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1. Introduction

A complex two-plane Grassmannian G2(Cm+2) consists of all complex two di-
mensional linear subspaces of Cm+2, which is the unique compact, irreducible,
Kähler, quaternionic Kähler manifold which is not a hyper Kähler manifold
(See Berndt and Suh [1,2]). Let M be a real hypersurface of G2(Cm+2). The
Kähler structure J on G2(Cm+2) induces a structure vector field ξ called Reeb
vector field on M by ξ := −JN , where N is a local unit normal vector field
of M in G2(Cm+2). For the quaternionic Kähler structure J of G2(Cm+2),
its canonical basis {J1, J2, J3} induces the almost contact structure vector
fields {ξ1, ξ2, ξ3} on M by ξv := −JvN, v = 1, 2, 3. It is well known that for
the real hypersurface M there exist two natural geometrical conditions that
[ξ] = Span{ξ} or D⊥ = Span{ξ1, ξ2, ξ3} is invariant under the shape operator
A of M . Denote by D the orthogonal complement of the distribution D⊥. By
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using such geometrical conditions Berndt and Suh proved that the Reeb vector
field ξ either belongs to D or D⊥ and gave the following classification:

Theorem 1.1. ([1]) Let M be a connected real hypersurface of G2(Cm+2),m ≥ 3.
If D⊥ and [ξ] are invariant under shape operator, then

• (A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2) for ξ ∈ D⊥, or

• (B) M is locally congruent to an open part of a tube around a totally
geodesic QPn in G2(Cm+2) for ξ ∈ D, where m = 2n.

If the Reeb vector field ξ is invariant under by shape operator, M is said to be a
Hopf hypersurface, that is, Aξ = αξ, where α = g(Aξ, ξ) is a smooth function.
Based on the classification of Theorem 1.1 Berndt and Suh later gave a new
characterization for the type (B) hypersurfaces of G2(Cm+2).

Theorem 1.2. ([6]) Let M be a connected orientable Hopf real hypersurface
in G2(Cm+2),m ≥ 3. Then the Reeb vector ξ belongs to the distribution D if
and only if M is locally congruent to an open part of a tube around a totally
geodesic QPn in G2(Cm+2), where m = 2n.

For the classification of real hypersurfaces in G2(Cm+2), the assumption that
the Ricci tensor satisfies certain conditions is key. For example, Suh and Jeong
classified the real Hopf hypersurfaces of G2(Cm+2) with commuting Ricci ten-
sor and pseudo anti-commuting Ricci tensor, respectively (cf.[5,8]). Also, in
the series of articles Suh studied respectively the real hypersurfaces admitting
a parallel, Reeb parallel, and Reeb invariant Ricci tensor (see [9–11]).

As the corresponding of Ricci tensor, we note that Hamada in [4] defined the
*-Ricci tensor of a real hypersurface in non-flat complex space forms by

Ric∗(X,Y ) =
1
2
trace{φ ◦ R(X,φY )}, ∀X,Y ∈ TM. (1.1)

In [3], we considered a real hypersurface of G2(Cm+2) with commuting *-Ricci
tensor and pseudo anti-commuting *-Ricci tensor, respectively. Motivated by
the present work, in this paper we study a real Hopf hypersurface whose *-Ricci
tensor satisfies certain parallel conditions. We first consider the real hypersur-
face with parallel *-Ricci tensor, i.e. ∇S∗ = 0, where the *-Ricci operator S∗

is defined by Ric∗(X,Y ) = g(S∗X,Y ) for any vector fields X,Y on M . We
assert the following:

Theorem 1.3. There do not exist any Hopf hypersurfaces with parallel *-Ricci
tensor in G2(Cm+2),m ≥ 3.

However, by relaxing the parallel condition to Reeb parallel, i.e. ∇ξS
∗ = 0, we

have the following result.

Theorem 1.4. Let M be a Hopf hypersurface in G2(Cm+2),m ≥ 3 with Reeb
parallel *-Ricci tensor. If S∗D⊥ ⊂ D⊥ then either M is locally congruent to
an open part of a tube around a totally geodesic QPn in G2(Cm+2), where
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m = 2n, or M is an open part of a tube around a totally geodesic G2(Cm+1)
in G2(Cm+2).

Finally we assume that the *-Ricci tensor is Lie Reeb parallel, i.e. LξRic∗ = 0,
where Lξ denotes the Lie derivative along Reeb vector field ξ, and prove the
following:

Theorem 1.5. Let M be a Hopf hypersurface of complex two-plane Grassman-
nian G2(Cm+2),m ≥ 3. If the *-Ricci tensor is Lie Reeb parallel, then M is
an open part of a tube around a totally geodesic in G2(Cm+2).

This paper is organized as follows: In Sect. 2, some basic concepts and formulas
for real hypersurfaces in complex two-plane Grassmannian are presented. In
Sect. 3 we consider Hopf hypersurfaces with parallel *-Ricci tensor and give
the proofs of Theorem 1.3 and Theorem 1.4. In Sect. 4 we assume that the
*-Ricci tensor of Hopf hypersurface is Lie Reeb parallel and give the proof of
Theorem 1.5.

