c lines such that A | a and σ(A, b, C) im-
ply C | c. We show σ(a, b, c), i.e., the following implication: If ¬π(A, a) and
σ(A, a,A) and σ(A, b, C) then σ(C, c, C). If ¬π(A, a) and σ(A, a,A) then A |a
and hence σ(A, b, C) implies according to our assumptions C | c. This proves
σ(a, b, c).

(2) is the dual statement of (1). �
Basic properties of the incidence structure of a symmetric space are summa-
rized in the next theorem.

Theorem 3.7. In a symmetric space the following statements hold:

(1) Each line is incident with at least one point and each point is incident
with at least one line.

(2) The set of points is non-collinear and the set of lines is non-concurrent.
(3) If a and b are incident with the same points then a = b and, dually, if A

and B are incident with the same lines then A = B.
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Proof. For a proof of (1) suppose that there exists a line a which is not inci-
dent with any point A. By A7 there exists a point and by A8∗ a line b with
b 
= a. According to Theorem 3.6(1) it is σ(a, b, a) and σ(a, b, b), which is a
contradiction to A3. The second statement of (2) is the dual statement of the
first one.

(2) is a consequence of A7 (there exist a point and a line) and of A8 (for every
line b there exists a point A which is not incident with b) and of A8∗ (for every
point B there exists a line a which is not incident with B).

For a proof of (3) let a and b be lines which are incident with the same points.
Then σ(A, a,A) and σ(A, b,A) for all A with A | a and all A with A | b. Accord-
ing to Theorem 3.6(1) it is σ(a, b, a) and σ(a, b, b) and hence a = b (according
to A3). The second statement of (3) is dual to the first one. �
According to Theorem 3.7(3) every line a is uniquely determined by the set of
points which are incident with a and every point A is uniquely determined by
the set of lines which are incident with A.

We now introduce an orthogonality relation for lines and the dual relation for
points.

a ⊥ b ⇔ a 
= b ∧ σ(a, b, a)

A�B ⇔ A 
= B ∧ �(A,B,A)
(†)

a ⊥ b stands for ‘a and b are orthogonal lines’ and A�B stands for ‘A and
B are polar points’. According to this definition there are no self-orthogonal
lines (i.e., no lines a with a ⊥ a) and no self-polar points. The next theorem
shows that the orthogonality relation is symmetric.

Theorem 3.8. If a ⊥ b then b ⊥ a.

Proof. Let a ⊥ b. Then a 
= b and σ(a, b, a). It is sufficient to show σ(b, a, b),
i.e., if ¬π(B, b) and σ(B, b,B) and σ(B, a,C) then σ(C, b, C).

Let D denote the point with σ(C, b,D). Then σ(B, a,C) implies σ(B, a,D)
(since σ(B, b,B) and σ(a, b, a) and σ(C, b,D); by A4) and hence C = D (by
A2) and σ(C, b, C). �
Theorem 3.9. If π(A, a) then A |b if and only if a ⊥ b.

Proof. Let π(A, a). If A |b then b is not a polar of A (according to the definition
of the incidence relation) and hence a 
= b. Since A | b it is �(b, A, b) and by
Theorem 3.2(4) it is σ(b, A, b) and a ⊥ b.

If a ⊥ b then b 
= a and σ(b, a, b). By Theorem 3.2(5) it is �(b, A, b) and hence
A | b [since b is not the polar a of A; see Theorem 3.3(3)]. �

Remark 3.10. The notion of a symmetric space is of a very general kind without
axioms about the existence and uniqueness of joining lines, the existence of
perpendiculars, the mobility of point and lines or assumptions about the order
structure and dimension of the underlying space (for examples of symmetric
spaces we refer to the second part [31] of the paper).
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3.2. Reflection groups

The idea of a geometry of involutory group elements can be formulated in
various ways. A general starting point is the Basic Assumption that a group
G is given which is generated by two invariant subsets S and P of involutory
elements of G (see Thomsen [34] and Bachmann [4, §20,2]). In addition it is
often assumed that G can be faithfully represented as a group of permutations
of P ∪ S (i.e., that the identity of G is the only element of G which leaves
invariant every element of P and every element of S).

