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Abstract. Two results are proved synthetically in Hilbert’s absolute ge-
ometry: (i) of all triangles inscribed in a circle, the equilateral one has
the greatest area; (ii) of all triangles inscribed in a circle, the equilateral
one has the greatest radius of the inscribed circle (which amounts, in the
Euclidean case, to Euler’s inequality R ≥ 2r).
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1. Introduction

The fact that, in Euclidean geometry, in every triangle that is not equilateral,
the radius of the circumscribed circle is greater than twice the radius of the
inscribed circle, and in the equilateral case we have equality between the two
magnitudes, i. e. that R ≥ 2r, with equality if and only if the triangle is
equilateral, can be easily deduced from the paper [2] Euler published in 1767,
but cannot be found explicitly mentioned in these terms there, as pointed out
in [10]. While stated earlier, by Chapple in [1]—“To inscribe and circumscribe
a triangle in and about two eccentric circles, the radius of the lesser circle must
be less than half the radius of the greater circle.”—the proof provided there
for it is faulty. That flawed proof starts with a correct proof of the fact that
among all the triangles inscribed in a given circle the equilateral one has the
greatest area.

If we ask for an absolute geometry version of Euler’s inequality, then we cannot
expect it to be R ≥ 2r. There are two reasons why that inequality cannot hold
in absolute geometry. First, there are triangles in hyperbolic geometry for
which there is no circumscribed circle, so R makes no sense at all in those
cases. Even if we were to state the inequality in a manner that ensures that
the circumscribed circle exists—one could state that, for all triangles inscribed
in a circle of radius R, we have R ≥ 2r—the inequality is false for triangles in
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absolute geometries in which the sum of the angles in a triangle exceeds two
right angles (to be denoted henceforth by π), as shown in [8, Lemma 3].

An inequality that both makes perfect sense in plane absolute geometry and
which happens to also be true, as we shall prove in this paper, is:

Theorem 1. Of all triangles inscribed in a given circle, the equilateral triangle
and only it has the greatest radius of the inscribed circle. Put differently, if
ABC is a non-equilateral triangle inscribed in a circle C, and EFG is an
equilateral triangle inscribed in C, then rABC < rEFG, where by rXY Z we have
denoted the radius of the inscribed circle of triangle XY Z.

It is also true that Chapple’s result,

Theorem 2. Of all triangles inscribed in a given circle, the equilateral triangle
has the greatest area.

holds in plane absolute geometry.

The aim of this paper is to prove these two theorems inside Hilbert’s plane
absolute geometry A (whose axioms are the plane axioms of groups I, II, and
III of Hilbert’s Grundlagen der Geometrie, or equivalently the axioms A1–A9
in [11]). The core results true in A can be found in [4] or [5]. Their proofs in
Euclidean geometry can be found in [6, pp. 79–84, pp. 100–104].

2. Comparing areas and angles of triangles inscribed in a circle

There are three kinds of models of Hilbert’s plane absolute geometry, which
we will refer to as Hilbert planes. In Hilbert planes, the sum of the angles in
any triangle can be: (i) π, and then we say they are of Euclidean type; (ii) less
than π, and then we say they are of hyperbolic type; (iii) greater than π, and
then we say they are of elliptic type.

To compare the areas of two triangles, we will use Hilbert’s notion of equide-
composability (Zerlegungsgleichheit), and will say that the area of triangle
ABC is less than that of triangle A′B′C ′ if triangle ABC can be decomposed
into a finite number of triangles that can be recomposed to form a proper part
of A′B′C ′. For our purposes, this equidecomposability notion can be turned
into one of first-order logic, by restricting the number of triangles used in the
decomposition to three. We thus do not need to assign a measure to triangles
to make sense of the phrase “the area of the equilateral triangle inscribed in
C is greater than that of any other non-equilateral triangle inscribed in C.”
Area measures can indeed be introduced in Hilbert planes, as shown in [3],
but we have decided to avoid referring to them, given that we can express
our theorem without area measures. Notice, however, that, if an area measure
were defined, then the equidecomposability of triangles and quadrilaterals im-
plies the equality of the areas, but the equality of the areas does not imply
equidecomposability, as shown by Hilbert in his GdG (see also [5, Chapter 5]).
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Figure 1 The area of triangle ABP2 is greater than that of
triangle ABP1