2. Preliminaries

In this section we will summarize some basic notations and formulas about the
complex two-plane Grassmannian G2(Cm+2). For more detail please refer to
[1,2,7–9]. Let G2(Cm+2) be the complex Grassmannian manifold of all complex
2-dimensional linear spaces of Cm+2. In fact G2(Cm+2) can be identified with
a homogeneous space SU(m + 2)/(S(U(2) × U(m)). Up to scaling there exists
the unique S(U(2)×U(m))-invariant Riemannian metric g̃ on G2(Cm+2). The
Grassmannian manifold G2(Cm+2) equipped such a metric becomes a sym-
metric space of rank two, which is both Kähler and quaternionic Kähler. From
now on we always assume m ≥ 3 because it is well known that G2(C3) is
isometric to CP 2 and G2(C4) is isometric to the real Grassmannian manifold
G+

2 (R6) of oriented 2-dimensional linear subspace of R6.

Denote by J and J the Kähler structure and quaternionic Kähler structure
on G2(Cm+2), respectively. A canonical local basis {J1, J2, J3} of J consists of
almost Hermitian structures Jv such that JvJv+1 = Jv+2 = −Jv+1Jv, where
the index is taken modulo three. As is well known the Kähler structure J and
quaternionic Kähler structure J satisfy the following relations:

JJv = JvJ, trace(JJv) = 0, v = 1, 2, 3.

We denote ˜∇ by the Levi-Civita connection with respect to g̃, there exist 1-
forms q1, q2, q3 such that ˜∇XJv = qv+2(X)Jv+1 − qv+1(X)Jv+2 for any vector
field X on G2(Cm+2).

Let M be an immersed real hypersurface of G2(Cm+2) with induced metric
g. There exists a local defined unit normal vector field N on M and we write
ξ := −JN by the structure vector field of M . An induced one-form η is defined
by η(·) = g̃(J ·, N), which is dual to ξ. For any vector field X on M the tangent
part of JX is denoted by φX = JX−η(X)N . Moreover, the following identities
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hold:

φ2 = −Id + η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0, η(ξ) = 1, (2.1)

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), g(X, ξ) = η(X), (2.2)

where X,Y ∈ X(M). By these formulas, we know that (φ, η, ξ, g) is an almost
contact metric structure on M . Similarly, for every almost Hermitian structure
Jv, it induces an almost contact structure (φv, ηv, ξv, g) on M by

ξv = −JvN, ηv(X) = g(ξv,X), φvX = JvX − ηv(X)N,

for any vector field X. Thus the relations (2.1) and (2.2) hold for (φv, ηv, ξv, g).
Denote by ∇, A the induced Riemannian connection and the shape operator
on M , respectively. Then the Gauss and Weingarten formulas are given by

˜∇XY = ∇XY + g(AX,Y )N, ˜∇XN = −AX.

Also, we have

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX. (2.3)

Moreover, the following equations are proved (see [7]):

φv+1ξv = −ξv+2, φvξv+1 = ξv+2, (2.4)
φξv = φvξ, η(ξv) = ηv(ξ), (2.5)

φφvX = φvφX + ηv(X)ξ − η(X)ξv, (2.6)
∇Xξv = qv+2(X)ξv+1 − qv+1(X)ξv+2 + φvAX, (2.7)

(∇Xφv)Y = −qv+1(X)φv+2Y + qv+2(X)φv+1Y

+ ηv(Y )AX − g(AX,Y )ξv, (2.8)
∇X(φvξ) = qv+2(X)φv+1ξ − qv+1(X)φv+2ξ

+φvφAX − g(AX, ξ)ξv + η(ξv)AX. (2.9)

The curvature tensor R and Codazzi equation of M are given respectively as
follows:

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY + 2g(X,φY )φZ

+
3

∑

v=1

{

g(φvY,Z)φvX − g(φvX,Z)φvY − 2g(φvX,Y )φvZ
}

+
3

∑

v=1

{

g(φvφY,Z)φvφX − g(φvφX,Z)φvφY
}

−
3

∑

v=1

{η(Y )ηv(Z)φvφX − η(X)ηv(Z)φvφY }

−
3

∑

v=1

{

η(X)g(φvφY,Z) − η(Y )g(φvφX,Z)
}

ξv

+ g(AY,Z)AX − g(AX,Z)AY (2.10)
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and

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3

∑

v=1

{

ηv(X)φvY − ηv(Y )φvX − 2g(φvX,Y )ξv

}

+
3

∑

v=1

{

ηv(φX)φvφY − ηv(φY )φvφX
}

+
3

∑

v=1

{

η(X)ηv(φY ) − η(Y )ηv(φX)
}

ξv (2.11)

for any vector fields X,Y,Z on M .

Notice that Berndt and Suh [1] proved the following two properties for the real
hypersurfaces of types (B) and (A).

Proposition 2.1. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimen-
sion m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant
principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, δ = cot(r), μ = − tan(r)

with some r ∈ (0, π
4 ). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(δ) = 4m − 4 = m(μ),

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tδ, Tμ,

where

Tδ ⊕ Tμ = (HCξ)⊥, JTδ = Tδ, JTμ = Tμ, JTδ = Tμ.

Proposition 2.2. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost
Hermitian structure such that JN = J1N . Then M has three(if r = π

2 )or four
(otherwise) distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r), μ = 0

with some r ∈ (0, π√
8
). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m − 2 = m(μ),

and the corresponding eigenspaces are

Tα = Rξ = RJN,

Tβ = C
⊥ξ = C

⊥N,

Tλ = {X|X ⊥ Hξ, JX = J1X},

Tμ = {X|X ⊥ Hξ, JX = −J1X}.
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Recall that the *-Ricci operator S∗ of M is defined by

g(S∗X,Y ) = Ric∗(X,Y ) =
1
2
trace{φ ◦ R(X,φY )}, for all X,Y ∈ TM.