To capture this idea in a first-order logic, we introduce the notion of a reflec-
tion group axiomatically. The axiom system, denoted by B, is formulated in a
language with one sort of individual variables (elements α, β, . . . of a set G),
a binary operation “·” on G, two unary predicates Π and Σ and a constant
symbol 1. The elements of G are to be interpreted as ‘collineations’, Π(α) as ‘α
is point-reflection’, Σ(α) as ‘α is line-reflection’, the constant 1 as ‘the identity’
and the operation α · β as ‘the composition of α with β’.

To improve the readability of the axioms, we define two subsets P and S of G
and introduce the stroke relation as an abbreviation.

• α ∈ P ⇔ Π(α)
• β ∈ S ⇔ Σ(β)
• α |β ⇔ (α ∈ P ∪ S) ∧ (β ∈ P ∪ S) ∧ α 
= β ∧ α · β = β · α.

Elements of S are denoted by lower case Latin letters a, b, . . . and elements of
P by upper case letters A,B, . . .. We present the axioms in informal language
(their formalization being straightforward). The axioms are:

B1. If α, β, γ ∈ G then (α · β) · γ = α · (β · γ)
B2. α · 1 = 1 · α = α
B3. For α there exist β with α · β = β · α = 1.
B4. a2 = 1 and a 
= 1 and A2 = 1 and A 
= 1
B5. aα ∈ S and Aα ∈ P
B6. If Aα = A for all A ∈ P and bα = b for all b ∈ S then α = 1.
B7. There exist a, b ∈ S and A,B ∈ P with a 
= b and A 
= B.
B8. For a, b with a 
= b there exists C with C |a and C �b.
B9. For A,B with A 
= B there exists c with A |c and B �c.

The axioms B1–B3 state that G is a group with identity 1. The axioms B4
and B5 state that S and P are invariant subsets of involutory elements of G.
Axiom B6 states that if α ∈ G leaves invariant every element of P and every
element of S then α = 1. According to B7 there are at least two elements in
S and in P . Axiom B8 states that a ∈ S is uniquely determined by the set of
elements A ∈ P with A | a (in other words: If A | a implies A | b then a = b).
The Axiom B9 is the dual statement of B8.

We call the axioms B1–B5 the Basic Assumption of a reflection group. Since
we are confined to first-order logic we cannot express that the group G is
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generated by S ∪ P . Axiom B6 is a representation axiom which allows a proof
of the following theorem.

Theorem 3.11. For a reflection group (G,S, P ) the following holds:

• The center Z(G) of G is trivial.
• G is isomorphic to the group of inner automorphisms of G.
• G can be faithfully represented as a group of permutations20 of P ∪ S.

Proof. Let α ∈ Z(G). Then Aα = A for all A ∈ P and bα = b for all b ∈ S
and α = 1 (according to B6). Hence Z(G) = {1} and G is isomorphic to the
group of inner automorphisms of G. Moreover axiom B6 implies that G can
be faithfully represented as a group of permutations of P (resp. of S). �
The axioms B7–B9 are basic existence assumptions. B8 allows to proof a
stronger version of B6 (namely: If Aα = A for all A ∈ P then α = 1) and B9
implies the dual statement: If aα = a for all a ∈ S then α = 1.

If A = b then A, b are polar to each other and A is called the pole of b and b
the polar of A.

Axiom system B contains with each axiom the dual statement, which is ob-
tained by interchanging the elements of S and the elements of P . Hence the
principle of duality holds (in this sense).

Every model of B is uniquely determined by the group G (with the binary
operation “·” and identity 1) and the invariant subsets S and P of involutory
elements of G. For brevity we denote a model of B by (G,S, P ).

Definition 3.12. An isomorphism of reflection groups (G,S, P ) and (G′, S′, P ′)
is a group-isomorphism ϕ from G to G′ satisfying Sϕ = S′ and Pϕ = P ′.

Remark 3.13. To illustrate the wide generality of the notion of a reflection
group we notice:

(a) The group, which is generated by S ∪ P , may be a proper subgroup of
G. So, for example, G may be the group of similarities of the Euclidean
plane over a field of characteristic 
= 2 and S the set of line reflections and
P the set of point reflections (for this approach and a characterization of
groups of similarities see Praźmowski [24] and H. Struve [28]).

(b) Following Hjelmslev, Bachmann et al. the elements of S are called ‘re-
flections in lines’. However, G may also be generated by reflections in
hyperplanes of a higher-dimensional geometry (see Bachmann [4, §20,9]
or by reflections in circles or cycles of a Euclidean or non-Euclidean ge-
ometry (see Benz [9] or Yaglom [37]).

