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The decomposition of almost paracontact
metric manifolds in eleven classes revisited

Simeon Zamkovoy and Galia Nakova

Abstract. This paper is a continuation of our previous work, where eleven
basic classes of almost paracontact metric manifolds with respect to the
covariant derivative of the structure tensor field were obtained. First we
decompose one of the eleven classes into two classes and the basic classes
of the considered manifolds become twelve. Also, we determine the classes
of α-para-Sasakian, α-para-Kenmotsu, normal, paracontact metric, para-
Sasakian, K-paracontact and quasi-para-Sasakian manifolds. Moreover,
we study 3-dimensional almost paracontact metric manifolds and show
that they belong to four basic classes from the considered classification.
We define an almost paracontact metric structure on any 3-dimensional
Lie group and give concrete examples of Lie groups belonging to each of
the four basic classes, characterized by commutators on the corresponding
Lie algebras.

Keywords. Almost paracontact metric manifolds, 3-Dimensional almost
paracontact manifolds, α-Para-Sasakian manifolds, α-Para-Kenmotsu
manifolds.

1. Introduction

Different manifolds with additional tensor structures have been classified with
respect to the structure (0, 3) tensors, generated by the covariant derivative
of the fundamental tensor of type (1, 1). For example, such classifications are:
the Gray–Hervella classification of almost Hermitian manifolds given in [6],
the Naveira classification of Riemannian almost product manifolds—in [11],
the Ganchev–Borisov classification of almost complex manifolds with Nor-
den metric—in [4], the Alexiev–Ganchev classification of almost contact met-
ric manifolds—in [1], the Ganchev–Mihova–Gribachev classification of almost
contact B-metric manifolds—in [5] and etc.

In [10] we decomposed the vector space of the structure (0, 3) tensors on al-
most paracontact metric manifolds [called almost paracontact manifolds with

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-018-0423-5&domain=pdf


18 Page 2 of 23 S. Zamkovoy and G. Nakova J. Geom.

semi-Riemannian metric of (n + 1, n)] in eleven subspaces which are orthog-
onal and invariant under the action of the structure group of the considered
manifolds. In this paper we show that one of the eleven subspaces could be
decomposed in two orthogonal and invariant subspaces and give their char-
acteristic conditions. Then we find the dimensions of the twelve subspaces
and the projections of the structure tensor in the corresponding basic classes
of almost paracontact metric manifolds. Also, we obtain the classes of the
following types of almost paracontact metric manifolds: α-para-Sasakian, α-
para-Kenmotsu, normal, paracontact metric, para-Sasakian, K-paracontact
and quasi-para-Sasakian.

We pay special attention to almost paracontact metric manifolds of dimen-
sion 3, which is the lowest dimension for these manifolds. First, we estab-
lish that such manifolds belong only to four basic classes from the considered
classification. Then we define an almost paracontact metric structure on a
3-dimensional Lie group. We determine its Lie algebra by commutators such
that the Lie group is a manifold belonging to some of the four basic classes of
3-dimensional almost paracontact metric manifolds. The considered Lie groups
are characterized geometrically in terms of their curvature properties. More-
over, we find explicit matrix representations of these Lie groups. Let us note
that Lie groups as 3-dimensional almost contact B-metric manifolds were stud-
ied in [9] and their matrix representations were obtained in [8].

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M (2n+1) has an almost paracontact
structure (ϕ, ξ, η) if it admits a tensor field ϕ of type (1, 1), a vector field ξ
and a 1-form η satisfying the following conditions:

(i) ϕ2 = id − η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0,
(ii) there exists a distribution D: p ∈ M −→ Dp ⊂ TpM :

Dp = Kerη = {x ∈ TpM : η(x) = 0}, called paracontact
distribution generated by η.

(2.1)

Then the tangent space TpM at each p ∈ M is the following orthogonal direct
sum

TpM = Dp ⊕ spanR{ξ(p)}
and every vector x ∈ TpM can be decomposed uniquely in the manner

x = hx + vx,

where hx = ϕ2x ∈ Dp and vx = η(x)·ξ(p) ∈ spanR{ξ(p)}. Using the conditions
(2.1) we have

hξ = 0, h2 = h, h ◦ ϕ = ϕ ◦ h = ϕ, v ◦ h = h ◦ v = 0.

The tensor field ϕ induces an almost paracomplex structure [7] on each fi-
bre on D and (D, ϕ, g|D) is a 2n-dimensional almost paracomplex manifold.
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Since g is non-degenerate metric on M and ξ is non-isotropic, the paracontact
distribution D is non-degenerate.

As immediate consequences of the definition of the almost paracontact struc-
ture we have that the endomorphism ϕ has rank 2n, and η ◦ ϕ = 0 (see [2,3]
for the almost contact case).

From now on, we will use x, y, z for arbitrary elements of χ(M) or vectors in
the tangent space TpM at p ∈ M .

If a manifold M (2n+1) with (ϕ, ξ, η)-structure admits a pseudo-Riemannian
metric g such that

g(ϕx, ϕy) = −g(x, y) + η(x)η(y),

then we say that M (2n+1) has an almost paracontact metric structure and
g is called compatible metric. Any compatible metric g with a given almost
paracontact structure is necessarily of signature (n + 1, n).

Setting y = ξ, we have η(x) = g(x, ξ).

Any almost paracontact structure admits a compatible metric.

The fundamental 2-form
φ(x, y) = g(ϕx, y)

is non-degenerate on the horizontal distribution D and η ∧ φn 	= 0.

Let φ be the fundamental 2-form on (M,ϕ, ξ, η, g) and F be the covariant
derivative of φ with respect to the Levi-Civita connection ∇ of g, i.e the tensor
field F of type (0, 3) is defined by

F (x, y, z) = (∇φ)(x, y, z) = (∇xφ)(y, z) = g ((∇xϕ)y, z) .

Because of (1.1) and (1.3) the tensor F has the following properties:

F (x, y, z) = −F (x, z, y),
F (x, ϕy, ϕz) = F (x, y, z) + η(y)F (x, z, ξ) − η(z)F (x, y, ξ). (2.2)

The following 1-forms are associated with F :

θ(x) = gijF (ei, ej , x); θ∗(x) = gijF (ei, ϕej , x); ω(x) = F (ξ, ξ, x),

where {ei, ξ} (i = 1, . . . , 2n) is a basis of TM , and (gij) is the inverse matrix
of (gij).

We express ∇η, dη, Lξg and dφ in terms of the structure tensor F in the
following lemma

Lemma 2.1. For arbitrary x, y, z we have:

(∇xη)y = g(∇xξ, y) = −F (x, ϕy, ξ);

dη(x, y) =
1
2

((∇xη)y − (∇yη)x) =
1
2
(−F (x, ϕy, ξ) + F (y, ϕx, ξ)); (2.3)

(Lξg)(x, y) = (∇xη)y + (∇yη)x = −F (x, ϕy, ξ) − F (y, ϕx, ξ); (2.4)
dφ(x, y, z) = S

(x,y,z)
F (x, y, z),
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where S(x,y,z) denotes the cyclic sum over x, y, z.