The *-Ricci operator S∗ is expressed as follows([3]):

S∗X = −(4m + 6)φ2X − (φA)2X + 2
3

∑

v=1

{

ηv(φX)φξv − ηv(X)ξv

+ η(ξv)ηv(X)ξ + ηv(ξ)φφvX
}

(2.12)

for all X ∈ TM . Making use of (2.12), a straightforward computation gives
the following formulas:

(φS∗ − S∗φ)X = φ[(Aφ)2 − (φA)2]X − 4
3

∑

v=1

ηv(ξ)η(X)φξv, ∀X ∈ TM,

(2.13)

S∗ξ = −(φA)2ξ + 4
3

∑

v=1

{

− ηv(ξ)ξv + η(ξv)ηv(ξ)ξ
}

. (2.14)

From now on we always assume that M is a Hopf hypersurface in G2(Cm+2).
As in [1], by taking the inner product of the Codazzi equation (2.11) with ξ,
we have

AφAX =
1
2
α(AφX + φAX) + φX

− 2
3

∑

v=1

{

η(ξv)η(φvX)ξ + η(ξv)η(X)φvξ
}

+
3

∑

v=1

{

ηv(X)φξv + η(φvX)ξv + η(ξv)φvX
}

. (2.15)

From this we assert the following

Lemma 2.3. ([1]) If Aξ = αξ and X ∈ D with AX = λX, then

(2λ − α)AφX − (λα + 2)φX

= −2
3

∑

v=1

{

2η(ξv)η(φvX)ξ − ηv(X)φξv − η(φvX)ξv − η(ξv)φvX
}

.

Here D denotes the orthogonal complement of the real span [ξ] of the Reeb
vector ξ in TM.

Moreover, by (2.6) and (2.15), a straightforward computation leads to

(φA)2X = (Aφ)2X (2.16)

for all vector field X on M .



Vol. 108 (2017) Real hypersurfaces of complex two-plane Grassmannians... 1163

3. Real hypersurfaces with parallel *-Ricci tensors

In this section we first assume that M is a Hopf hypersurface admitting parallel
*-Ricci tensor, i.e. ∇S∗ = 0. Using (2.3) and (2.7), we compute the covariant
derivative (∇Y S∗)X for all vector fields X,Y.

(∇Y S∗)X = −(4m + 6)[g(φAY,X)ξ + η(X)φAY ] − [∇Y (φA)2]X

+ 2
3

∑

v=1

{

[qv+2(Y )ηv+1(φX) − qv+1(Y )ηv+2(φX)

+ g(φvAY, φX)]φξv + [η(X)ηv(AY )

− g(AY,X)ηv(ξ)]φξv + ηv(φX)[qv+2(Y )φv+1ξ

− qv+1(Y )φv+2ξ + φφvAY − g(AY, ξv)ξ + η(ξv)AY ]

− [qv+2(Y )ηv+1(X) − qv+1(Y )ηv+2(X) + g(φvAY,X)]ξv

− ηv(X)[qv+2(Y )ξv+1−qv+1(Y )ξv+2+φvAY ]+ηv(φAY )ηv(X)ξ

+ [qv+2(Y )η(ξv+1) − qv+1(Y )η(ξv+2) + η(φvAY )]ηv(X)ξ

+ η(ξv)[qv+2(Y )ηv+1(X) − qv+1(Y )ηv+2(X) + g(φvAY,X)]ξ

+ η(ξv)ηv(X)φAY + [qv+2(Y )ηv+1(ξ) − qv+1(Y )ηv+2(ξ)

+ η(φvAY )]φφvX + ηv(φAY )φφvX + ηv(ξ)∇Y (φφv)X
}

. (3.1)

Putting Y = ξ in (3.1), by (2.8) and a straightforward computation, we derive

(∇ξS
∗)X = −φ(∇ξA)φAX − φAφ(∇ξA)X − 4

3
∑

v=1

αη(ξv)η(X)φξv. (3.2)

Moreover, taking X = ξ we obtain

(∇ξS
∗)ξ = −4

3
∑

v=1

αηv(ξ)φξv. (3.3)

Thus the parallel condition ∇S∗ = 0 yields
3

∑

v=1

αηv(ξ)φξv = 0. (3.4)

Taking an inner product of (3.4) with φY for Y ∈ D gives

αη(Y )
3

∑

v=1

ηv(ξ)2 = 0.

That means that ξ ∈ D or ξ ∈ D⊥ for α �= 0. If α = 0, as the proof of [5,
Lemma 3.1], we can get the same conclusion. Namely we prove the following
lemma.

Lemma 3.1. Let M be a Hopf hypersurface of G2(Cm+2). If the *-Ricci tensor
of M is parallel, then the Reeb vector field ξ either belongs to D or D⊥.
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Proof of Theorem 1.3. According to Lemma 3.1, the Reeb vector field ξ either
belongs to D or D⊥. When ξ ∈ D, by Theorem 1.2, M is locally congruent
to an open part of a tube around a totally geodesic QPn in G2(Cm+2), where
m = 2n.