To prove Theorem 2, we will first prove the following

Lemma 1. Let A,B, and C be three points on a circle C, such that CA ≡ CB,

and let P1 and P2 be two points on the arc
�
CB on which A does not lie, such

that P1 lies on the arc
�
P2B on which C does not lie. Then the area of triangle

ABP1 is less than that of triangle ABP2.

Proof. Let O be the center of the circle C. Let U be the point of intersection of
segments AP1 and BP2, and let b denote the internal angle bisector of ̂AUB.
Let p denote the perpendicular bisector of AB (see Fig. 1).

Since p passes through C, the points B and P2 lie on the same side of p, and
thus U and B lie on the same side of p. Since B and A lie on different sides
of p, the points U and A also lie on different sides of p, i.e., p intersects the
segment AU . This means that UA > UB. Let r denote the perpendicular
bisector of P1P2 and let D denote the reflection of B in r. Let R denote the

intersection of r with the arc
�
P2P1 on which C does not lie. Since ̂BOR ≡

̂ROD, ̂BOR < ̂BOC, we have that D lies on the arc
�
AP2 on which C lies.

Since ΔP2P1B ≡ ΔP1P2D, we have ̂BP2P1 ≡ ̂DP1P2, and, since ̂DP1P2 <

̂AP1P2 (given that D lies on the arc
�
AP2 on which C lies), we also have
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̂UP2P1 < ̂AP1P2, so UP1 < UP2 (given that opposite the greater angle lies
the greater side in triangle UP2P1). Let B′ denote the reflection of B in b and
P ′

1 denote the reflection of P1 in b. Since UB < UA and UP1 < UP2, we have
that B′ lies between A and U and that P ′

1 lies between U and P2.

Thus triangle ABP1 has been split into two triangles, ABU and BUP1, and
these two triangles have been reassembled to form the quadrilateral ABP ′

1B
′,

consisting of the two triangles ABU and B′UP ′
1. Given that the quadrilateral

ABP ′
1B

′ is a proper part of triangle ABP2, we are done. �

Corollary 1. Under the conditions of Lemma 1, in Hilbert planes of hyperbolic
type the sum of the angles of triangle ABP1 is greater than the sum of the
angles of triangle ABP2, whereas in Hilbert planes of elliptic type the sum of
the angles of triangle ABP1 is smaller than the sum of the angles of triangle
ABP2.

Proof. The sum of the angles of triangle ABP2 is ̂ABP2 + ̂P1AB + ̂P1AP2 +
̂AP2B, whereas that of triangle ABP1 is ̂P1AB+ ̂ABP2+ ̂P2BP1+ ̂AP1B. Given
that ̂ABP2 + ̂P1AB is common in the two sums, we need to compare only the
sums ̂P1AP2 + ̂AP2B and ̂P2BP1 + ̂AP1B to find out which among the angle
sums of triangle ABP1 and triangle ABP2 is greater. Notice that the angles of
the convex quadrilateral AB′P ′

1P2 are ̂AP2B, π − ̂AP1B, π − ̂P2BP1, ̂P1AP2.
Thus the sum of the angles of AB′P ′

1P2 is 2π+ ̂AP2B+ ̂P1AP2− ̂AP1B− ̂P2BP1.
Since the sum of the angles of AB′P ′

1P2 is the sum of the angles of the two
triangles AB′P ′

1 and AP ′
1P2, and thus < 2π in the hyperbolic case and > 2π in

the elliptic case, we have ̂P1AP2 + ̂AP2B < ̂AP1B + ̂P2BP1 in Hilbert planes
of hyperbolic type and ̂P1AP2 + ̂AP2B > ̂AP1B + ̂P2BP1 in Hilbert planes of
elliptic type. �

Lemma 2. If C, A,B,C, P1, and P2 are as in Lemma 1, then ̂AP2B < ̂AP1B

in Hilbert planes of hyperbolic type, whereas ̂AP2B > ̂AP1B in Hilbert planes
of elliptic type.