In [12] it is proved that a (2n + 1)-dimensional almost paracontact metric
manifold is normal if and only if the following condition holds:

ϕ(∇xϕ)y − (∇ϕxϕ)y + (∇xη)(y)ξ = 0. (2.5)

Moreover, we have that (2.5) is equivalent to the following equality

F (x, y, ϕz) + F (ϕx, y, z) + F (x, ϕy, ξ) = 0. (2.6)

Definition 2.2. A (2n + 1)-dimensional almost paracontact metric manifold is
called

• normal if N(x, y) − 2dη(x, y)ξ = 0, where

N(x, y) = ϕ2[x, y] + [ϕx, ϕy] − ϕ[ϕx, y] − ϕ[x, ϕy]

is the Nijenhuis torsion tensor of ϕ (see [13]);
• paracontact metric if φ = dη;
• α-para-Sasakian if (∇xϕ)y = α(g(x, y)ξ−η(y)x), where α 	= 0 is constant;
• para-Sasakian if it is normal and paracontact metric;
• α-para-Kenmotsu if (∇xϕ)y = −α(g(x, ϕy)ξ + η(y)ϕx), where α 	= 0 is

constant, in particular, para-Kenmotsu if α = −1;
• K-paracontact if it is paracontact and ξ is Killing vector field;
• quasi-para-Sasakian if it is normal and dφ = 0.

Remark 2.3. In [13] it was proved that (M,ϕ, ξ, η, g) is para-Sasakian if and
only if (∇xϕ)y = −g(x, y)ξ + η(y)x. This result is obtained by φ(x, y) =
g(x, ϕy). We note that if φ(x, y) = g(ϕx, y), then (M,ϕ, ξ, η, g) is para-Sasakian
if and only if (∇xϕ)y = g(x, y)ξ − η(y)x. Hence, if φ(x, y) = g(x, ϕy) (resp.
φ(x, y) = g(ϕx, y)), then an α-para-Sasakian manifold is para-Sasakian if
α = −1 (resp. α = 1).

Let U
π(n) be the paraunitary group, i.e. Uπ(n) consists of paracomplex ma-

trices β = A + εB (ε2 = 1; A,B are real matrices of type (n × n)) such that
β−1 = β̄t. If r is the real representation of Uπ(n) then

r(β) =
(

A B
B A

)
, AtA − BtB = In, AtB − BtA = 0,

where β ∈ U
π(n), In denotes the identity matrix of type (n × n). We consider

the group U
π(n) × {1} which consists of matrices α of type ((n + 1) × (n + 1))

such that α =

⎛
⎜⎜⎜⎝

0

β
...
0

0 . . . 0 1

⎞
⎟⎟⎟⎠ , β ∈ U

π(n). Then r(α) =

⎛
⎜⎜⎜⎝

A B 0

B A
...
0

0 . . . 0 1

⎞
⎟⎟⎟⎠.

For α ∈ U
π(n) × id we have αξ = ξ, α ◦ ϕ = ϕ ◦ α and g is an isometry with

respect to α, i.e. the matrices of Uπ(n) × {1} preserve the structures ξ, ϕ, g, η.
Hence, Uπ(n) × {1} is the structure group of the almost paracontact metric
manifolds.
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Let V be a (2n + 1)-dimensional real vector space with an almost paracontact
structure (ϕ, ξ, η) and a compatible metric g with this structure. We denote
by ⊗0

3V the space of the tensors of type (0, 3) over V . Let F be the subspace
of ⊗0

3V defined by

F =
{
F ∈ ⊗0

3V : F (x, y, z) = −F (x, z, y) = F (x, ϕy, ϕz) − η(y)F (x, z, ξ)
+ η(z)F (x, y, ξ)} .

The metric g on V induces an inner product 〈, 〉 on F which is defined by

〈F1, F2〉 = gipgjqgkrF1(fi, fj , Fk)F2(fp, fq, Fr),

where F1, F2 ∈ F and {f1, . . . , f2n} is a basis of V .

The standard representation of the structure group U
π(n) × {1} in V induces

a representation λ of Uπ(n) × {1} in F in the following manner:

(λ(α)F )(x, y, z) = F (α−1x, α−1y, α−1z),

for α ∈ U
π(n) × {1} and F ∈ F. Also, λ(α) preserves the inner product 〈, 〉 in

F.

3. On the decomposition of F

In [10] we obtained a decomposition of a vector space F into eleven subspaces
Fi(i = 1, . . . , 11), which are mutually orthogonal and invariant under the ac-
tion of the structure group U

π(n) × {1}. First we found the following partial
decomposition of F in a direct sum of its subspaces Wi (i = 1, 2, 3, 4), i.e.

F = W1 ⊕ W2 ⊕ W3 ⊕ W4,

where Wi (i = 1, 2, 3, 4) were defined by

W1 = {F ∈ F: F (x, y, z) = F (hx, hy, hz)} ,
W2 = {F ∈ F: F (x, y, z) = −η(y)F (hx, hz, ξ) + η(z)F (hx, hy, ξ)} ,
W3 = {F ∈ F: F (x, y, z) = η(x)F (ξ, hy, hz),
W4 = {F ∈ F: F (x, y, z) = η(x) {η(y)F (ξ, ξ, hz) − η(z)F (ξ, ξ, hy)} ,

(3.1)

for arbitrary vectors x, y, z ∈ V . The subspaces Wi (i = 1, 2, 3, 4) are mutually
orthogonal and invariant under the action of Uπ(n) × {1}.

3.1. The subspace W1 of F

In [10] we obtained that W1 = F1⊕F2⊕F3, where the subspaces Fi (i = 1, 2, 3)
of W1 are mutually orthogonal and invariant under the action of Uπ(n) × {1}.
They were characterized by

F1 =
{

F ∈ F: F (x, y, z) =
1

2(n − 1)
{g(x, ϕy)θF (ϕz) − g(x, ϕz)θF (ϕy)

− g(ϕx, ϕy)θF (hz) + g(ϕx, ϕz)θF (hy)}
}

, (3.2)

F2 = {F ∈ F: F (ϕx, ϕy, z) = −F (x, y, z), θF = 0} , (3.3)
F3 = {F ∈ F: F (ϕx, ϕy, z) = F (x, y, z)} . (3.4)
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Now, we will show that the subspace F3 could be decomposed in an orthogonal
direct sum of two its subspaces. For this purpose we define the following linear
map

k:F3 −→ F3 by k(F )(x, y, z) =
1
3

{F (x, y, z) + F (y, z, x) + F (z, x, y)} .

We note that from (3.4) it follows that F (ξ, y, z) = F (x, ξ, z) = 0 for an arbi-
trary F ∈ F3. Then one can easily verify that k(F )(ϕx, ϕy, z) = k(F )(x, y, z),
i.e. k(F ) belongs to F3. By direct computations we check that k is a projection
(i.e. k2 = k) and it commutes with the action of Uπ(n) × {1}. We put

G3 = Imk =
{

F ∈ F3: F (x, y, z) =
1
3

{
S

(x,y,z)
F (x, y, z)

}}
, (3.5)

G4 = Kerk =
{

F ∈ F3: S
(x,y,z)

F (x, y, z) = 0
}

. (3.6)

Proposition 3.1. The subspace F3 is an orthogonal direct sum of the subspaces
G3 and G4. These subspaces are invariant under the action of Uπ(n) × {1}.
Proof. Taking into account that k is a projection in F3, we have F3 = Imk ⊕
Kerk = G3⊕G4. Further, we will show that G3 and G4 are orthogonal. Because
for an arbitrary F ∈ F the conditions F (x, y, z) = −F (y, x, z) and F (x, y, z) =
1
3{F (x, y, z) + F (y, z, x) + F (z, x, y)} are equivalent, (3.5) becomes

G3 = Imk = {F ∈ F3: F (x, y, z) = −F (y, x, z)} . (3.7)

Now, we take F ′ ∈ G3 and F ′′ ∈ G4. Using (3.6) and (3.7) we obtain

〈F ′, F ′′〉 = gipgjqgkrF1(fi, fj , Fk)F2(fp, fq, Fr)

= −gipgjqgkrF ′(fi, fj , Fk)F ′′(fq, fr, Fp)

− gipgjqgkrF ′(fi, fj , Fk)F ′′(fr, fp, Fq)

= −gjqgipgkrF ′(fj , fi, Fk)F ′′(fq, fp, Fr)

− gkrgipgjqF ′(fk, fi, Fj)F ′′(fr, fp, Fq) = −2〈F ′, F ′′〉.
Thus we find 〈F ′, F ′′〉 = 0. Hence, G3 and G4 are orthogonal.