In the following we need to check wether a hypersurface of type (B) in
G2(Cm+2) admits a parallel *-Ricci tensor or not. For ξ ∈ D, the formula
(3.1) becomes

(∇Y S∗)X

= −(4m + 6)[g(φAY,X)ξ + η(X)φAY ] − [∇Y (φA)2]X

+ 2
3

∑

v=1

{

[qv+2(Y )ηv+1(φX) − qv+1(Y )ηv+2(φX) + g(φvAY, φX)]φξv

+ η(X)ηv(AY )φξv + ηv(φX)[qv+2(Y )φv+1ξ − qv+1(Y )φv+2ξ

+ φvφAY − g(AY, ξ)ξv] − [qv+2(Y )ηv+1(X) − qv+1(Y )ηv+2(X)

+ g(φvAY,X)]ξv − ηv(X)[qv+2(Y )ξv+1 − qv+1(Y )ξv+2 + φvAY ]

+ ηv(φAY )ηv(X)ξ + η(φvAY )ηv(X)ξ + 2ηv(φAY )φφvX
}

= 0. (3.5)

Letting X = ξ and using (2.3), we have

− (4m + 6)φAY + (φA)3Y + 2
3

∑

v=1

{

ηv(AY )φξv − 3ηv(φAY )ξv

}

= 0. (3.6)

Now by Proposition 2.1 we consider the formula (3.6) with Y = ξ1 ∈ Tβ , then
since Aφξ1 = 0 we obtain

− (4m + 6)φAξ1 + (φA)3ξ1 + 2
3

∑

v=1

{

ηv(Aξ1)φξv − 3ηv(φAξ1)ξv

}

= −(4m + 6)βφξ1 + 2
{

βφξ1 − 3β

3
∑

v=1

ηv(φξ1)ξv

}

= −(4m + 4)βφξ1 = 0.

This means 4m+4 = 0 since β �= 0. It is impossible, thus M can not be a real
hypersurface of type (B).

Next let us assume ξ ∈ D⊥ = Span{ξ1, ξ2, ξ3}, without loss general we thus
may assume ξ = ξ1. Applying (2.7), it is easy to get qv(ξ) = 0 for v = 2, 3.
Furthermore, from (2.4) we have

φξ2 = φ2ξ1 = −ξ3, φ1ξ2 = ξ3, φξ3 = φ3ξ1 = ξ2. (3.7)

In this case the Eq. (2.15) becomes

AφAX =
1
2
α(AφX + φAX) + φX + η3(X)ξ2 − η2(X)ξ3 + φ1X. (3.8)
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Because for all X ∈ TM , by (2.7) we obtain

g(φAX, ξ2) = g(∇Xξ, ξ2) = −g(ξ,∇Xξ2) = q3(X) − g(ξ2, φAX),

i.e. q3(X) = 2η2(φAX) = 2η3(AX) from (3.7). Similarly, q2(X) = 2η2(AX).

Making use of (3.7) and (3.8) we compute the formula (3.1) with X = ξ.

(∇Y S∗)ξ = −(4m + 6)φAY + (φA)3Y + 2
3

∑

v=1

{

ηv(AY )φξv

− [qv+2(Y )ηv+1(ξ) − qv+1(Y )ηv+2(ξ)]ξv

− 3ηv(φAY )ξv

}

− 2φ1AY + 2φAY + 2∇Y (φφ1)ξ

= −(4m + 6)φAY + (φA)3Y + 2
{

− [q2(Y )ξ3 − q3(Y )ξ2]

− φ1AY + φAY − 2η3(AY )ξ2 + 2η2(AY )ξ3 − φφ1φAY
}

= −(4m + 4)φAY + (φA)3Y − 2[q2(Y )ξ3 − q3(Y )ξ2]

− 4η3(AY )ξ2 + 4η2(AY )ξ3

= −
(

4m + 5 +
1
4
α2

)

φAY − 1
4
α2AφY

− 1
2
αφY − α{−η2(Y )ξ3 + η3(Y )ξ2} − 1

2
αφ1Y

− 1
2
αφA2Y − 2{η2(Y )φAξ2 + η3(Y )φAξ3} + φAφφ1Y. (3.9)

Since ∇S∗ = 0 putting Y = ξ2 and Y = ξ3 respectively in the formula (3.9)
yields

0 =
(

4m + 6 +
1
4
α2

)

Aξ2 − 1
4
α2φAφξ2 + αξ2 +

1
2
αA2ξ2,

0 =
(

4m + 6 +
1
4
α2

)

Aξ3 − 1
4
α2φAφξ3 + αξ3 +

1
2
αA2ξ3.

Write T = (4m + 6 + 1
4α2)A − 1

4α2φAφ + 1
2αA2, then T is a linear trans-

formation on D⊥ with Tξ1 = Tξ = (4m + 6 + 1
4α2)αξ1, T ξ2 = −αξ2 and

Tξ3 = −αξ3. We further find AT = TA by (2.16). Thus there exists a ba-
sis X1,X2,X3 of D⊥ with AXi = λiXi and TXi = λiXi, i = 1, 2, 3, which
satisfies

⎛

⎝

X1

X2

X3

⎞

⎠ = SO(3)

⎛

⎝

ξ1
ξ2
ξ3

⎞

⎠ ,

where SO(3) denotes the special orthogonal group. Accordingly, we prove that
g(AD,D⊥) = 0.