Proof. Let P be an arbitrary point of the arc
�
CB on which P1 and P2 lie.

We distinguish several cases: (i) the center O of C and C lie one the same side
of AB; (ii) O and C lie on different sides of AB; and (iii) O lies on AB. Case
(i) splits into three subcases: (α) O lies inside triangle ABP ; (β) O lies outside
triangle ABP ; and (γ) O lies on AP .

In case (α), the sum of the angles of triangle ABP is ̂OAB + ̂OBA + ̂OAP +
̂OPA + ̂OPB + ̂PBO. Given that the triangles OAB, OAP , and OPB are
isosceles, the above sum can be written as 2̂OAB + 2( ̂OPA + ̂OPB), i. e.,
2̂OAB +2̂APB. In case (β), the sum of the angles of triangle ABP is ̂OAB −
̂OAP + ̂OPB − ̂OPA + ̂OBP + ̂OBA. Given that the triangles OAB, OAP ,
and OPB are isosceles, the above sum can be written as 2̂OAB + 2̂APB. In
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case (γ) the sum of the angles of triangle ABP is ̂OAB+̂OBA+̂OBP +̂OPB.
Given that the triangles OAB and OPB are isosceles, the above sum can be
written as 2̂OAB + 2̂APB.

In case (ii), the sum of the angles of triangle ABP is ̂OAP − ̂OAB + ̂OBP −
̂ABO + ̂OPB + ̂OPA. Given that the triangles OAB, OAP , and OPB are
isosceles, the above sum can be written as 2( ̂OPA + ̂OPB) − 2̂OAB, i. e.,
2̂APB − 2̂OAB.

In case (iii), the sum of the angles of triangle ABP is ̂OAP + ̂OPA + ̂OPB +
̂OBP . Given that the triangles OAP and OPB are isosceles, the above sum
can be written as 2̂APB.

Thus, in all cases, the sum of the angles of triangle ABP is 2̂APB + 2ε̂OAB,
where ε ∈ {−1, 0, 1}. The desired conclusion now follows by Corollary 1. �

For completeness’ sake, let us mention that in case the metric of the Hilbert
plane is Euclidean, under the conditions of Lemma 1, the sum of the angles of
triangles ABP1 and ABP2 are the same (namely π), and ̂AP2B ≡ ̂AP1B.

3. Proof of Theorem 2

We denote by σ(XY Z) < σ(UV W ) the fact that the area of triangle XY Z is
less than that of triangle UV W and by σ(XY Z) = σ(UV W ) the fact that the
two triangles have the same area (in the sense that they can be decomposed
into a collection of pairwise congruent triangles). By [7] there is an angle of 2π

3
in A. Let ABC be an arbitrary triangle inscribed in the circle C of center O. If
one of ̂AOB, ̂BOC, or ̂COA is 2π

3 , say ̂AOB, and we let C ′ denote the point
on C for which C ′A ≡ C ′B ≡ AB, then, if C and C ′ lie on the same side of
AB, by Lemma 1, σ(ABC) ≤ σ(ABC ′), with equality if and only if C = C ′.
If C and C ′ lie on the different sides of AB, then we let C1 be the reflection of
C in AB. Since C1 lies inside C, if C2 denotes the second intersection of AC1

with C, then σ(ABC) = σ(ABC1) < σ(ABC2) < σ(ABC ′), the last inequality
holding by Lemma 1.

If none of ̂AOB, ̂BOC, or ̂COA is 2π
3 , then one of them, say ̂AOB, must

be less than 2π
3 , and one of the remaining two angles, say ̂BOC, must be

greater than 2π
3 . Let D denote the midpoint of the arc

�
CA on which B lies.

