
J. Geom. 108 (2017), 743–762
c© 2017 Springer International Publishing
0047-2468/17/020743-20
published online January 27, 2017
DOI 10.1007/s00022-017-0370-6 Journal of Geometry

On surfaces that are intrinsically surfaces
of revolution

Daniel Freese and Matthias Weber

Abstract. We consider surfaces in Euclidean space parametrized on an
annular domain such that the first fundamental form and the principal
curvatures are rotationally invariant, and the principal curvature direc-
tions only depend on the angle of rotation (but not the radius). Such
surfaces generalize the Enneper surface. We show that they are nec-
essarily of constant mean curvature, and that the rotational speed of
the principal curvature directions is constant. We classify the minimal
case. The (non-zero) constant mean curvature case has been classified by
Smyth.
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1. Introduction

The Enneper surface (see Fig. 1) is given in conformal polar coordinates as

f(u, v) =
1
6
eu

⎛
⎝

3 cos(v) − e2u cos(3v)
−3 sin(v) − e2u sin(3v)

3eu cos(2v).

⎞
⎠

It was discovered in 1871 by Enneper [3]. Its first fundamental form is given
by

I =
1
4
e2u

(
1 + e2u

)2 (
1 0
0 1

)
.

This means that the Enneper surface is intrinsically a surface of revolution
(but obviously not extrinsically).

Definition 1.1. An intrinsic surface of revolution is a surface with first funda-
mental form of the shape
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Figure 1 The Enneper surface

I = Iρ = ρ(u)2
(

1 0
0 1

)
,

where ρ(u) is a positive function.

Of course any surface of revolution is also intrinsically a surface of revolution.

The shape operator of the Enneper surface is also rather special:

S =
4

(1 + e2u)2

(
cos(2v) − sin(2v)

− sin(2v) − cos(2v)

)
= R−v

(
4

(1+e2u)2
0

0 − 4
(1+e2u)2

)
Rv

where

Rv =
(

cos(v) − sin(v)
sin(v) cos(v)

)

is the counterclockwise rotation by v. This is in contrast to the shape operator
of a surface of revolution which always takes diagonal form in polar coordi-
nates. It is, however, rather special, because the principal curvature directions
rotate with constant speed independent of u and the principal curvatures are
independent of v (Fig. 2).

We are generalizing this property of the Enneper surface by introducing the
following concept:

Definition 1.2. Let α : R → R be a C1-function. We say a surface has twist α
if its shape operator is of the form

S = R−α(v)

(
λ1(u) 0

0 λ2(u)

)
Rα(v). (1)

Note that this precisely means that the principal curvature directions are in-
dependent of u, and the principal curvatures are independent of v.
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Figure 2 The Enneper surface with curvature lines

In summary, the Enneper surface is an example of an intrinsic surface of rev-
olution with twist α(v) ≡ v. A standard surface of revolution, on the other
hand, has twist α(v) ≡ 0.

Now we can formulate our main theorem, which is a consequence of the Codazzi
equations. We note that we generally assume our surfaces to be three times
continuously differentiable.

Theorem 1.3. Let Σ be an intrinsic surface of revolution with twist function
α. Assume that α is not identically equal to 0 or any other integral multiple
of π/2, on any open interval. Assume furthermore that the surface has no
open set of umbilic points. Then Σ has constant mean curvature, and the twist
function is linear α(v) = av.

Constant mean curvature surfaces that are intrinsic surfaces of revolution have
been studied by Smyth, see [5]. Thus our result complements Smyth’s result
by replacing his assumption about constant mean curvature with a geometric
assumption.

In order to begin a complete classification, we will invoke Bonnet’s theorem
[2] to prove:

Theorem 1.4. Let Σ be an intrinsic surface of revolution of constant mean
curvature H = λ1 + λ2, first fundamental form Iρ for ρ : (u1, u2) → R

>0, and
linear twist α(v) = av. Then ρ satisfies the differential equation

ρ′(u)2 − ρ(u)ρ′′(u) =
1
4
H2ρ(u)4 − b2e4au (2)

for a constant b.