In terms of Proposition 2.2, we let Y ∈ Tλ, λ = −√
2 tan(

√
2r), i.e. φY = φ1Y ,

AY = λY and AφY = λφY , then it follows from (3.9) that
(

4m + 4 + 2 tan2(
√

2r)
)

φY = 0.
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Namely 4m + 4 + 2 tan2(
√

2r) = 0, which is impossible. This shows that ξ
can not belong to the distribution D⊥. Therefore we complete the proof of
Theorem 1.3. �
Proof of Theorem 1.4. Let M be a real Hopf hypersurface of G2(Cm+2) with
Reeb parallel *-Ricci tensor, i.e. ∇ξS

∗ = 0. By the proof of Lemma 3.1 we also
know ξ ∈ D or ξ ∈ D⊥.

In the following we consider these two cases respectively. When ξ ∈ D, by
taking Y = ξ in (3.5) and using (2.11), we obtain

(∇ξS
∗)X = −φ(∇ξA)φAX − φAφ(∇ξA)X

= αAφAX + 2(φA)3X + 2φAX−
3

∑

v=1

{ηv(φAX)ξv−3ηv(AX)φξv}

+ αφA2X −
3

∑

v=1

{ηv(X)φAξv + 3ηv(φX)φAφξv}.

Namely if the *-Ricci tensor is Reeb parallel, the following equation holds:

αAφAX + 2(φA)3X + 2φAX −
3

∑

v=1

{

ηv(φAX)ξv − 3ηv(AX)φξv

}

+ αφA2X −
3

∑

v=1

{

ηv(X)φAξv + 3ηv(φX)φAφξv

}

= 0. (3.10)

Now by Proposition 2.1, we check the formula (3.10) as follows:

Case I X = ξ ∈ D. It is obvious.
Case II X = ξμ ∈ Tβ , then Aφξμ = 0 for μ = 2, 3. Making use of (2.7) and

(2.8), we have

αAφAξμ + 2(φA)3ξμ + 2φAξμ −
3

∑

v=1

{

ηv(φAξμ)ξv − 3ηv(Aξμ)φξv

}

+ αφA2ξμ −
3

∑

v=1

{

ηv(ξμ)φAξv + 3ηv(φξμ)φAφξv

}

= (4β + αβ2)φξμ.

Since αβ = −4 the above equation is zero.
Case III X = φξμ ∈ Tγ , γ = 0, i.e. Aφξμ = 0. Then

αAφAφξμ + 2(φA)3φξμ + 2φAφξμ −
3

∑

v=1

{

ηv(φAφξμ)ξv − 3ηv(Aφξμ)φξv

}

+ αφA2φξμ −
3

∑

v=1

{

ηv(φξμ)φAξv + 3ηv(φ2ξμ)φAφξv

}
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= −
3

∑

v=1

ηv(φξμ)φAξv = 0.

The last equality is followed from (2.4) and (2.5).
Case IV X ∈ Tδ, δ = cot r. Then AX = δX, AφX = μφX. The left-hand side

of (3.10) becomes

αδμφX − 2δ2μφX + 2δφX + αδ2φX

= (αδμ − 2δ2μ + 2δ + αδ2)φX

= (−α + 4δ + αδ2)φX.

Substituting α = −2 tan(2r) and δ = cot(r) into above formula, we
find that it is equal to zero.

Case V X ∈ Tμ, μ = − tan r. Then AX = μX and AφX = δφX. In a same
way we know the formula (3.10) holds as Case IV.

On the other hand, when ξ ∈ D the formula (2.12) becomes

S∗X = −(4m + 7)φ2X − 1
2
α(Aφ2X + φAφX)

+
3

∑

v=1

{

ηv(φX)φξv − ηv(X)ξv

}

.

By Proposition 2.2, putting X = ξμ ∈ Tβ for μ = 1, 2, 3, we have

S∗ξμ = − (4m + 7)φ2ξμ +
1
2
αβξμ − ξμ = (4m + 4)ξμ.

It shows that the condition S∗D⊥ ⊂ D⊥ holds for a hypersurface of type (B).

Next we consider the case where ξ ∈ D⊥. We first prove

Proposition 3.2. Let M be a Hopf hypersurface in G2(Cm+1),m ≥ 3. If ξ ∈ D⊥

then its *-Ricci tensor is Reeb parallel.

Proof. By assumption, as before we may set ξ = ξ1. First by the Codazzi
equation (2.11),

(∇ξA)X = αφAX − AφAX + φX + φ1X + 2η3(X)ξ2 − 2η2(X)ξ3,

then we compute the formula (3.2):

(∇ξS
∗)X = −αφ(φA)2X + φ(Aφ)2AX + φAX

+ φφ1φAX − 2η3(φAX)φξ2 + 2η2(φAX)φξ3

− αφAφ2AX + φ(Aφ)2AX − φAφ2X − φAφφ1X

− 2η3(X)φAφξ2 + 2η2(X)φAφξ3. (3.11)

Moreover, making use of (3.8) and (3.7), the Eq. (3.11) is simplified as

(∇ξS
∗)X = φ1AX − 2η2(AX)ξ3 + 2η3(AX)ξ2

+ φAφφ1X − 2η3(X)φAξ3 − 2η2(X)φAξ2. (3.12)
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On the other hand, by (2.8) we get