Finally, taking into account that k commutes with the action of Uπ(n) × {1},
for an arbitrary F ′ ∈ G3 = Imk we have

λ(α)(F ′) = λ(α)(k(F ′)) = k(λ(α)(F ′)). (3.8)

We note that λ(α)(F ′) ∈ F3 because F3 is invariant under the action of Uπ(n)×
{1}. Then from (3.8) it follows that λ(α)(F ′) ∈ G3 which means that G3 is
invariant under the action of U

π(n) × {1}. Since λ(α) is an isometry with
respect to the inner product 〈, 〉 in F, the orthogonal complement G4 of the
invariant subspace G3 in F3 is also invariant. �
From now on, we will denote the subspaces F1 and F2 by G1 and G2, respec-
tively. In conclusion, we state.

Proposition 3.2. The decomposition W1 = G1 ⊕ G2 ⊕ G3 ⊕ G4 is orthogonal
and invariant under the action of Uπ(n) × {1}.
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The characteristic conditions of G1 and G2 are (3.2) and (3.3), respectively,
which were obtained in [10]. According to (3.7) and (3.6), the characteristic
conditions of G3 and G4 are as follows:

G3 = {F ∈ F:F (ξ, y, z) = F (x, ξ, z) = 0, F (x, y, z) = −F (y, x, z)} ,

G4 =
{

F ∈ F:F (ξ, y, z) = F (x, ξ, z) = 0, S
(x,y,z)

F (x, y, z) = 0
}

.

3.2. The subspace W2 of F

In [10] we decomposed W2 into 6 subspaces which are mutually orthogonal
and invariant under the action of Uπ(n) × {1}, i.e.

W2 = F4 ⊕ F5 ⊕ F6 ⊕ F7 ⊕ F8 ⊕ F9.

Taking into account the characteristic condition of W2 in (3.1), we rewrite
the conditions of F6,F7,F8 and F9 in an equivalent form to the one in [10,
Theorem 2.1, p. 124]. Moreover, we denote the subspaces F4,F5,F6,F7,F8,F9

by G5,G6,G7,G8,G9, G10, respectively. So, we have:

G5 = F4 =
{

F ∈ F: F (x, y, z) =
θF (ξ)
2n

{η(y)g(ϕx, ϕz) − η(z)g(ϕx, ϕy)}
}

.

This is the class of generalized α-para-Sasakian manifolds.

G6 = F5 =
{

F ∈ F:F (x, y, z) = −θ∗
F (ξ)
2n

{η(y)g(x, ϕz) − η(z)g(x, ϕy)}
}

.

This is the class of generalized α-para-Kenmotsu manifolds.

G7 = F6 = {F ∈ F: F (x, y, z) = −η(y)F (x, z, ξ) + η(z)F (x, y, ξ),
F (x, y, ξ) = −F (y, x, ξ) = −F (ϕx, ϕy, ξ), θ∗

F (ξ) = 0} ,

G8 = F7 = {F ∈ F: F (x, y, z) = −η(y)F (x, z, ξ) + η(z)F (x, y, ξ),
F (x, y, ξ) = F (y, x, ξ) = −F (ϕx, ϕy, ξ), θF (ξ) = 0} ,

G9 = F8 = {F ∈ F: F (x, y, z) = −η(y)F (x, z, ξ) + η(z)F (x, y, ξ),
F (x, y, ξ) = −F (y, x, ξ) = F (ϕx, ϕy, ξ)} ,

G10 = F9 = {F ∈ F: F (x, y, z) = −η(y)F (x, z, ξ) + η(z)F (x, y, ξ),
F (x, y, ξ) = F (y, x, ξ) = F (ϕx, ϕy, ξ)} .

Remark 3.3. We call the classes G5 and G6 the class of generalized α-para-
Sasakian and generalized α-para-Kenmotsu manifolds, respectively, because
θF (ξ) and θ∗

F (ξ) are functions in general.

3.3. The subspaces W3 and W4 of F

As in [10] we put F10 = W3 and F11 = W4. Now, we denote F10 and F11 by
G11 and G12, respectively. These subspaces were represented by

G11 = F10 = {F ∈ F: F (x, y, z) = η(x)F (ξ, ϕy, ϕz)} ,

G12 = F11 = {F ∈ F: F (x, y, z) = η(x) {η(y)F (ξ, ξ, z) − η(z)F (ξ, ξ, y)}} .
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Corresponding to the decomposition in Sect. 3 of the space F into 12 mutually
orthogonal and invariant subspaces, we give 12 classes of almost paracontact
metric manifolds. An almost paracontact metric manifold M is said to be in
the class Gi (i = 1, . . . , 12) (or Gi-manifold) if at each p ∈ M the tensor F of M
belongs to the subspace Gi. The special class G0, determined by the condition
F (x, y, z) = 0, is the intersection of the basic twelve classes. Hence, G0 is the
class of the almost paracontact metric manifolds with parallel structures, i.e.
∇ϕ = ∇ξ = ∇η = ∇g = 0.

Finally, by using the characteristic symmetries of the structure tensor F of
a (2n + 1)-dimensional almost paracontact metric manifold in the classes Gi

(i = 1, . . . , 12), we obtain

Theorem 3.4. The dimensions of the subspaces in the decomposition of the
space F are as follows:

dimG1 = 2(n − 1), dimG2 = (n − 1)(n2 − 2), dimG3 =
(n − 2)(n − 1)n

3
G4 =

2(n − 1)n(n + 1)
3

, dimG5 = 1, dimG6 = 1,

dimG7 = n2 − 1, dimG8 = n2 − 1, dimG9 = n(n − 1),
dimG10 = n(n + 1), dimG11 = n(n − 1), dimG12 = 2n.

4. The projections of the structure tensor F in the twelve basic
classes of the classification of the almost paracontact metric
manifolds

The decompositions of F in direct sums of the subspaces Wj (j = 1, 2, 3, 4)
and Gi (i = 1, . . . , 12) imply that every F ∈ F has a unique representation
in the form F (x, y, z) =

∑4
j=1 FWj (x, y, z) and F (x, y, z) =

∑12
i=1 F i(x, y, z),

respectively, where FWj ∈ Wj and F i ∈ Gi. Then it is clear that an almost
paracontact metric manifold (M,ϕ, ξ, η, g) belongs to a direct sum of two or
more basic classes, i.e. M ∈ Gi ⊕Gj ⊕· · · , if and only if the structure tensor F
on M is the sum of the corresponding projections F i, F j , . . ., i.e. the following
condition is satisfied F = F i + F j + · · · .
Following the operators defined in [10, Theorem 2.1, p. 124] and the operator
k defined in this paper in Sect. 3.1, we find the projections FWj (j = 1, 2, 3, 4)
and F i (i = 1, . . . , 12) of F ∈ F in the subspaces Wj and Gi, respectively.
These projections are given below:

FW1 = F (ϕ2x, ϕ2y, ϕ2z),

FW2 = −η(y)F (ϕ2x, ϕ2z, ξ) + η(z)F (ϕ2x, ϕ2y, ξ),

FW3 = η(x)F (ξ, ϕy, ϕz),

FW4 = η(x){η(y)F (ξ, ξ, z) − η(z)F (ξ, ξ, y)}.