Vice versa, given H, and α(v) = av, a constant b and ρ satisfying Eq. (2),
define

λ1,2(u) =
1
2
H ± b

e2au

ρ(u)2
.
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Then the first fundamental form Iρ and the shape operator S given by Eq. (1)
satisfy the Gauss- and Codazzi equations and thus define an intrinsic surface
of revolution with constant twist α(v) = av and constant mean curvature H.

In the special case of minimal surfaces, we can achieve a complete classification.

Theorem 1.5. Let Σ be an intrinsic surface of revolution that is also minimal
with constant twist α(v) = av with a > 0. Then Σ belongs to an explicit
2-parameter family of minimal surfaces with Weierstrass data given by

G(w) = − 1
A

wB and dh =
1

2B
w2a−1 dw,

with parameters A and B.

In the case that the twist function is α(v) ≡ a = 0, we prove:

Theorem 1.6. Given a conformal factor ρ(u) on an interval u1 < u < u2 and
a constant c such that c2ρ(u) > |ρ′(u)| for all u1 < u < u2. Then there is
an intrinsic surface of revolution defined on the domain (u1, u2) ×R with first
fundamental form Iρ and twist α(v) ≡ 0. Moreover, this surface can be realized
as an actual surface of revolution in R

3 of the form

f(u, v) = (g(u) cos(cv), g(u) sin(cv), h(u))

with suitable functions g, h : (u1, u2) × R.

The paper is organized as follows:

• In Sect. 2, we compute the Gauss- and Codazzi equations for intrinsic
surfaces of revolution, reduce them to a single ODE for ρ, and prove
Theorems 1.3 and 1.4.

• In Sect. 3, we specialize this equation to the minimal case, integrate
the surface equations, find the Weierstrass representation of the surfaces,
prove Theorem 1.5, and give examples.

• In Sect. 4, we briefly discuss the constant mean curvature case by con-
necting our approach to Smyth’s. While we are not able to find explicit
solutions for the Smyth surfaces, we can find numerical solutions and
make images.

• In Sect. 5, we consider the case of twist 0, prove Theorem 1.6, and show
that sectors of the Enneper surface are isometric to sectors (with different
angle) of surfaces of revolution.

2. Gauss- and Codazzi equations for intrinsic surfaces
of revolution with twist a > 0

We will apply Bonnet’s theorem to determine when the first fundamental form
and shape operator of an intrinsic surface of revolution with twist function α
are induced by an actual surface in R

3.

In order to derive the Gauss- and Codazzi equations we first determine the
relevant covariant derivatives. Much of this preparation is standard.
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Introduce

U =
1

ρ(u)
∂

∂u
V =

1
ρ(u)

∂

∂v
(3)

as the normalized coordinate vector fields. Then we have

Lemma 2.1. The Levi-Civita connection of the first fundamental form Iρ is
given by

DUU = 0 DUV = 0

DV U =
ρ′(u)
ρ(u)2

V DV V = − ρ′(u)
ρ(u)2

U .

Proof. By the v-invariance of the first fundamental form, the curves s �→ (s, v)
are geodesics, and U has length 1 with respect to the first fundamental form.
This implies DUU = 0. Next V = Rπ/2U and intrinsic rotations are parallel,
so that DUV = 0 as well.

Using that D is torsion-free and metric, we compute

DV U = DUV + [V,U ]
= dV U − dUV

=
∂

ρ(u)∂v

∂

ρ(u)∂u
− ∂

ρ(u)∂u

∂

ρ(u)∂v

= − 1
ρ(u)

∂

∂u

∂

ρ(u)∂v

=
1

ρ(u)
ρ′(u)
ρ(u)2

∂

∂v

=
ρ′(u)
ρ(u)2

V

and

DV V = I(DV V,U)U + I(DV V, V )V

= dV I(V,U)U − I(V,DV U)U

= − ρ′(u)
ρ(u)2

U.

�
Lemma 2.2. The Gauss equation is equivalent to

λ1(u)λ2(u) =
ρ′(u)2 − ρ(u)ρ′′(u)

ρ(u)4
.

Proof. The Gauss equation gives us:

I(R(U, V )V,U) = det(S) = λ1(u)λ2(u)
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Let us calculate R(U, V )V .