(c) A slight modification of axiom system B would allow G to be a semigroup
(a set with an associative binary operation) and hence an arbitrary set of
transformations of a set X into itself, which is closed under composition.

20In a geometrical language G is a group of ‘collineations’ which permutes the set P of
‘points’ and the set S of ‘lines’, and which preserves the stroke-relation (see Remark 3.17).
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This may be considered as the most general starting point of a geometry
of involutory group elements in the sense of Bachmann [4, § 20,2].

3.3. The correspondence between the theory of symmetric spaces and the
theory of reflection groups

We now study the relationship between the theory of symmetric spaces and
the theory of reflection groups.

Let A be the axiom system for symmetric spaces of Sect. 3.1, but now repre-
sented in a one-sorted language LA (by the introduction of domain predicate
symbols σL and σP for the sorts L and P and a corresponding modification
of quantified formulas) and let B be the axiom system for reflection groups
of Sect. 3.2, represented in a one-sorted language LB (with unary predicate
symbols σG, σS and σP for the sorts G and S and P ).

Theorem 3.14. The theory of reflection groups is a conservative extension of
the theory of symmetric spaces.

Proof. We show that the theory TB of reflection groups is a conservative ex-
tension of the theory TA of symmetric spaces, i.e., that there exists an in-
terpretation δ of LA in LB which satisfies the conditions (1), (2) and (3) of
Theorem 2.2.

Let δ be the interpretation of LA in LB which is defined by the following
sentences:

(∀x)[σL(x) ↔ σS(x)]

(∀x)[σP(x) ↔ σP (x)]

(∀x, y, z)[σ(x, y, z) ↔ σP (x) ∧ σS(y) ∧ σP (z) ∧ xy = z]

(∀x, y, z)[�(x, y, z) ↔ σS(x) ∧ σP (y) ∧ σS(z) ∧ xy = z]

(3.1)

In other words, the elements of S are called ‘lines’ and the elements of P are
called ‘points’ and a line b is a ‘line of symmetry’ with respect to points A and
C if Ab = C and a point B is a ‘center of symmetry’ of lines a and c if aB = c.
Hence the conditions (1) and (2) of Theorem 2.2 are satisfied.

We note that the axioms B8 and B9 imply that σ(a, b, c) is equivalent with
ab = c and that �(A,B,C) is equivalent with AB = C. With these definitions
in mind, simple group-theoretic calculations show that the axioms A1–A6 and
their dual counterparts hold. A7 holds according to B8. Axiom A8 holds since
for b ∈ S there exists a ∈ S with a 
= b (by B8) and by B9 there exists
A ∈ P with A | a and A � b and Ab 
= A. Axiom A8∗ holds since the principle
of duality holds and since A8∗ is the dual statement of A8. Hence the axioms
of A can be proven from the axioms of B when the undefined notions of A are
defined by (3.1) in terms of B. In other words, δ is an interpretation of TA in
TB.

It remains to show that the condition (3) of Theorem 2.2 is satisfied. Let φ be
a sentence of TA and τ the translation from LA to LB which associates to φ
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the formula τ(φ) of LB which is obtained from φ by substituting the predicates
of LA with defining formulas of LB. Hence τ(φ) contains only variables of the
sorts S or P and neither the constant 1 ∈ G nor a variable α ∈ G. We have
to show: A � φ if and only if B � τ(φ).

If A � φ then B � τ(φ) since δ is an interpretation of TA in TB. Now suppose
B � τ(φ). Then there exists a proof of τ(φ) which consists of a (finite) sequence
of applications of axioms of B. Since τ(φ) contains only variables of the sorts S
or P , we can assume that the axioms are applied on finite products of elements
of S and P (and not on arbitrary elements of G).21

We show that under these assumptions the axioms of B correspond to formulas
of A. To this end we introduce the following abbreviations in LA:

(a) a1 · · · am = 1 :⇔ (∀E) [(σ(E, a1, E1) ∧ · · · ∧ σ(Em−1, am, E)]

(b) a1 · · · am = b1 · · · bn :⇔ a1 · · · am · bn · · · b1 = 1

(c) ab1···bn = c :⇔ bn · · · b1 · a · b1 · · · bn = c

(3.2)

Obviously a1 · · · am = 1 if and only if (∀e) [(σ(e, a1, e1) ∧ · · · ∧ σ(em−1, am, e)].