F 1(x, y, z) =
1

2(n − 1)
{g(x, ϕy)θF 1(ϕz) − g(x, ϕz)θF 1(ϕy)
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− g(ϕx, ϕy)θF 1(ϕ2z) + g(ϕx, ϕz)θF 1(ϕ2y)
}

;

F 2(x, y, z) =
1
2

{
F (ϕ2x, ϕ2y, ϕ2z) − F (ϕx, ϕ2y, ϕz)

}

− 1
2(n − 1)

{g(x, ϕy)θF 1(ϕz) − g(x, ϕz)θF 1(ϕy)

− g(ϕx, ϕy)θF 1(ϕ2z) + g(ϕx, ϕz)θF 1(ϕ2y)
}

;

F 3(x, y, z) =
1
6

{
F (ϕ2x, ϕ2y, ϕ2z) + F (ϕx, ϕ2y, ϕz)

+F (ϕ2y, ϕ2z, ϕ2x) + F (ϕy, ϕ2z, ϕx)
+F (ϕ2z, ϕ2x, ϕ2y) + F (ϕz, ϕ2x, ϕy)

}
;

F 4(x, y, z) =
1
2

{
F (ϕ2x, ϕ2y, ϕ2z) + F (ϕx, ϕ2y, ϕz)

}

− 1
6

{
F (ϕ2x, ϕ2y, ϕ2z) + F (ϕx, ϕ2y, ϕz)

+F (ϕ2y, ϕ2z, ϕ2x) + F (ϕy, ϕ2z, ϕx)
+F (ϕ2z, ϕ2x, ϕ2y) + F (ϕz, ϕ2x, ϕy)

}
;

F 5(x, y, z) =
θF 5(ξ)

2n
{η(y)g(ϕx, ϕz) − η(z)g(ϕx, ϕy)};

F 6(x, y, z) = −θ∗
F 6(ξ)
2n

{η(y)g(x, ϕz) − η(z)g(x, ϕy)};

F 7(x, y, z) = −1
4
η(y)

{
F (ϕ2x, ϕ2z, ξ) − F (ϕx, ϕz, ξ)

−F (ϕ2z, ϕ2x, ξ) + F (ϕz, ϕx, ξ)
}

+
1
4
η(z)

{
F (ϕ2x, ϕ2y, ξ)

−F (ϕx, ϕy, ξ) − F (ϕ2y, ϕ2x, ξ) + F (ϕy, ϕx, ξ)
}

+
θ∗

F 6(ξ)
2n

{η(y)g(x, ϕz) − η(z)g(x, ϕy)};

F 8(x, y, z) = −1
4
η(y)

{
F (ϕ2x, ϕ2z, ξ) − F (ϕx, ϕz, ξ)

+F (ϕ2z, ϕ2x, ξ) − F (ϕz, ϕx, ξ)
}

+
1
4
η(z)

{
F (ϕ2x, ϕ2y, ξ)

−F (ϕx, ϕy, ξ) + F (ϕ2y, ϕ2x, ξ) − F (ϕy, ϕx, ξ)
}

− θF 5(ξ)
2n

{η(y)g(ϕx, ϕz) − η(z)g(ϕx, ϕy)};

F 9(x, y, z) = −1
4
η(y)

{
F (ϕ2x, ϕ2z, ξ) + F (ϕx, ϕz, ξ)

−F (ϕ2z, ϕ2x, ξ) − F (ϕz, ϕx, ξ)
}

+
1
4
η(z)

{
F (ϕ2x, ϕ2y, ξ)

+F (ϕx, ϕy, ξ) − F (ϕ2y, ϕ2x, ξ) − F (ϕy, ϕx, ξ)
}

;

F 10(x, y, z) = −1
4
η(y)

{
F (ϕ2x, ϕ2z, ξ) + F (ϕx, ϕz, ξ)

+F (ϕ2z, ϕ2x, ξ) + F (ϕz, ϕx, ξ)
}

+
1
4
η(z)

{
F (ϕ2x, ϕ2y, ξ)
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+F (ϕx, ϕy, ξ) + F (ϕ2y, ϕ2x, ξ) + F (ϕy, ϕx, ξ)
}

;

F 11(x, y, z) = η(x)F (ξ, ϕ2y, ϕ2z);
F 12(x, y, z) = η(x)

{
η(y)F (ξ, ξ, ϕ2z) − η(z)F (ξ, ξ, ϕ2y)

}
.

Further in this section, using the characteristic conditions of the twelve classes
of almost paracontact metric manifolds and the projections of the structure
tensor F , we relate the obtained classes with those studied in the literature.

Theorem 4.1. A (2n + 1)-dimensional almost paracontact metric manifold
M(ϕ, ξ, η, g) is normal if and only if M belongs to one of the classes G1,
G2, G5, G6, G7, G8 or to the classes which are their direct sums.

Proof. Let M belongs to Gi (i = 1, 2, 5, 6, 7, 8) or to their direct sums. By direct
computations we check that for the structure tensor F of M the condition (2.6)
holds. Hence, M is normal.

Now, let us assume that M is normal. Then (2.6) is fulfilled. Replacing x and
y with ξ in (2.6) we have

F (ξ, ξ, z) = 0. (4.1)
Replacing x with ξ in (2.6) and using (4.1) we get

F (ξ, y, z) = 0. (4.2)

Another consequence from (2.6) is

F (ϕx, ϕy, ξ) = −F (x, y, ξ), (4.3)

which we obtain substituting in (2.6) y and z with ϕy and ξ, respectively. The
equalities (4.1) and (4.2) mean that the projections FW4 and FW3 of F vanish.
Hence, F (x, y, z) = FW1(x, y, z) + FW2(x, y, z). Taking into account (4.3) we
conclude that FW2 = F i or FW2 is a sum of F i (i = 5, 6, 7, 8).

Next, we replace x, y and z in (2.6) with ϕ2x, ϕ2y and ϕz, respectively. By
using (2.2) and (4.1) we obtain

F (ϕ2x, ϕ2y, ϕ2z) + F (ϕx, ϕy, ϕ2z) + F (x, ϕy, ξ) = 0. (4.4)

We substitute x and y in (4.4) with ϕx and ϕy, respectively. So we get

F (ϕx, ϕy, ϕ2z) + F (ϕ2x, ϕ2y, ϕ2z) + F (ϕx, y, ξ) = 0. (4.5)

From (4.3) by using (4.1) we derive F (x, ϕy, ξ) = −F (ϕx, y, ξ). Then (4.4) and
(4.5) imply F (ϕ2x, ϕ2y, ϕ2z) = −F (ϕx, ϕy, ϕ2z), which shows that FW1 = F i

(i = 1, 2) or FW1 = F 1 + F 2. Summarizing the obtained results we conclude
that F = F i (i = 1, 2, 5, 6, 7, 8) or F = F 1 + F 2 + F 5 + F 6 + F 7 + F 8, which
completes the proof. �
Now, by using (2.3) we compute dη for a (2n + 1)-dimensional almost para-
contact metric manifold M belonging to each of the basic classes. We obtain

Lemma 4.2. (a) If M ∈ Gi, i = 1, 2, 3, 4, 6, 7, 10, 11, then dη = 0;
(b) If M ∈ G5, then dη = θF (ξ)

2n g(ϕx, y);
(c) If M ∈ Gi, i = 8, 9, then dη = −F i(x, ϕy, ξ);
(d) If M ∈ G12, then dη = 1

2 (η(x)F (ξ, ξ, ϕy) − η(y)F (ξ, ξ, ϕx)).
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Let G5 be the subclass of G5 which consists of all (2n + 1)-dimensional G5-
manifolds such that θF (ξ) = 2n (resp. θF (ξ) = −2n) by φ(x, y) = g(ϕx, y)
(resp. φ(x, y) = g(x, ϕy)).