0 = ∇X(φ1ξ) = q3(X)φ2ξ − q2(X)φ3ξ

+ φ1φAX − g(AX, ξ)ξ1 + η(ξ1)AX

= −2η3(AX)ξ3 − 2η2(AX)ξ2 + φ1φAX − φ2AX,

that is,
φ1φAX = 2η3(AX)ξ3 + 2η2(AX)ξ2 + φ2AX. (3.13)

Substituting (3.13) into (3.12) gives

(∇ξS
∗)X = −φ2AX + Aφφ1X − 2η3(X)Aξ3 − 2η2(X)Aξ2 (3.14)

for all X ∈ TM. By (2.3) and (2.7), for all vector field X we have

φAX = ∇Xξ = ∇Xξ1 = q3(X)ξ2 − q2(X)ξ3 + φ1AX.

It is well known that the distribution D can be decomposed as D = D1 ⊕D2,
where

D1 = {X ∈ D|φX = φ1X},

D2 = {X ∈ D|φX = −φ1X}.

Thus we can decompose the tangent bundle TM as TM = D⊥ ⊕ D1 ⊕ D2.
Taking the inner product of the above equation with Y ∈ D2, we conclude that
AφY = 0, i.e. AY = 0 since φ leaves D2 invariant for all Y ∈ D2. Therefore
(∇ξS

∗)X = 0 for all X ∈ D2. As for X ∈ D⊥ ⊕D1 it is easy to check that the
right side of formula (3.14) vanishes. We complete the proof. �
When ξ ∈ D⊥, by (3.7) and (3.8), we have

S∗X = − (4m + 7)φ2X − 1
2
α(Aφ2X + φAφX)

− 2
{

η2(X)ξ2 + η3(X)ξ3
}

+ φφ1X. (3.15)

Since S∗D⊥ ⊂ D⊥, for μ = 1, 2, 3 we can set S∗ξμ = λμξμ. The formula (3.15)
with X = ξμ implies

λμξμ = (4m + 6)ξμ +
1
2
α(Aξμ − φAφξμ), μ = 2, 3,

i.e. Tξμ = −(4m+6−λμ)ξμ, where T := 1
2α(A−φAφ). Using (2.16), we have

AT = TA. Furthermore, Tξ1 = Tξ = 1
2α2ξ. As the proof of Theorem 1.3 we

thus prove that g(AD,D⊥) = 0. By Theorem 1.1, M is a hypersurface of type
(A).

Finally we remaind to check whether the condition S∗D⊥ ⊂ D⊥ holds or not
for a hypersurface of type (A). For μ = 2, 3 we put X = ξμ in the formula
(3.15), then by Proposition 2.2 we have

S∗ξμ = (4m + 6)ξμ +
1
2
α(Aξμ + φAξμ)

= (4m + 6 + αβ)ξμ = (4m + 4 + 2 cot2(
√

2r))ξμ.
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On the other hand, S∗ξ1 = S∗ξ = 0. Hence the condition holds for hypersur-
faces of type (A).

Summarizing the above discussion we complete the proof of Theorem 1.4. �

4. Real hypersurfaces with Reeb Lie parallel *-Ricci tensors

In this section we suppose that the *-Ricci tensors of Hopf hypersurface M is
Lie Reeb parallel, i.e. LξRic∗ = 0. For all X,Y ∈ TM we have

(LξRic∗)(X,Y ) = Lξ(Ric∗(X,Y )) − Ric∗(LξX,Y ) − Ric∗(X,LξY )

= g((∇ξS
∗)X,Y ) + g(S∗φAX, Y ) − g(AφS∗X,Y ) = 0.

This implies (∇ξS
∗)X = AφS∗X − S∗φAX for any X tangent to M . Thus by

(3.3) taking X = ξ gives

0 = (∇ξS
∗)ξ − AφS∗ξ = −4

3
∑

v=1

{

αηv(ξ)φξv − ηv(ξ)Aφξv

}

.

That is,

A

3
∑

v=1

ηv(ξ)φξv = α

3
∑

v=1

ηv(ξ)φvξ.

We write Y =
∑3

i=1 ηi(ξ)ξi, then φY ∈ D and AφY = αφY . Replacing X in
Lemma 2.3 by φY , we have

αAφ2Y = (α2 + 2)φ2Y − 2
3

∑

v=1

{2η(ξv)η(φvφY )ξ − ηv(φY )φξv

− η(φvφY )ξv − η(ξv)φvφY }

= (2 + α2)φ2Y − 4
3

∑

v=1

{

η(ξv)η(Y )η(ξv)ξ − η(Y )η(ξv)ξv

}

+ 2
3

∑

v=1

{

ηv(φY )φξv + η(ξv)φφvY
}

+ 2
3

∑

v=1

{

− ηv(Y )ξv + η(ξv)ηv(Y )ξ
}

.

