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Groemer–Wallen measure of asymmetry
for Reuleaux polygons
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Abstract. In this paper, we consider the Groemer–Wallen measure of
asymmetry for Reuleaux polygons, and show that the n-th (n ≥ 5, n odd)
regular Reuleaux polygons are the most symmetric among all n-th Reuleaux
polygons.
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1. Introduction

Measures of (central) symmetry, or as we prefer, asymmetry for convex bod-
ies have been extensively studied (for recent results see [5,7,10,12,18,19]). A
survey on measures of asymmetry of convex bodies (up to 1963) has been
published by Grünbaum [6]. A measure of asymmetry for domains of constant
width was studied first by Besicovitch [1].

Groemer and Wallen [5] introduced a measure of asymmetry for convex do-
mains of constant width, and determined the extremal bodies with respect
to this measure. More specifically, they obtained that the most asymmetric
domains are Reuleaux triangles.

Martini and Mustafaev [15] gave a new construction of curves of constant
width, and proved the same result as in [5] by a different method.

Motivated by the work of Groemer and Wallen, replacing the area by the
perimeter, Lu and Pan [14] introduced another measure of asymmetry for
convex domains of constant width. They showed that Reuleaux triangles are
the most asymmetric domains of constant width in this sense.
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In [10], using the Lu–Pan measure of asymmetry, Jin showed that the regular
Reuleaux polygons have better symmetry than the irregular ones. For the
Minkowski measure of asymmetry for Reuleaux polygons see [8].

In this paper, using the Groemer–Wallen measure of asymmetry, we prove the
following theorem.

Theorem 1. If K is a Reuleaux polygon of order n (n ≥ 5, n odd), then

αn ≤ α(K) < α0,

where α(·) denotes the Groemer–Wallen measure of asymmetry for convex
bodies,

α0 =
4π − 3

√
3

2π − 3
√

3
, αn = 1 +

2π

n2 tan(π/2n) cos(π/n) − n2 sin(π/n) + (n − 1)π
.

Moreover, equality holds on the left-hand side if and only if K is regular.

From Theorem 1, we obtain the following result (see also [5,15]):

Theorem 2. Let K be a convex domain of constant width. Then

1 ≤ α(K) ≤ α0.

Equality holds on the left-hand side if and only if K is a circular disc. Equality
holds on the right-hand side if and only if K is a Reuleaux triangle.

2. Preliminaries

Let C be a convex body, a closed bounded convex subset of R
d. Let Kd be

the set of all d-dimensional convex bodies. A convex body K is said to be of
constant width if its width function, that is, the support function of K+(−K),
is constant (see [2,9,17]). Let Wd ⊂ Kd be the set of all convex bodies of
constant width. It is well-known that K is of constant width if and only if
each boundary point of K is incident with (at least) one diameter (a chord of
maximal length) of K.

From now on, we let d = 2. By a diameter of K ∈ K2 of direction u we mean
a line segment of direction u in K of maximal length. If K ∈ W2 then for any
u there is exactly one diameter D(u) of K of direction u, and the two lines
that pass through the endpoints of D(u) and orthogonal to u are support lines
of K. The diameter D(u) splits K into two convex domains, say K+(u) and
K−(u), where K+(u) lies in the ’positive’ half-plane with respect to the line
of direction u containing D(u) [5].

For each u ∈ S1, the unit circle, set α(K,u) = |K+(u)|/|K−(u)|, |·| is the area.
Groemer and Wallen [5] defined the asymmetry function α(K) of K ∈ W2,
by

α(K) = max
{
α(K,u) : u ∈ S1

}
.
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They proved that

1 ≤ α(K) ≤ α0,

where α0 = 4π−3
√
3

2π−3
√
3
. Equality holds on the left-hand side if and only if K is

a circular disc. Equality holds on the right-hand side if and only if K is a
Reuleaux triangle.

3. Proof of Theorems 1–2

Let K ∈ W2 and V ⊂ bd(K). The set V is called a pinching set if each
diameter of K is incident with (at least) one point of V . A convex body K
of constant width is called a Reuleaux polygon if it admits a finite pinching
set. In fact, each Reuleaux polygon contains a polygon with the vertices being
same as the Reuleaux polygon, that is, the set of all vertices of the polygon is
a pinching set of the Reuleaux polygon. In this case we say that the polygon
generates the Reuleaux polygon. For example, each Reuleaux triangle can be
generated by an equilateral triangle (see [13]).

Let K be a Reuleaux polygon generated by the polygon with vertices e1e2 · · · en,
n odd. It is obvious that each diameter of K meets one element in {e1, e2, . . . ,
en}. Define

α(K, ei) = max
{|K+(u)| / |K−(u)| : u ∈ S1, ei ∈ D(u)

}
.

Clearly, we have α(K) = max{α(K, ei), i = 1, 2, . . . n}.

Proof of Theorem 1. Let the width of K be ω.

(1) For simplicity, we start with the case n = 5. By the definition of Reuleaux
polygons, |e1e3| = |e1e4| = |e2e4| = |e2e5| = |e3e5| = ω. We shall denote
these vertices ei(i = 1, 2, 3, 4, 5) by cyclic index, that is, for any integers
i, j, we have ei = ej if i ≡ j(mod 5). For each vertex ei, the two diameters
eiei+2, eiei+3 split K into three parts, sector eiei+2ei+3, and two curved edge
triangles eiei+1ei+2, eiei+3ei+4. Denote the areas of sector eiei+2ei+3, curved
edge triangles eiei+1ei+2, eiei+3ei+4 by Ai, Si, S

′
i respectively. Then, for the

area of K, we have |K| = Ai + Si + S′
i and

∑5
i=1 Ai = π

2ω2.