R(U, V )V = DUDV V − DV DUV − D[U,V ]V

= DU

(
− ρ′(u)

ρ(u)2
U

)
− DV (0) − D− ρ′(u)

ρ(u)2
V

V

= −dU

(
ρ′(u)
ρ(u)2

)
U − DUU +

ρ′(u)
ρ(u)2

DV V

= − 1
ρ(u)

∂

∂u

(
ρ′(u)
ρ(u)2

)
U +

ρ′(u)
ρ(u)2

(
− ρ′(u)

ρ(u)2
U

)

= − 1
ρ(u)

(
ρ′′(u)ρ(u)2 − ρ′(u)(2ρ(u)ρ′(u))

ρ(u)4

)
U − ρ′(u)2

ρ(u)4
U

=
−ρ′′(u)ρ(u) + 2ρ′(u)2 − ρ′(u)2

ρ(u)4
U

=
ρ′(u)2 − ρ(u)ρ′′(u)

ρ(u)4
U

The claim follows. �
In order to use the Codazzi equations we continue to compute the relevant
covariant derivatives.

Lemma 2.3. The covariant derivatives of the twist rotation are given by

DURα(v) = 0 and DV Rα(v) =
α′(v)
ρ(u)

Rα(v)+π
2 .

Proof. The first equations follows because intrinsic rotations by a constant
angle are parallel and α is independent of u. For the second, we use the chain
rule and observe that V = 1

ρ
∂
∂v . �

Lemma 2.4. The covariant derivatives of the eigenvalue endomorphism Λ are
given by

DUΛ(u) =
1

ρ(u)
Λ′(u)

(DV Λ(u))U =
ρ′(u)
ρ2(u)

(λ1(u) − λ2(u))V

(DV Λ(u))V =
ρ′(u)
ρ2(u)

(λ1(u) − λ2(u))U .

Proof. The first equation is immediate because the frame (U, V ) is parallel in
the U -direction. For the second, we compute

(DV Λ)U = DV (λ1U) − ΛDV U

= λ1DV U − λ2DV U

=
ρ′(u)
ρ2(u)

(λ1(u) − λ2(u))V .

The third equation is proven the same way. �
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Lemma 2.5. The covariant derivatives of the shape operator are given by

(DUS)V =
1

ρ(u)
R−α(v)Λ′(u)Rα(v)V

(DV S)U = (λ1(u) − λ2(u))
ρ′(u) − ρ(u)α′(v)

ρ2(u)
R−2α(v)V.

Proof. In the statement, we have indicated the dependence of each function
by its respective variable. To improve legibility, we will drop the variables in
the computations below. Observe, however, that derivatives like α′ and ρ′ are
always taken with respect to the proper variables.

The first equation is again immediate. For the second, we need to work harder.
We begin by differentiating the definition of S according to the product rule,
and then use the lemmas above:

(DV S)U = DV (R−αΛRα)(U)

=
(
(DV R−α)ΛRα + R−α(DV Λ)Rα + R−αΛ(DV Rα)

)
(U)

= R−α

(
−α′

ρ
R

π
2 ΛRα + (DV Λ)Rα +

α′

ρ
ΛRα+π

2

)
(U)

= R−α
(

− α′

ρ
R

π
2 Λ(cos(α)U + sin(α)V )

+ (DV Λ)(cos(α)U + sin(α)V ) +
α′

ρ
Λ(− sin(α)U + cos(α)V )

)

= R−α

(
− α′

ρ
R

π
2 (λ1 cos(α)U + λ2 sin(α)V )

+
ρ′

ρ2
(λ1 − λ2)(cos(α)V + sin(α)U)

+
α′

ρ
(−λ1 sin(α)U + λ2 cos(α)V )

)

= (λ2 − λ1)
(

−α′

ρ
+

ρ′

ρ2

)
R−α(− sin(α)U − cos(α)V )

= (λ1 − λ2)
(

−α′

ρ
+

ρ′

ρ2

)
R−2αV

�
Corollary 2.6. The Codazzi equations are equivalent to

(λ′
1 + λ′

2) sin(α) cos(α) = 0
1
ρ
(λ1 − λ2)(ρ′ − ρα′) = −λ′

1 sin2(α) + λ′
2 cos2(α).