By a straightforward computation, the above formula becomes

αAφ2Y =
(

4 + α2 − 4
3

∑

v=1

ηv(ξ)2
)

3
∑

v=1

ηv(ξ)φ2ξv

=
(

4 + α2 − 4
3

∑

v=1

ηv(ξ)2
)

φ2Y.
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If α = 0 we know that ξ belongs to D or D⊥ (see [5, Lemma 3.1]). Next we
assume α �= 0, then Aφ2Y = λφ2Y , where

λ =
4 + α2 − 4

∑3
v=1 ηv(ξ)2

α
. (4.1)

Since Aφ2Y = φ2AY we further derive that AY = λY or AY − λY ∈ Rξ. The
former shows AD⊥ ⊂ D⊥. For the latter we set AY − λY = fξ, where f is a
smooth function. So AY = λY + fξ. In the following we compute the formula
(3.2) with X = Y as follows:

(∇ξS
∗)Y = −φ(∇ξA)φAY − φAφ(∇ξA)Y − 4

3
∑

v=1

αη(ξv)η(Y )φξv

= −λφ[ξαφY + αφ∇ξY − Aφ∇ξY ]

− φAφ[(ξλ)Y + λ∇ξY − A∇ξY ] − 4αη(Y )φY

= −ξ(λα)φ2Y − [αλφ2∇ξY − φAφA∇ξY ] − 4αη(Y )φY.

Since

η(∇ξY ) = ∇ξη(Y ) =
3

∑

v=1

ξ(ηv(ξ)2) = 2
3

∑

v=1

ξ(ηv(ξ))ηv(ξ) = 0,

the above formula becomes

(∇ξS
∗)Y = −ξ(λα)φ2Y + [αλ∇ξY + φAφA∇ξY ] − 4αη(Y )φY. (4.2)

On the other hand, by (2.12) we compute

AφS∗Y − S∗φAY = AφS∗Y − λS∗φY

= α(4m + 4 + λα)φY − λ
[

(4m + 6)φY + λαφY

+ 2
3

∑

v=1

{

− ηv(Y )φξv + 2η(Y )ηv(ξ)φξv − ηv(φY )ξv

+ 2η(ξv)ηv(φY )ξ − ηv(ξ)φvY
}]

= α(4m + 4 + λα)φY − λ[(4m + 6)φY + λαφY

− 2φY + 4η(Y )φY ]

=
[

(α − λ)(4m + 4 + λα) − 4λη(Y )
]

φY. (4.3)

Moreover, since

g(φAφA∇ξY, φY ) = g(∇ξY,AφAφ2Y ) = −αλg(∇ξY, φY ),

from (4.2) and (4.3), taking the inner product of the relation (∇ξS
∗)Y =

AφS∗Y − S∗φAY with φY gives
{

(α − λ)
[

4m + 4 + λα + 4η(Y )
]

}

g(φY, φY ) = 0,

i.e.
{

(α − λ)(4m + 8 + α2)
}

g(φY, φY ) = 0 by (4.1). That shows α = λ or
φY = 0.
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When α = λ, using (4.1) again we have
∑3

v=1 ηv(ξ)2 = 1, which implies
ξ ∈ D⊥. If φY = 0 it is easy to see that ξ ∈ D.

Therefore we assert

Lemma 4.1. Let M be a Hopf hypersurface of G2(Cm+2) with Reeb Lie parallel
*-Ricci tensor, then the Reeb vector field ξ belongs to D or D⊥.

Proof of Theorem 1.5. For all vector field X on M we first compute

AφS∗X − S∗φAX

= (4m + 6)AφX + A2φAX + 2
3

∑

v=1

{

ηv(φX)[−Aξv + 2αηv(ξ)ξ]

− ηv(X)Aφξv − ηv(ξ)AφvX
}

−
[

(4m + 6)φAX − (φA)3X

+ 2
3

∑

v=1

{

[−ηv(AX) + 2αηv(ξ)η(X)]φξv − ηv(φAX)ξv

+ 2η(ξv)ηv(φAX)ξ − ηv(ξ)φvAX
}]

. (4.4)

In view of Lemma 4.1, we know ξ ∈ D or ξ ∈ D⊥. In the following we consider
these two cases respectively.

When ξ ∈ D, by (4.4) the condition LξRic∗ = 0 is equivalent to that the
following formula holds:

(∇ξS
∗)X = (4m + 6)AφX + A2φAX − 2

3
∑

v=1

{

ηv(φX)Aξv + ηv(X)Aφξv

}

−
[

(4m+6)φAX−(φA)3X−2
3

∑

v=1

{

ηv(AX)φξv + ηv(φAX)ξv

}]

.

By virtue of Proposition 3.2, the left side of the above formula vanishes, thus
we need to check whether the right side also vanishes or not.

By Proposition 2.1, we put X = ξμ ∈ Tβ , then Aφξμ = 0 for μ = 2, 3. Making
use of (2.7) and (2.8), we have

(∇ξS
∗)ξμ = (4m + 6)Aφξμ + A2φAξμ − 2

3
∑

v=1

{

ηv(φξμ)Aξv + ηv(ξμ)Aφξv

}

−
[

(4m + 6)φAξμ − (φA)3ξμ

− 2
3

∑

v=1

{

ηv(Aξμ)φξv + ηv(φAξμ)ξv

}]

= −β(4m + 4)φξμ.