Taking into account Lemma 4.2 we establish the truth of the following propo-
sition.

Proposition 4.3. Let M be a (2n + 1)-dimensional G5-manifold. Then M is
paracontact metric if and only if M belongs to G5.

Theorem 4.4. A (2n + 1)-dimensional almost paracontact metric manifold
M(ϕ, ξ, η, g) is paracontact metric if and only if M belongs to the class G5

or to the classes which are direct sums of G5 with G4 and G10.

Proof. Let M belongs to G5. Then from Proposition 4.3 it follows that M is
paracontact metric. If M belongs to a direct sum of G5 with G4, G10, by using
Lemma 4.2 we verify that M is also paracontact metric.

Now, let M be a paracontact metric manifold. Then dη(x, y) = φ(x, y) =
g(ϕx, y) and from (2.3) we have

− F (x, ϕy, ξ) + F (y, ϕx, ξ) = 2g(ϕx, y). (4.6)

Replacing x and y in (4.6) with ξ and ϕy, respectively, we get

F (ξ, ξ, y) = 0. (4.7)

Moreover, replacing y in (4.6) with ϕy we derive

F (x, y, ξ) = F (ϕy, ϕx, ξ) − 2g(ϕx, ϕy). (4.8)

From the condition dη = φ it follows that dφ = 0. Now, dφ(x, y, ξ) = 0 implies

F (x, y, ξ) − F (y, x, ξ) + F (ξ, x, y) = 0. (4.9)

Substituting (4.8) in (4.9) we have F (ϕy, ϕx, ξ)−F (ϕx, ϕy, ξ)+F (ξ, x, y) = 0.
In the last equality we replace x with ϕx, y with ϕy and by using (4.7) we
obtain

F (y, x, ξ) − F (x, y, ξ) + F (ξ, x, y) = 0. (4.10)

The equalities (4.9) and (4.10) imply F (ξ, x, y) = 0. Also, substituting F (ξ, x, y)
= 0 in (4.9) we get

F (x, y, ξ) = F (y, x, ξ). (4.11)

Since F (ξ, ξ, y) = F (ξ, x, y) = 0, we conclude that F = FW1 + FW2 . Hence

dηF = dηF W1 + dηF W2 . (4.12)

Using (4.11) and taking into account the characteristic conditions of the twelve
classes we obtain FW2 = F 5 + F 8 + F 10. From Lemma 4.2 it follows that
dηF W1 = 0, dηF 5(x, y) = θF5 (ξ)

2n g(ϕx, y), dηF 8(x, y) = −F 8(x, ϕy, ξ) and
dηF 10(x, y) = 0. Then (4.12) becomes

g(ϕx, y) =
θF 5(ξ)

2n
g(ϕx, y) − F 8(x, ϕy, ξ). (4.13)



18 Page 12 of 23 S. Zamkovoy and G. Nakova J. Geom.

The equality (4.13) implies that either F 8 = 0 or F 8 = F 5. The case F 8 = F 5

leads a contradiction. Therefore FW2 = F 5 + F 10. Now, because g is non-
degenerate, as an immediate consequence from (4.13) we obtain θF 5(ξ) = 2n.
This means that F 5 = F

5
, where by F

5
we denote the projection of F in

G5. Thus, for FW2 we obtain FW2 = F
5

+ F 10 or FW2 = F
5
. The conditions

dηF W1 = dηF 10 = 0 and (4.12) imply that the case FW2 = F 10 is impossible. In
both cases for FW2 we have S(x,y,z) FW2(x, y, z) = 0. Then from the equality
S(x,y,z) F (x, y, z) = S(x,y,z) FW1(x, y, z) + S(x,y,z) FW2(x, y, z) it follows that
S(x,y,z) FW1(x, y, z) = 0. Taking into account the characteristic conditions of
the classes Gi (i = 1, 2, 3, 4) we conclude that FW1 = F 4. Finally, for F we
obtain F = F

5
, or F = F

5
+ F 4, or F = F

5
+ F 10, or F = F

5
+ F 4 + F 10.

Since dηF 4 = 0, the case F = F 4 is impossible. �
As an immediate consequence from Theorems 4.1 and 4.4 we obtain

Corollary 4.5. A (2n + 1)-dimensional almost paracontact metric manifold
M(ϕ, ξ, η, g) is para-Sasakian if and only if M belongs to the class G5.

Remark 4.6. The result in Corollary 4.5 is the same as that obtained in [13].

It is known that ξ is Killing vector field if (Lξg)(x, y) = 0. By using (2.4) we
get

Proposition 4.7. The vector field ξ is Killing only in the classes G1, G2, G3,
G4, G5, G8, G9, G11 and in the classes which are their direct sums.

Using Theorem 4.4 and Proposition 4.7 we obtain that among the classes
of paracontact metric manifolds the vector field ξ is Killing only in G5 and
G5 ⊕ G4. Then we state.

Theorem 4.8. A (2n + 1)-dimensional almost paracontact metric manifold
M(ϕ, ξ, η, g) is K-paracontact metric if and only if M belongs to the classes
G5 and G5 ⊕ G4.

Finally, we check that dφ vanishes only for normal almost paracontact metric
manifolds belonging to the classes G5, G8 and G5 ⊕G8. Thus we establish the
truth of the following theorem.

Theorem 4.9. A (2n + 1)-dimensional almost paracontact metric manifold
M(ϕ, ξ, η, g) is quasi-para-Sasakian if and only if M belongs to the classes
G5, G8 and G5 ⊕ G8.

5. The projections of the structure tensor F for dimension 3

Let (M,ϕ, ξ, η, g) be a 3-dimensional almost paracontact metric manifold and
{ei}3i=1 = {e1, e2, e3} be a ϕ-basis of TpM , which satisfies the following condi-
tions:

ϕe1 = e2, ϕe2 = e1, e3 = ξ,
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g(e1, e1) = g(e3, e3) = −g(e2, e2) = 1, g(ei, ej) = 0, i 	= j ∈ {1, 2, 3}.

We denote the components of the structure tensor F with respect to the ϕ-
basis {ei}3i=1 by Fijk = F (ei, ej , ek). By direct computations for arbitrary
x, y, z, given by x = xiei, y = yiei, z = ziei with respect to {ei}3i=1, we
obtain

F (x, y, z) = x1
{
F113(y1z3 − y3z1) + F123(y2z3 − y3z2)

}
+x2

{
F213(y1z3 − y3z1) + F223(y2z3 − y3z2)

}
+x3

{
F331(y3z1 − y1z3) + F332(y3z2 − y2z3)

}
.