It is easy to prove α(K, ei) = max{ |K|
Si

, |K|
S′
i
} − 1. Then, we have

α(K) + 1 = max
{ |K|

Si
,
|K|
S′

i

, i = 1, 2, 3, 4, 5
}

=
|K|

min {Si, S′
i, i = 1, 2, 3, 4, 5}

≥ 10|K|
∑5

i=1(Si + S′
i)

=
10|K|

5|K| − ∑5
i=1 Ai
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=
10|K|

5|K| − 1
2πω2

= 2 +
2πω2

10|K| − πω2
.

Let A(5) be the area of a regular Reuleaux pentagon with width ω. Then
A(5) = (52 tan π

10 cos π
5 + π

2 − 5
2 sin π

5 )ω2. By Firey-Sallee Theorem (see [3,16],
or Corollary 2.4 of [13]), we have |K| ≤ A(5). Therefore, we have

α(K) ≥ 1 +
2πω2

10A(5) − πω2
= α5.

Since min{Si, S
′
i, i = 1, 2, 3, 4, 5} = 1

10

∑5
i=1(Si + S′

i) if and only if S1 =
S2 = S3 = S4 = S5 = S′

1 = S′
2 = S′

3 = S′
4 = S′

5, by the equality condition
of Firey-Sallee Theorem, equality holds in α(K) ≥ α5 if and only if K is a
regular Reuleaux pentagon.

Now we prove α(K) < α0. Let l+, l− be the two half planes divided by a di-
ameter ef of K, and K+ := K∩l+,K− := K∩l−. Construct a Reuleaux trian-
gle R(	) with vertices e, f, g such that R(	)+ := R(	)∩ l+ ⊃ K+, R(	)− :=
R(	)∩l− ⊂ K−. Let uef :=

−→
ef/|−→ef | ∈ S1. So, we have α(K,uef ) = |K+|/|K−|

< |R(	)+|/|R(	)−| = α0. Therefore, α(K) < α0.

(2) Now we consider the general case n ≥ 5 with n odd. Set n = 2m+1,m ≥
2. Then by the definition of Reuleaux polygon, we have |eiem+i| = ω, i =
1, 2, . . . , 2m + 1, where ek+2m+1 = ek, k = 1, 2, . . . , 2m + 1. For each ver-
tex ei, the two diameters eiei+m, eiei+m+1 split K into three parts, sector
eiei+mei+m+1, and the two curved edge polygons eiei+1 . . . ei+m, eiei+m+1

ei+2m. Denote the areas of sector eiei+mei+m+1, curved edge polygons
eiei+1ei+m, eiei+m+1ei+2m by Ai, Si, S

′
i respectively. Then the area of K, |K| =

Ai + Si + S′
i and

∑n
i=1 Ai = π

2ω2.

It is easy to prove that α(K, ei) = max{ |K|
Si

, |K|
S′
i
} − 1. Then, we have

α(K) + 1 = max
{ |K|

Si
,
|K|
S′

i

, i = 1, 2, . . . , n

}

=
|K|

min {Si, S′
i, i = 1, 2, . . . , n}

≥ 2n|K|
∑n

i=1(Si + S′
i)

=
2n|K|

n|K| − ∑n
i=1 Ai

=
2n|K|

n|K| − 1
2πω2

= 2 +
2πω2

2n|K| − πω2
.
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Let A(n) be the area of a regular Reuleaux pentagon with width ω. Then
A(n) = (n

2 tan π
2n cos π

n + π
2 − n

2 sin π
n )ω2. By Firey-Sallee Theorem, we have

|K| ≤ A(n). Therefore, we have

α(K) ≥ 1 +
2πω2

2nA(n) − πω2
= αn.

Since min{Si, S
′
i, i = 1, 2, . . . , n} = 1

2n

∑n
i=1(Si+S′

i) if and only if Si, S
′
i, i =

1, 2, . . . , n are all equal, by the equality condition of Firey-Sallee Theorem,
equality holds in α(K) ≥ αn if and only if K is regular.

The proof of α(K) < α0 is same as in (1). �
Remark 1. In the proof for α(K) < α0, we constructed a Reuleaux triangle.
This method was introduced by Martini and Mustafaev [15] firstly.

Proof of Theorem 2. For each convex domain K of constant width ω, there
exists Reuleaux polygons Ki, i = 1, 2, . . . , such that Ki → K, as i → ∞ with
respect to the Hausdorff metric. Since |·| is continuous, we have 1 ≤ α(K) ≤ α0.

If K is a circular disc, then α(K) = 1. Conversely, if α(K) = 1, then for
every u ∈ S1 we have |K−(u)| = |K+(u)|. This implies that K is centrally
symmetric (see [4] Theorem 4.5.9 , or [5] p. 519). But since K is of constant
width it must be a circular disc.

If K is a Reuleaux triangle, then α(K) = α0. Conversely, if α(K) = α0,
then there exists a direction u and a diameter |e1e2| = D(u) of K such that
α(K) = α(K,u). Let l+, l− be the two half planes divided by a diameter e1e2 of
K and K+ := K ∩ l+,K− := K ∩ l−. Construct a Reuleaux triangle R(	) with
vertices e1, e2, e3 such that R(	)+ := R(	)∩l+ ⊃ K+, R(	)− := R(	)∩l− ⊂
K−. Let ue1e2 := −−→e1e2/|−−→e1e2| ∈ S1. So, we have α(K,ue1e2) = |K+|/|K−| ≤
|R(	)+|/|R(	)−| = α0. Therefore, α(K) ≤ α0. Since α(K) = α0, we have
K = R(	). �
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