If ̂AOD ≥ 2π
3 , then let B′ be the point on the arc

�
CA on which B lies

such that ̂AOB′ is 2π
3 . By Lemma 1, σ(ABC) < σ(AB′C). Let EFG denote

an equilateral triangle inscribed in C. We can argue as above to deduce that
σ(AB′C) ≤ σ(EFG), and thus σ(ABC) < σ(EFG). If ̂AOD < 2π

3 , then

let B′ be the point on the arc
�
CA on which B lies such that ̂COB′ is 2π

3 .
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Figure 2 If IT ≡ I ′T ′, IT ⊥ AB, I ′T ′ ⊥ AB, then ̂AIB <
̂AI ′B

By Lemma 1, σ(ABC) < σ(AB′C), and we argue as above to deduce that
σ(ABC) < σ(EFG). �

4. Additional Lemmas needed to prove Theorem 1

To prove Theorem 1, we first need no show that the radius of the inscribed
circle of the triangle ABP increases if we keep A and B fixed, and allow P to

move from B toward C on the arc
�
CB that does not contain A (notations

being as in Lemma 1). To be precise

Lemma 3. If C, A,B,C, P1, and P2 are as in Lemma 1, then rABP1 < rABP2 .

Proof. To prove Lemma 3, however, we need three additional lemmas.

Lemma 4. If M is the midpoint of a segment AB, T is a point between M and
B, T ′ is a point between M and T , and I and I ′ are two points on the same
side of AB such that IT ≡ I ′T ′ and IT ⊥ AB, I ′T ′ ⊥ AB, then ̂AIB < ̂AI ′B.

Proof. Let B′ be between T ′ and B such that T ′B′ ≡ TB, and A′ be such that
A lies between A′ and M and T ′A′ ≡ TA. Notice that ΔAIB ≡ ΔA′I ′B′ and
that BB′ ≡ AA′. We claim that ̂A′I ′A < ̂B′I ′B. To see this, let B0 and B′

0 be
the reflections of B and B′ in T ′ respectively (see Fig. 2). Then B0B

′
0 ≡ AA′

and the order on the segment T ′A′ is T ′B′
0B0AA′.

Since ̂B′I ′B ≡ ̂B′
0I

′B0, we need to show that ̂A′I ′A < ̂B′
0I

′B0. To see this,
notice that ̂I ′B′

0B0 < ̂I ′AA′, since the latter is an exterior angle of triangle
I ′B′

0A. Note also that I ′B′
0 < I ′A, given that ̂I ′B′

0A is, as an exterior angle of
the right triangle I ′T ′B′

0, obtuse. Let A0 be a point such that B′
0 lies between I ′

and A0, and such that I ′A0 ≡ I ′A (i. e., A0 is the other endpoint of the segment
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I ′A transported on the ray
−→

I ′B′
0 from I ′). Let A′

0 be such that T ′ and A′
0 are

on different sides of I ′A0, A0A
′
0 ≡ AA′ and ̂I ′A0A′

0 ≡ ̂I ′AA′. Notice that, by
construction, ΔI ′AA′ ≡ ΔI ′A0A

′
0. Let U be a point such that U and T ′ are

on different sides of I ′A0 and such that A0U ≡ B′
0B0 and ̂I ′B′

0B0 ≡ ̂I ′A0U .
If X and Y denote the feet of the perpendiculars from B0 and from U to
I ′A0, then XY UB0 is a Saccheri quadrilateral (since ΔA0UY ≡ ΔB′

0B0X
(AAS), we have UY ≡ B0X), and so B0U is parallel to B′

0A0. This means
that U lies inside the angle ̂A0I ′B0 (for else, the line UB0 would have to
intersect the segment I ′A0 by the Pasch axiom). Since ̂I ′A0U < ̂I ′A0A′

0, by

the Crossbar Theorem (see [4, p. 116]), the ray
−→

A0U intersects I ′A′
0 in some

point P . Notice that P cannot be such that U lies between A0 and P or
such that P = U , for then, in triangle A0PA′

0, ̂A0PA′
0 > ̂I ′A0U > π

2 , and
A0P ≥ A0A

′
0, a contradiction, for opposite the greater angle lies the greater

side. Thus P is between A0 and U , and we are done, as this implies that
̂A′I ′A < ̂B′I ′B. This implies ̂A′I ′B′ < ̂AI ′B and, since ̂A′I ′B′ ≡ ̂AIB, we
deduce that ̂AIB < ̂AI ′B. �

Lemma 5. Let ABC and A′B′C ′ be two triangles such that AB < A′B′,
̂ABC < ̂A′B′C ′, and ̂BAC and ̂B′A′C ′ are right angles. Then AC < A′C ′.