For the components θi
F = θF (ei), θ∗i

F = θ∗
F (ei), ωi

F = ω(ei) of the Lee forms
θF , θ∗

F , ωF of F we have

θ1F = θ2F = θ∗1
F = θ∗2

F = 0, θ3F = F113 − F223,

θ∗3
F = F123 − F213, ω1

F = F331, ω2
F = F332, ω3

F = F333 = 0. (5.1)

Proposition 5.1. The structure tensor F i (i = 1, . . . , 12) of a 3-dimensional
almost paracontact metric manifold (M,ϕ, ξ, η, g) has the following form in
the corresponding basic classes Gi:

F 1(x, y, z) = F 2(x, y, z) = F 3(x, y, z) = F 4(x, y, z) = 0;

F 5(x, y, z) =
θ3F
2

{
x1(y1z3 − y3z1) − x2(y2z3 − y3z2)

}
,

θ3F
2

= F113 = −F131 = −F223 = F232;

F 6(x, y, z) =
θ∗3

F

2
{
x1(y2z3 − y3z2) − x2(y1z3 − y3z1)

}
,

θ∗3
F

2
= F123 = −F132 = −F213 = F231;

F 7(x, y, z) = F 8(x, y, z) = F 9(x, y, z) = 0; (5.2)
F 10(x, y, z) = F 10

113

{
x1(y1z3 − y3z1) + x2(y2z3 − y3z2)

}
+F 10

123

{
x1(y2z3 − y3z2) + x2(y1z3 − y3z1)

}
,

F 10
113 = −F 10

131 = F 10
223 = −F 10

232, F 10
123 = −F 10

132 = F 10
213 = −F 10

231;
F 11(x, y, z) = 0;
F 12(x, y, z) = ω1

F x3(y3z1 − y1z3) + ω2
F x3(y3z2 − y2z3),

ω1
F = F331 = −F313, ω2

F = F332 = −F323.

By using (5.2) we have

Proposition 5.2. The 3-dimensional almost paracontact metric manifolds be-
long to the classes G5, G6, G10, G12 and to the classes which are their direct
sums.

We note that the assertion in Proposition 5.2 follows also from Theorem 3.4.
Taking into account Proposition 5.2, Theorems 4.1, 4.4, Corollary 4.5, Propo-
sition 4.7, Theorems 4.8 and 4.9 we state:
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Theorem 5.3. (a) The classes of the 3-dimensional normal almost paracon-
tact metric manifolds are G5, G6 and G5 ⊕ G6;

(b) The classes of the 3-dimensional paracontact metric manifolds are G5

and G5 ⊕ G10;
(c) The class of the 3-dimensional para-Sasakian manifolds is G5;
(d) The class of the 3-dimensional K-paracontact metric manifolds is G5;
(e) The class of the 3-dimensional quasi-para-Sasakian manifolds is G5.

Remark 5.4. Well known result in the literature is that every (2n + 1)-
dimensional para-Sasakian manifold M is a K-paracontact metric manifold
but the converse is true only if M is 3-dimensional. The assertions in Corol-
lary 4.5, Theorem 4.8 and (c), (d) from Theorem 5.3 agree with this result.

6. 3-Dimensional Lie algebras corresponding to Lie groups with
almost paracontact metric structure

Let L be a 3-dimensional real connected Lie group and g be its Lie algebra
with a basis {E1, E2, E3} of left invariant vector fields. We define an almost
paracontact structure (ϕ, ξ, η) and a semi-Riemannian metric g in the following
way:

ϕE1 = E2, ϕE2 = E1, ϕE3 = 0
ξ = E3, η(E3) = 1, η(E1) = η(E2) = 0,
g(E1, E1) = g(E3, E3) = −g(E2, E2) = 1,

g(Ei, Ej) = 0, i 	= j ∈ {1, 2, 3}.

Then (L,ϕ, ξ, η, g) is a 3-dimensional almost paracontact metric manifold.
Since the metric g is left invariant the Koszul equality becomes

2g(∇xy, z) = g([x, y], z) + g([z, x], y) + g([z, y], x), (6.1)

where ∇ is the Levi-Civita connection of g. By using (6.1) we find the compo-
nents Fijk = F (Ei, Ej , Ek), (i, j, k ∈ {1, 2, 3}) of the tensor F :

2Fijk = g ([Ei, ϕEj ] − ϕ[Ei, Ej ], Ek) + g ([Ek, ϕEj ] + [ϕEk, Ej ], Ei)
+ g ([ϕEk, Ei] − ϕ[Ek, Ei], Ej) . (6.2)

Let the commutators of g be defined by [Ei, Ej ] = Ck
ijEk, where the structure

constants Ck
ij are real numbers and Ck

ij = −Ck
ji. Then from (6.2) for the non-

zero components Fijk we obtain

F113 = −F131 =
1
2
(C3

12 + C2
13 − C1

23),

F223 = −F232 =
1
2
(C2

13 − C3
12 − C1

23),

F123 = −F132 = −C1
13, F213 = −F231 = C2

23,

F331 = −F313 = C3
23, F332 = −F323 = C3

13. (6.3)
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Taking into account (5.1) and (6.3), for the non-zero components of θF , θ∗
F ,

ωF we have

θ3F = C3
12, θ∗3

F = −C1
13 − C2

23, ω1
F = C3

23, ω2
F = C3

13. (6.4)

Using (5.2), (6.3), (6.4) and applying the Jacobi identity

S
Ei,Ej ,Ek

[
[Ei, Ej ], Ek

]
= 0

we deduce the following

Theorem 6.1. The manifold (L,ϕ, ξ, η, g) belongs to the class Gi(i ∈ {5, 6,
10, 12}) if and only if the corresponding Lie algebra g is determined by the
following commutators:

G5: [E1, E2] = C1
12E1 + C2

12E2 + C3
12E3, [E1, E3] = C2

13E2,

[E2, E3] = C2
13E1: θ3F5

= C3
12 	= 0, C1

12C
2
13 = 0, C2

12C
2
13 = 0; (6.5)

G6: [E1, E2] = C1
12E1 + C2

12E2, [E1, E3] = C1
13E1 + C2

13E2,

[E2, E3] = C2
13E1 + C1

13E2: θ∗3
F6

= −2C1
13 	= 0,

C2
12C

2
13 − C1

13C
1
12 = 0, C1

12C
2
13 − C1

13C
2
12 = 0; (6.6)

G10: [E1, E2] = C1
12E1 + C2

12E2, [E1, E3] = C1
13E1 + C2

13E2,

[E2, E3] = C1
23E1 − C1

13E2: C2
13 	= C1

23 or C1
13 	= 0,

C1
12C

1
13 + C2

12C
1
23 = 0, C1

12C
2
13 − C2

12C
1
13 = 0; (6.7)

G12: [E1, E2] = C1
12E1 + C2

12E2, [E1, E3] = C2
13E2 + C3

13E3,

[E2, E3] = C2
13E1 + C3

23E3: C3
13 	= 0 or C3

23 	= 0,

(C1
12 − C3

23)C
2
13 = 0, (C2

12 + C3
13)C

2
13 = 0,

(C1
12 − C3

23)C
3
13 + (C2

12 + C3
13)C

3
23 = 0. (6.8)

7. Matrix Lie groups as 3-dimensional almost paracontact
metric manifolds

Let (L,ϕ, ξ, η, g) be a 3-dimensional almost paracontact metric manifold from
Sect. 6 belonging to some of the classes Gi(i ∈ {5, 6, 10, 12}). By G we denote
the simply connected Lie group isomorphic to L, both with one and the same
Lie algebra g. Further, we find the adjoint representation Ad of G, which is
the following Lie group homomorphism

Ad: G −→ Aut(g).