The definitions (3.2) can be dualized (by interchanging the elements of P
and L and the relations σ and �) and extended to ‘products’22 of arbitrary
elements of L and P (such that, e.g., aBc = 1 is defined by (∀X) [(σ(X, a, Y )∧
�(Y,B,Z)] ∧ σ(Z, c,X)]). We denote the extended definitions of (3.2), which
are obtained in this way, by (3.2)∗.

With these definitions the versions of the axioms of B, which are used in the
proof of τ(φ), can be translated into formulas of LA, which can be derived from
the axioms of A: Axiom B1, restricted to α, β, γ ∈ (L ∪ P)n, is an immediate
consequence of (3.2)∗, b). Since in τ(φ) the constant 1 does not occur, we can
assume that there exists a proof of τ(φ) without using B2. Axiom B4 is a
consequence of (3.2)∗, a) and of A1 and A8. Axiom B3 holds for α = α1 · · ·αn

with α1, . . . , αn ∈ L ∪ P according to B3 (choose β := αn · · · α1). Axiom B5,
restricted to α, β, γ ∈ (L∪P)n, is a consequence of A4, A4∗, A6 and A6∗ (i.e.,
of the invariance of the relations σ and �). For a proof of B6 let α = α1 · · · αn

with α1, . . . , αn ∈ L ∪ P and Aα = A for all A ∈ P. Let A′ be the point
with τ(A,α1, A1) ∧ τ(A1, α2, A2) ∧ · · · ∧ τ(An−1, αn, A′) where τ denotes the
relation σ if αi ∈ L resp. the relation � if αi ∈ P. Then Aα = A implies
σ(E,A′, F ) ↔ σ(E,A, F ) for all E ∈ P (according to A4 and A4∗). Since this
holds for all A ∈ P it is α = 1, according to (3.2)∗(b). This proofs that axiom
B6 is satisfied. B7 is a consequence of A7, A8 and A8∗. The axioms B8 and
B9 hold according to Theorem 3.7(3).

21Since τ(φ) contains only variables of the sorts S and P , there exists a proof where this
assumption holds for the last line of the proof, for the proceeding line etc. and hence for all
lines of the proof.
22Thus a product of elements of L and P corresponds to a product of the associated relations
σ and � (cp. Oberschelp et al. [20, § 10]).
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Hence the derivation of τ(φ) from the axioms of B can be transferred to a
derivation of φ from the axioms of A. This shows that the theory of reflection
groups is a conservative extension of the theory of symmetric spaces. �

3.4. Formulation of geometry in the group of motions

Let δ be the interpretation of LA in LB which is defined by (3.1). We call the
translation τ , which is associated to δ, the natural translation from LA to LB.
According to Theorem 3.14 the translation τ is faithful, i.e., the translation of
a theorem of TA is a theorem of TB, and the translation of a non-theorem of
TA is a non-theorem of TB. We state this as a proposition.

Theorem 3.15. The natural translation τ from LA to LB is a faithful transla-
tion from TA to TB.

Proof. The theorem is an immediate consequence of Theorem 3.14. �
If L+

A is a definitional extension of LA (obtained from LA by adding some new
relation symbols together with a set ε of explicit definitions) then, obviously,
the natural translation τ from LA to LB can be extended to a translation from
L+

A to LB.

So, e.g., the orthogonality relation a ⊥ b on L × L, which is defined by the
formula [a 
= b ∧ σ(a, b, a)], corresponds in LB to the formula [a 
= b ∧ ab = a]
and hence to the stroke-relation a |b on S × S.

Similarly, the relation A�B on P ×P, which is defined by [A 
= B∧�(A,B,A)]
corresponds in LB to the formula [A 
= B ∧ AB = A] and hence to the stroke-
relation A |B on P × P .

In this way one can develop a dictionary from the language of symmetric spaces
to the language of reflection groups. Since τ is a faithful translation from TA to
TB, the translations can be based on the assumptions that the axiom systems
A resp. B are satisfied.

Thus, for example, the relation π(A, a) holds in A if and only if σ(B, a,C)
implies �(B,A,C) for all points B,C [according to Theorem 3.2(2) and (3)].
According to τ this corresponds in LB to: Ba = C implies BA = C, and
hence BaA = B (for all points B) and aA = 1 (by B6) and A = a. Hence the
pole–polar relation π(A, a) of TA corresponds in TB to the relation A = a on
P × S.