Proof. The Codazzi equations state that (DXS)Y = (DY S)X for any pair
of tangent vectors X and Y . As we are in dimension 2 and the equation is
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symmetric, it suffices to verify this for X = U and Y = V . By the previous
theorem, this is equivalent to

ρΛ′RαV = (λ1 − λ2)(ρ′ − ρα′)R−αV.

Pairing both sides with I(·, R−αU) and I(·, R−αV ) respectively gives

ρI(Λ′RαV,R−αU) = 0

ρI(Λ′RαV,R−αV ) = (λ1 − λ2)(ρ′ − ρα′).

The first equation simplifies to

0 = I(−Λ′(sin(α)U + cos(α)V ), cos(α)U − sin(α)V )

= I (−λ′
1 sin(α)U + λ′

2 cos(α)V ), cos(α)U − sin(α)V )

= (λ′
1 + λ′

2) sin(α) cos(α)

and the second to
1
ρ
(λ1 − λ2)(ρ′ − ρα′) = I(Λ′RαV,R−αV )

= I(−λ′
1 sin(α)U + λ′

2 cos(α)V ), sin(α)U + cos(α)V )

= −λ′
1 sin2(α) + λ′

2 cos2(α)

as claimed. �
We are now ready to prove Theorem 1.3.

Proof. By assumption, the twist function α is not identically equal to an inte-
gral multiple of π/2 on any open interval. By the first Codazzi equation, the
mean curvature H(u) = λ1(u) + λ2(u) is constant except possibly at isolated
points. As we assume that H is at least C1, this implies that H is constant.

This simplifies the second Codazzi equation to
1

ρ(u)
(2λ1(u) − H)(ρ′(u) − ρ(u)α′(v)) = −λ′

1(u).

As the right hand side is independent of v, so is the left hand side. This can only
be the case if α′(v) is a constant as claimed, or that H = 2λ1(u) on an open
interval. In the latter case we have on the same interval that λ1(u) = λ2(u) = λ
for a constant λ. But this means that this portion of the surface is umbilic,
which we have excluded. �
Observe that we have not used the Gauss equations in the proof above. We
will now use the second Codazzi equation to eliminate λ1 and λ2 from the
Gauss equations.

Lemma 2.7. For α(v) = av and H = λ1(u) + λ2(u) a constant, the second
Codazzi equation has the general solution

λ1(u) =
1
2
H + b

e2au

ρ(u)2
,

where b is any real number.
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Proof. Define

μ(u) = ρ2(u)
(

λ1(u) − 1
2
H

)
.

The second Codazzi equation is then equivalent to

μ′(u) = 2aμ(u).

Integrating and substituting back gives the claim. �
The following corollary proves Theorem 1.4.

Corollary 2.8. A first fundamental form Iρ with ρ = ρ(u) and shape operator
S as in Eq. (1) such that H = λ1(u)+λ2(u) is constant and α(v) = av satisfy
the Gauss and Codazzi equations if and only if

ρ′(u)2 − ρ(u)ρ′′(u) =
1
4
H2ρ(u)4 − b2e4au. (4)

In particular, by Bonnet’s theorem, these data determine an intrinsic surface
of revolution, and every such surface arises this way.

Proof. This follows by using the explicit solutions for λ1 and λ2 from Lemma 2.7
in the Gauss equation from Lemma 2.2, and simplifying. �
To classify all intrinsic surfaces of revolution, we would need to find all solutions
to the differential equation 4, and then to integrate the surface equation to
obtain a parametrization. We will discuss the solutions of 4 for H = 0 in
Sect. 3.

We end this section by carrying out the first integration step of the surface
equation, which is quite explicit and shows that special coordinate curves are
planar.

Assume that ρ(u) is a solution of 4. To determine the surface parametrization,
we will first determine a differential equation for the curve c̃ = f ◦ c with
c(s) = (s, 0).

Recall from Eqs. (3) and (2.1) that

X(s) = U(s, 0) and Y (s) = V (s, 0)

are a parallel frame field along c(s) with respect to the first fundamental form.