Proof. Let A0 be the point on the ray
−→

B′A′ for which B′A0 ≡ BA (see Fig. 3).
Since AB < A′B′, A0 lies between B′ and A′. Now transport ̂ABC from B′ on
the half-plane determined by A′B′ on which C ′ lies, such that one of its legs is
−→

B′A′, and let 	r denote its other leg. Since ̂ABC < ̂A′B′C ′, 	r is inside the angle
̂A′B′C ′ and thus, by the Crossbar Theorem, intersects the segment A′C ′ in D.

Let C0 denote the point of intersection of the perpendicular p raised in A0 on
A′B′ with the segment B′D (the point of intersection exist by the Pasch axiom
applied to triangle A′B′D with secant p). The triangles ABC and A0B

′C0 are
congruent by our construction, so AC ≡ A0C0. Now A0C0 < A′D, for if E

were the point on ray
−→

A′C ′ such that A0C0 ≡ A′E, then, EA′A0C0 being a
Saccheri quadrilateral, EC0 is parallel to A′A0, and so E can be neither D
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nor can it be such that D is between A′ and E (for then EC0 would intersect
the segment A′B′ by the Pasch axiom applied to triangle B′A′D and secant
EC0). Thus AC ≡ A0C0 < A′D < A′C ′. �

Lemma 6. Let ABC and A′B′C ′ be two triangles such that AB ≡ A′B′,
̂CBA < ̂C ′B′A′, and ̂BAC and ̂B′A′C ′ are right angles. Then ̂B′C ′A′ <
̂BCA.

Proof. Let D be the point on the segment A′C ′ for which ̂A′B′D ≡ ̂ABC (see
Fig. 3). Then the triangles A′B′D and ABC are congruent, and so ̂A′DB′ ≡
̂ACB. Since ̂A′DB′ is exterior angle in triangle C ′DB′, we have ̂ACB ≡
̂A′DB′ > ̂A′C ′B′. �

We now turn to the proof of Lemma 3. Let, for i ∈ {1, 2}, Ii denote the center
of the inscribed circle of triangle ABPi, i. e., the intersection of the internal
bisectors of the angles ̂PiAB and ̂PiBA. First, notice that, since ̂P1AB <
̂P2AB and ̂P1BA > ̂P2BA, the same inequalities must hold for the halves
of these angles, i. e., ̂I1AB < ̂I2AB and ̂I1BA > ̂I2BA. This means that
the segments AI1 and BI2 intersect in a point F . Let, for i ∈ {1, 2}, Ti, Ui,
and Vi stand for the feet of the perpendiculars from Ii to AB,PiA, and PiB,
respectively. Let M be the midpoint of AB. The order of the points T1, T2,M
on AB thus is AMT2T1B.

We will consider each of three types of Hilbert planes separately.

In the Euclidean case (see Fig. 4), since ̂AP1B ≡ ̂AP2B, we have ̂AIiB =
π+̂APiB

2 , for i ∈ {1, 2}, so ̂AI1B = ̂AI2B. Thus I1 and I2 lie on an arc U
of a circle that goes through A and B, both on the arc

�
NB of that circle,

where by N we have denoted the intersection of MC with U . We are thus in
the situation described by Lemma 1, so the area of triangle ABI2 is greater
than that of triangle ABI1. Since in Hilbert planes of Euclidean type, one
can associate an area measure of a triangle to be half of the product of the
altitude to a side with that side, and the side AB is common to both triangles,
we conclude that I1T1 < I2T2, i. e., rABP1 < rABP2 .