As a consequence, the incidence relation A | b of LA, which is defined by the
formula [¬π(A, b) ∧ σ(A, b,A) ∧ �(b, A, b)] corresponds in LB to the formula
[A 
= b ∧ Ab = A ∧ bA = b] and hence to the stroke-relation A |b on P × S.

In addition to the basic concepts point and line we introduce (in both lan-
guages LA and LB) the notion of an oriented angle �(a, b) as an ordered
pair of lines which have a common point (the vertex of the angle). Angles
�(a, b) and �(c, d) with the same vertex are of equal magnitude, in symbols
�(a, b) ≡ �(c, d), if the following formula holds: (∀E)[Eσaσb = Eσcσd]. This
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corresponds in LB to the equation ab = cd (since Eσaσb = Eσcσd corresponds
to (Ea)b = (Ec)d and to Eabdc = E (for all points E) and (by B6) to abdc = 1
and to ab = cd).

Dually, an oriented segment AB is an ordered pair of points which have a
joining line. Segments AB and CD are of equal magnitude, in symbols AB ≡
CD, if the following formula holds: (∀e)[e�A�B = e�C�D] (where e�A denotes
the unique line with �(e,A, e�A)). This corresponds in LB to the equation
AB = CD.

If a, b, c, d are lines with a common perpendicular then a, b and c, d are of
equal directed distance, in symbols ab ≡ cd, if the following formula holds:
(∀E)[Eσaσb = Eσcσd]. This corresponds in LB to the equation ab = cd.

A point M is a midpoint of A and B if �(A,M,B) which corresponds in LB
to AM = B. A line m is a midline of a and b if σ(a,m, b) which corresponds
in LB to am = b. A bisector of an angle �(a, b) is a midline of a and b which
is incident with a common point of a and b.

A pair (A, b) is a flag if A, b are incident. Flags (A, a) and (B, b) are called
parallel, in symbols (A, a) ‖ (B, b), if (∀E)[Eσaσb = E�A�B ], which holds,
particularly, if A and B have a joining line which is orthogonal to a and b.
This corresponds in LB to ab = AB and to Aa = Bb.

A quadrangle is a set of four points A,B,C,D and four lines a, b, c, d with
a | A,B and b | B,C and c | C,D and d | D,A.

For dictionaries, which can be found in the literature, we refer to Thomsen
[34, §4] and Bachmann [4, §1,4; §20,2] and [5, §1.1] and [8, §5.1].

Now we can formulate a wide generalization of Theorem 3.14.

Theorem 3.16. Let A1, . . . , An be sentences of a definitional extension of LA
and B1, . . . , Bn the translations of A1, . . . , An with respect to the natural
translation τ . Then the following holds:

• The theory of B ∪{B1, . . . , Bn} is a conservative extension of the theory
of A ∪ {A1, . . . , An}.

• The translation τ can be extended to a faithful translation from the theory
of A ∪ {A1, . . . , An} to the theory of B ∪ {B1, . . . , Bn}.

Proof. This theorem is a consequence of Theorems 3.14 and 3.15. �
The fundamental idea of the Thomsen–Bachmann correspondence which is
formulated in [8, p. 129 and p.134] by the statements23

(1) “The group of motions contains an image of the properties of the plane.”
(2) “Geometry can be formulated in the group of motions.”

is given a precise meaning by the Theorems 3.14, 3.15 and 3.16:

23See also the preface to the first edition of [4] and [4, §2,4].
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(1∗) The theory of the group of motions is a conservative extension of the
geometric theory.

(2∗) Geometry can be formulated in the group of motions by a faithful trans-
lation of the geometric theory.

Remark 3.17. So far we have studied the translation from LA to LB. Con-
versely one can ask whether there is an ‘inverse translation’ from LB to LA.
Since LA is a purely relational language (without function symbols or con-
stant symbols) the interpretation (3.1) induces a definitional extension24 of
LB, which we denote by L+

B , such that LA ⊆ L+
B .25

Hence the geometrical language of symmetric spaces can be used in the the-
ory of reflection groups, i.e., a statement of LA can be interpreted both as a
statement of symmetric spaces and as a statement of reflection groups.

Since this corresponds to a common practice in the literature on reflection
geometry (see, e.g., [4,5,15,22,30] and the bibliographies given there), and
since we have to refer to this literature in the second part [31] of this paper,
we will use the extension L+

B of LB with LA ⊆ L+
B without further ado. This

should not cause any confusion since the context will always be clear.
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