It is clear that (∇ξS
∗)ξμ �= 0 since β �= 0. This shows that there do not exist

any real hypersurfaces of type (B) with Lie Reeb parallel *-Ricci tensor.
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When ξ ∈ D⊥, as before we may assume ξ = ξ1, then the formula (4.4) becomes

AφS∗X − S∗φAX

= (4m + 6)AφX + A2φAX − 2
3

∑

v=1

{

ηv(φX)Aξv + ηv(X)Aφξv

}

− 2Aφ1X

−
[

(4m + 6)φAX − (φA)3X

− 2
3

∑

v=1

{

ηv(AX)φξv + ηv(φAX)ξv

}

− 2φ1AX
]

= (4m + 6)AφX + A2φAX − 4
{

η3(X)Aξ2 − η2(X)Aξ3

}

− 2Aφ1X

−
[

(4m + 6)φAX − (φA)3X − 4
{

− η2(AX)ξ3 + η3(AX)ξ2
}

− 2φ1AX
]

= (4m + 7)AφX +
1
2
αA2φX − 2{−η2(X)Aξ3 + η3(X)Aξ2} − Aφ1X

− 1
2
αφA2X − 2{η2(X)φAξ2 + η3(X)φAξ3} + φAφφ1X

−
[

(4m + 7)φAX − 4
{

− η2(AX)ξ3 + η3(AX)ξ2
}

− 2φ1AX
]

.

From this we see that the condition LξRic∗ = 0 yields from (3.14)

(4m + 7)(AφX − φAX) +
1
2
α(A2φX − φA2X) + φ1AX − Aφ1X

+ 2
{

− η2(AX)ξ3 + η3(AX)ξ2
}

− 2
{

− η2(X)Aξ3 + η3(X)Aξ2

}

= 0.

(4.5)

By (3.13), we get φ1AX = −2η3(AX)ξ2 + 2η2(AX)ξ3 + φAX. Thus substi-
tuting this into (4.5) gives

(4m + 7)(AφX − φAX) +
1
2
α(A2φX − φA2X)

+ φAX − Aφ1X − 2
{

− η2(X)Aξ3 + η3(X)Aξ2

}

= 0. (4.6)

Now we decompose the tangent bundle TM as follows:

TM = D1 ⊕ D2,

where D1 = D1 ⊕ Span{ξ2, ξ3} and D2 = D2 ⊕ Rξ. We know AD2 = {0} then
AD2 ⊂ D2, which yields AD1 ⊂ D1.

Next we assume X ∈ D1, since ξ = ξ1 ∈ D⊥, we may write X as

X = η2(X)ξ2 + η3(X)ξ3 + D1X,

where D1X denotes the orthogonal projection of X onto D1. Hence using (3.7)
we find

−Aφ1X − 2
{

− η2(X)Aξ3 + η3(X)Aξ2

}

= −AφX.
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So the relation (4.6) becomes

(4m + 6)(AφX − φAX) +
1
2
α(A2φX − φA2X) = 0. (4.7)

Let Y ∈ D1 with AY = ρY , then we obtain from Lemma 2.3

AφY = δφY with δ =
ρα + 4
2ρ − α

.

It yields from the formula (4.7) that
(

4m + 6 +
1
2
α(ρ + δ)

)

(ρ − δ) = 0.

From this we get ρ2 − ρα − 2 = 0 or αρ2 + 2(4m + 6)ρ − (4m + 4)α = 0.
We choose some real number r with 0 < r < π√

8
such that α =

√
8 cot(

√
8r),

then β =
√

2 cot(
√

2r) and λ = −√
2 tan(

√
2r) are the solutions of equation

x2 − xα − 2 = 0. Moreover, we know ρ �= α. Hence we prove

Proposition 4.2. Let M be a real hypersurface in G2(Cm+1),m ≥ 3, with Lie
Reeb parallel *-Ricci tensor. Suppose that Aξ = αξ and ξ ∈ D⊥. Let J1 ∈ J
be the almost Hermitian structure such that JN = J1N . Then M has five(if
r = π

2 )or six (otherwise) distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r),
μ = 0, ρ1, ρ2,

where

ρ1,2 =
−(4m + 6) ± √

(4m + 6)2 + (4m + 4)α2)
α

.

We denote Tρ = {X ∈ TM |AX = ρX} then

D = Tβ ⊕ Tλ ⊕ Tμ ⊕ Tρ1 ⊕ Tρ2 .

As in [2, Section 6] we denote cp by the geodesic in G2(Cm+2) for p ∈ M with
cp(0) = p and ċp(0) = Np, and by F the smooth map

F : M → G2(Cm+2) p �→ cp(r).

Its differential dpF can be computed using Jacobi vector fields by means of

dpF (X) = ZX(r).

Here, ZX(r) is the Jacobi vector field along cp(r) with ZX(0) = X and Z ′
X(0) =

−AX. In the present situation we get

ZX(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

cos(
√

8r) − α√
8

sin(
√

8r)
)

EX(r), X ∈ Tα
(

cos(
√

2r) − ρ√
2

sin(
√

2r)
)

EX(r), X ∈ Tρ and ρ ∈ {β, λ, ρ1, ρ2}
EX(r), X ∈ Tμ,

where EX(r) denotes the parallel vector field along cp with EX(0) = X. This
shows the kernel of dF is Tα ⊕ Tβ and F is of constant rank dim(Tλ ⊕ Tμ ⊕
Tρ1 ⊕ Tρ2). So, locally, F is a submersion into a submanifold P of G2(Cm+2).
As the proof of theorem in [2] we can prove that P is a totally geodesic in
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G2(Cm+2). Rigidity of totally geodesic submanifold implies that M is an open
part of totally geodesic submanifold P of G2(Cm+2). We complete the proof
of Theorem 1.5. �
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