In the hyperbolic case (see Fig. 5), let I ′
2 be the point on ray

−→
T2I2 for which

T2I
′
2 ≡ T1I1. By Lemma 4, ̂AI1B < ̂AI ′

2B. Let U ′
2 and V ′

2 be the images of T2

under the reflections in AI ′
2 and BI ′

2 respectively. Since 2̂AI1B > π (else
−→
AU1

and
−→
BV1 would not intersect), we have, a fortiori, 2̂AI ′

2B > π. Let b denote the
internal angle bisector of ̂U ′

2I
′
2V

′
2 . Since ̂U1I1P1 = π−̂AI1B, the angle between

b and
−→

I ′
2U

′
2, whose measure is π− ̂AI ′

2B, is less than ̂U1I1P1, which means that
b must intersect AU ′

2 in a point P ′
2. By Lemma 6, we have ̂U1P1I1 < ̂U ′

2P
′
2I

′
2,

and thus the same can be said about twice the corresponding angles, i. e.,
̂AP1B < ̂AP ′

2B. By Lemma 2, ̂AP2B < ̂AP1B, so ̂AP2B < ̂AP ′
2B. If I ′

2 = I2,
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Figure 4 I1T1 < I2T2 in the Euclidean case
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Figure 5 I1T1 < I2T2 in the hyperbolic case
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then P ′
2 = P2, and so ̂AP2B ≡ ̂AP ′

2B. If I ′
2 were such that I2 lies between

T2 and I ′
2, then P2 would lie inside triangle ABP ′

2, and thus ̂AP2B > ̂AP ′
2B.

We must thus have that I ′
2 lies between T2 and I2 (and thus P ′

2 lies inside the
triangle AP2B), which means that rABP2 > rABP1 .

In the elliptic case, since, for i ∈ {1, 2}, AUi ≡ ATi and BVi ≡ BTi, we have
that AUi+BVi = AB, so PiA+PiB = PiUi+AUi+PIVi+BVi = 2PiUi+AB.
By [9, Lemma 1], we have P1A + P1B < P2A + P2B, so 2P1U1 + AB <

2P2U2 + AB, i. e., P1U1 < P2U2. By Lemma 2, ̂AP2B > ̂AP1B, so the same
inequality holds for the halves, i. e., ̂U2P2I2 > ̂U1P1I1. We can now apply
Lemma 5 to triangles U1P1I1 and U2P2I2 to conclude that I1U1 < I2U2, i. e.,
rABP1 < rABP2 . �

5. Proof of Theorem 1

By [7] there is an angle of 2π
3 in A. Let ABC be an arbitrary triangle inscribed

in the circle C of center O. Here we distinguish several cases. If one of ̂AOB,
̂BOC, or ̂COA is 2π

3 (case 1), say ̂AOB, and we let C ′ denote the point on C
for which C ′A ≡ C ′B ≡ AB, then, by Lemma 3, rABC ≤ rABC′ , with equality
if and only if C = C ′. We denote by rΔ the radius of the inscribed circle in
the equilateral triangle inscribed in C.

If none of ̂AOB, ̂BOC, or ̂COA is 2π
3 (case 2), then one of them, say ̂AOB

must be less than 2π
3 , and one of the remaining two angles, say ̂BOC, must be

greater than 2π
3 . Let D denote the midpoint of the arc

�
CA on which B lies.

If ̂AOD ≥ 2π
3 (case 2a), then let B′ be the point on the arc

�
CA on which

B lies such that ̂AOB′ is 2π
3 . By Lemma 3, rABC < rAB′C , and we can argue

as in case 1 to deduce that rAB′C ≤ rΔ, and thus rABC < rΔ. If ̂AOD < 2π
3

(case 2b), then let B′ be the point on the arc
�
CA on which B lies such that

̂COB′ is 2π
3 . By Lemma 3, rABC < rAB′C , and we argue as in case 1 to deduce

that rABC < rΔ.
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