For X ∈ g, the map adX : g −→ g is defined by adX(Y ) = [X,Y ], where by
adX is denoted as ad(X). Due to the Jacobi identity, the map

ad: g −→ End(g): X −→ adX

is Lie algebra homomorphism, which is called adjoint representation of g. Since
the set End(g) of all K-linear maps from g to g is isomorphic to the set of all
(n × n) matrices M(n,K) with entries in K, ad is a matrix representation of
g. We denote by Mi the matrices of adEi

(i = 1, 2, 3) with respect to the basis
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{E1, E2, E3} of g. Then for an arbitrary X = aE1 + bE2 + cE3 (a, b, c ∈ R) in
g the matrix A of adX is A = aM1 + bM2 + cM3. By using the well known
identity eA = Ad

(
eX

)
we find the matrix representation of the Lie group G.

7.1. Matrix Lie groups as manifolds from the class G5

Let g5 be the Lie algebra obtained from (6.5) by C1
12 = C2

12 = C2
13 = 0, i.e.

[E1, E2] = αE3, [E1, E3] = 0, [E2, E3] = 0, (7.1)

where α = θ3F5
= C3

12. Then from Theorem 6.1 it follows that (L,ϕ, ξ, η, g),
where L is a Lie group with a Lie algebra g5, belongs to the class G5. In
particular, the manifold is paracontact metric if and only if α = 2. The Levi-
Civita connection ∇ is given by

∇E1E1 = 0, ∇E1E2 = α
2 E3, ∇E1E3 = α

2 E2,
∇E2E1 = −α

2 E3, ∇E2E2 = 0, ∇E2E3 = α
2 E1,

∇E3E1 = α
2 E2, ∇E3E2 = α

2 E1, ∇E3E3 = 0.

It is not hard to see that the Ricci tensor Ric is equal to

Ric(x, y) = scalg(x, y) − 2scalη(x)η(y),

where scal = α2

2 is the scalar curvature. Consequently, L is an η-Einstein
manifold. For the matrices Mi (i = 1, 2, 3) and A we have:

M1 =

⎛
⎝0 0 0

0 0 0
0 α 0

⎞
⎠ , M2 =

⎛
⎝ 0 0 0

0 0 0
−α 0 0

⎞
⎠ , M3 =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ ,

A =

⎛
⎝ 0 0 0

0 0 0
− bα aα 0

⎞
⎠ . (7.2)

Theorem 7.1. The matrix representation of the Lie group G5 corresponding to
the Lie algebra g5, determined by (7.1) and having the matrix representation
(7.2), is

G5 =

⎧⎨
⎩eA =

⎛
⎝ 1 0 0

0 1 0
− bα aα 1

⎞
⎠

⎫⎬
⎭ . (7.3)

Proof. The matrix A is nilpotent of degree q = 2. Therefore we compute eA

directly from

eA = E + A +
A2

2!
+

A3

3!
+ · · · +

Aq−1

(q − 1)!
, (7.4)

i.e. eA = E + A. So we obtain (7.3). �
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7.2. Matrix Lie groups as manifolds from the class G6

We consider the Lie algebra g6 obtained from (6.6) by C1
12 = C2

12 = 0, i.e.

[E1, E2] = 0, [E1, E3] = αE1 + βE2, [E2, E3] = βE1 + αE2, (7.5)

where α = − θ∗3
F6
2 = C1

13, β = C2
13 	= 0. Then from Theorem 6.1 it follows that

(L,ϕ, ξ, η, g), where L is a Lie group with a Lie algebra g6, belongs to the class
G6. The Levi-Civita connection ∇ is given by

∇E1E1 = −αE3, ∇E1E2 = 0, ∇E1E3 = αE1,
∇E2E1 = 0, ∇E2E2 = αE3, ∇E2E3 = αE2,
∇E3E1 = −βE2, ∇E3E2 = −βE1, ∇E3E3 = 0.

It not hard to see that the Ricci tensor Ric is equal to

Ric(x, y) =
scal

3
g(x, y),

where scal = −6α2 is the scalar curvature. Consequently, L is an Einstein
manifold.

For the matrices Mi (i = 1, 2, 3) and A we get:

M1 =

⎛
⎝ 0 0 α

0 0 β
0 0 0

⎞
⎠ , M2 =

⎛
⎝0 0 β

0 0 α
0 0 0

⎞
⎠ , M3 =

⎛
⎝−α −β 0

−β −α 0
0 0 0

⎞
⎠ ,

A =

⎛
⎝− cα − cβ aα + bβ

− cβ − cα bα + aβ
0 0 0

⎞
⎠ . (7.6)

Theorem 7.2. The matrix representation of the Lie group G6 corresponding to
the Lie algebra g6, determined by (7.5) and having the matrix representation
(7.6), is as follows:

• If c 	= 0, β = α and b = −a, then

G6 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eA =

⎛
⎜⎜⎜⎜⎜⎝

1+e−2cα

2
−1+e−2cα

2 0

−1+e−2cα

2
1+e−2cα

2 0

−1+e−2cα

2
−1+e−2cα

2 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (7.7)

• If c 	= 0, β = α and b 	= −a, then

G6 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eA =

⎛
⎜⎜⎜⎜⎜⎝

1+e−2cα

2
−1+e−2cα

2
(a+b)(1−e−2cα)

2c

−1+e−2cα

2
1+e−2cα

2
(a+b)(1−e−2cα)

2c

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (7.8)
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• If c 	= 0, β = −α and b = a, then

G6 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eA =

⎛
⎜⎜⎜⎜⎜⎝

1+e−2cα

2
1−e−2cα

2 0

1−e−2cα

2
1+e−2cα

2 0

−1+e−2cα

2
1−e−2cα

2 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (7.9)

• If c 	= 0, β = −α and b 	= a, then

G6 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eA =

⎛
⎜⎜⎜⎜⎜⎝

1+e−2cα

2
1−e−2cα

2
(a−b)(1−e−2cα)

2c

1−e−2cα

2
1+e−2cα

2
(a−b)(−1+e−2cα)

2c

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (7.10)

• If c 	= 0, β 	= ±α, then

G6 =

⎛
⎜⎜⎜⎜⎜⎝

e−cα cosh cβ −e−cα sinh cβ a(1−e−cα cosh cβ)+be−cα sinh cβ
c

−e−cα sinh cβ e−cα cosh cβ b(1−e−cα cosh cβ)+ae−cα sinh cβ
c

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

. (7.11)

• If c = 0, then

G6 =

⎧⎨
⎩eA =

⎛
⎝ 1 0 aα + bβ

0 1 bα + aβ
0 0 1

⎞
⎠

⎫⎬
⎭ . (7.12)

Proof. The characteristic polynomial of A is

PA(λ) = λ(−cα + cβ − λ)(cα + cβ + λ) = 0.

Hence for the eigenvalues λi (i = 1, 2, 3) of A we have

λ1 = 0, λ2 = c(β − α), λ3 = −c(α + β).

First, we assume that c 	= 0. If β = α (resp. β = −α) we obtain

λ1 = λ2 = 0, λ3 = −2cα (resp. λ1 = λ3 = 0, λ2 = −2cα).

Let us consider the case β = α. Then the eigenvectors

p1 = (− 1, 1, 0), p2 = (a + b, 0, c),

corresponding to λ1 = λ2 = 0, are linearly independent for arbitrary a and b.
The coordinates (x1, x2, x3) of the eigenvector p3, corresponding to λ3 = −2cα,
satisfy the following system:∣∣∣∣∣∣

x1 − x2 + a+b
c x3 = 0

−x1 + x2 + a+b
c x3 = 0.
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If we suppose that b = −a, then p1, p2 = (0, 0, c) and p3 = (1, 1, 1) are linearly
independent and for the change of basis matrix P we get

P =

⎛
⎝− 1 0 1

1 0 1
0 c 1

⎞
⎠ .

By using that eA = PeJP−1, where J is the diagonal matrix with elements
Jii = λi and P−1 is the inverse matrix of P , we obtain the matrix representa-
tion (7.7) of G6. When b 	= −a the vectors p1, p2 = (a+b, 0, c) and p3 = (1, 1, 0)
are linearly independent and the matrix representation of G6 is in the form
(7.8).

In the case β = −α, by analogical computations, we obtain (7.9) and (7.10).

Now, if we take β 	= α, then the eigenvalues λi (i = 1, 2, 3) of A are different
and hence the corresponding eigenvectors

p1 =
(

a

c
,
b

c
, 1

)
, p2 = (1,−1, 0) and p3 = (1, 1, 0)

are linearly independent. Then the matrix representation of G6 is (7.11).

Finally, the assumption c = 0 implies that A is nilpotent matrix of degree
q = 2 and by using (7.4) we obtain (7.12). �

7.3. Matrix Lie groups as manifolds from the class G10

We consider the Lie algebra g10 obtained from (6.7) by C1
12 = C2

12 = C2
13 =

C1
23 = 0, i.e.

[E1, E2] = 0, [E1, E3] = αE1, [E2, E3] = −αE2, (7.13)

where α = C1
13 	= 0. Then from Theorem 6.1 it follows that (L,ϕ, ξ, η, g),

where L is a Lie group with a Lie algebra g10, belongs to the class G10. The
Levi-Civita connection ∇ is given by

∇E1E1 = −αE3, ∇E1E2 = 0, ∇E1E3 = αE1,
∇E2E1 = 0, ∇E2E2 = −αE3, ∇E2E3 = −αE2,
∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

It is easy to see that the Ricci tensor Ric is equal to

Ric(x, y) = scalη(x)η(y),

where scal = −6α2 is the scalar curvature.

For the matrices Mi (i = 1, 2, 3) and A we have:

M1 =

⎛
⎝ 0 0 α

0 0 0
0 0 0

⎞
⎠ , M2 =

⎛
⎝0 0 0

0 0 −α
0 0 0

⎞
⎠ , M3 =

⎛
⎝−α 0 0

0 α 0
0 0 0

⎞
⎠ ,

A =

⎛
⎝− cα 0 aα

0 cα − bα
0 0 0

⎞
⎠ . (7.14)
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Theorem 7.3. The matrix representation of the Lie group G10 corresponding to
the Lie algebra g10, determined by (7.13) and having the matrix representation
(7.14), is as follows:

• If c 	= 0, then

G10 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eA =

⎛
⎜⎜⎜⎜⎜⎝

e−cα 0
a(1−e−cα)

c

0 ecα b(1−ecα)
c

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (7.15)

• If c = 0, then

G10 =

⎧⎨
⎩eA =

⎛
⎝ 1 0 aα

0 1 − bα
0 0 1

⎞
⎠

⎫⎬
⎭ . (7.16)

Proof. From the characteristic polynomial of A

PA(λ) = (− cα − λ)(cα − λ)λ = 0

we find

λ1 = −cα, λ2 = cα, λ3 = 0.

If c 	= 0, then the eigenvalues λi (i = 1, 2, 3) of A are different and hence the
corresponding to λi (i = 1, 2, 3) eigenvectors

p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (a, b, c)

are linearly independent. For the change of basis matrix P we have

P =

⎛
⎝1 0 a

0 1 b
0 0 c

⎞
⎠ .

Then for the matrix representation of G10 we obtain (7.15).

In the case when c = 0 the matrix A is nilpotent of degree q = 2. Using (7.4)
we establish (7.16). �

7.4. Matrix Lie groups as manifolds from the class G12

Let g12 be the Lie algebra obtained from (6.8) by C2
13 = 0, i.e.

[E1, E2] = αE1 + βE2, [E1, E3] = −βE3, [E2, E3] = αE3, (7.17)

where α = ω1
F = C3

23 = C1
12 	= 0, β = −ω2

F = −C3
13 = C2

12 	= 0. Then from
Theorem 6.1 it follows that (L,ϕ, ξ, η, g), where L is a Lie group with a Lie
algebra g12, belongs to the class G12. The Levi-Civita connection ∇ is given
by

∇E1E1 = αE2, ∇E1E2 = αE1, ∇E1E3 = 0,
∇E2E1 = −βE2, ∇E2E2 = −βE1, ∇E2E3 = 0,
∇E3E1 = βE3, ∇E3E2 = −αE3, ∇E3E3 = −βE1 − αE2.
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Hence the matrices Mi (i=1,2,3) and A are:

M1 =

⎛
⎝0 α 0

0 β 0
0 0 −β

⎞
⎠ , M2 =

⎛
⎝−α 0 0

−β 0 0
0 0 α

⎞
⎠ , M3 =

⎛
⎝ 0 0 0

0 0 0
β −α 0

⎞
⎠ ,

A =

⎛
⎝− bα aα 0

− bβ aβ 0
cβ − cα bα − aβ

⎞
⎠ . (7.18)

Theorem 7.4. The matrix representation of the Lie group G12 corresponding to
the Lie algebra g12, determined by (7.17) and having the matrix representation
(7.18), is as follows:

• If bα − aβ 	= 0, then

G12 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eA =

⎛
⎜⎜⎜⎜⎜⎜⎝

aβ−bαeaβ−bα

aβ−bα
aα(eaβ−bα−1)

aβ−bα 0

bβ(1−eaβ−bα)
aβ−bα

−bα+aβeaβ−bα

aβ−bα 0

cβ(1−ebα−aβ)
aβ−bα

cα(ebα−aβ−1)
aβ−bα ebα−aβ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (7.19)

where (a, b) 	= (0, 0).
• If bα − aβ = 0, then

G12 =

⎧⎨
⎩eA =

⎛
⎝1 − bα aα 0

− bβ 1 + aβ 0
cβ − cα 1

⎞
⎠

⎫⎬
⎭ , (7.20)

where both a and b are zero or non-zero.

Proof. From the characteristic polynomial of A

PA(λ) = λ(λ + bα − aβ)(bα − aβ − λ) = 0

we find

λ1 = 0, λ2 = −bα + aβ, λ3 = bα − aβ.

First, we assume that bα − aβ 	= 0. From this condition it follows that
(a, b) 	= (0, 0) and the eigenvalues λi (i = 1, 2, 3) of A are different. Then
the corresponding to λi (i = 1, 2, 3) eigenvectors

p1 = (a, b, c), p2 = (α, β, 0), p3 = (0, 0, 1)

are linearly independent and the change of basis matrix P is

P =

⎛
⎝a α 0

b β 0
c 0 1

⎞
⎠ .

By straightforward computations we obtain that in this case (7.19) is the
matrix representation of G12.
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If bα − aβ = 0, then both a and b are zero or non-zero. In this case the matrix
A is nilpotent of degree q = 2 and the matrix representation of G12 is in the
form (7.20). �
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