Following the proof of Bonnet’s theorem, we derive a Frenet-type differential
equation for the orthonormal frame X̃(s) = dfX(s), Ỹ (s) = dfY (s), and
Ñ(s) = X̃(s) × Ỹ (s).
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X̃ ′(s) = df
D

ds
X(s) + 〈X̃ ′(s), Ñ(s)〉Ñ(s)

= −〈X̃(s), Ñ ′(s)〉Ñ(s)

= −
〈

dfX(s), dfS
∂

∂u

〉
Ñ(s)

= −ρ(s)I(X(s), SX(s))Ñ(s)

and similarly

Ỹ ′(s) = −ρ(s)I(Y (s), SX(s))Ñ(s)

Finally,

Ñ ′(s) = 〈Ñ ′(s), X̃(s)〉X̃(s) + 〈Ñ ′(s), Ỹ (s)〉Ỹ (s)

=
〈

dfS
∂

∂u
, dfX(s)

〉
X̃(s) +

〈
dfS

∂

∂u
, dfY (s)Ỹ

〉
(s)

= I

(
S

∂

∂u
,X(s)

)
X̃(s) + I

(
dfS

∂

∂u
, Y (s)

)
Ỹ (s)

In our case, using the explicit formula for the shape operator and the principal
curvatures in terms of ρ and a, b, this simplifies to give the following lemma:

Lemma 2.9.

X̃ ′(s) = −
(

e2asb

ρ(s)
+

1
2
Hρ(s)

)
Ñ(s)

Y ′(s) = 0

Ñ ′(s) =
(

e2asb

ρ(s)
+

1
2
Hρ(s)

)
X̃(s)

Corollary 2.10. The space curve f(s, 0) is planar.

Proof. This is immediate because Ỹ (s) is constant. Note that this only works
because v = 0. �
This is as far as we can get in the general case. For the minimal case, we
will solve the Eq. (4) explicitly and be able to integrate the surface equations
further.

3. The minimal case

In the minimal case H = 0 the differential equation for ρ simplifies to

ρ′(u)2 − ρ(u)ρ′′(u) = −b2e4au (5)

Without much loss of generality, we can assume b = 1 by scaling ρ by a positive
constant. There is one exception, namely when b = 0. In this case, λ1 = λ2 = 0,
so that the surface is a plane, which we disregard.
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Lemma 3.1. All positive solutions of

ρ′(u)2 − ρ(u)ρ′′(u) = −e4au (6)

defined in any open interval are given by

ρ(u) =
e2au

2B

(
AeBu +

e−Bu

A

)

for arbitrary A,B > 0.

Proof. It is easy to check that ρ satisfies Eq. (6). To show that every local
solution σ is of this form, it suffices to show that for any fixed real u, the
initial values σ(u) > 0 and σ′(u) are equal to the initial data ρ(u) and ρ′(u)
for a suitable choice of A > 0 and B > 0. Then the local uniqueness theorem for
ordinary differential equations implies that ρ = σ near u and hence everywhere.

To this end, we have to solve

σ(u) =
1

2B
e2au

(
eBuA +

e−Bu

A

)

σ′(u) =
1

2B
e2au

(
ABeBu − Be−Bu

A

)
+

1
B

ae2au

(
eBuA +

e−Bu

A

)

for A and B. Surprisingly, this is explicitly possible.

The strategy is to solve the first equation for A, choosing the larger solution
of the two. This gives

A = e−Bu
(
Be−2auσ(u) +

√
B2e−4auσ(u)2 − 1

)
.

Inserting this into the second equation and simplifying gives

σ′(u) − 2aσ(u) =
√

B2σ(u)2 − e4au

which can be solved for B. Again choosing the positive solution gives

B =
1

σ(u)

√
e4au + (σ′(u) − 2aσ(u))2.

Note that σ(u) > 0 as we are only interested in positive conformal factors. This
in turn makes the radicand in the preliminary expression for A, and hence A
itself, positive. Explicity:

A = e−
u

(
2aσ(u)+

√
(σ′(u)−2aσ(u))2+e4au

)

σ(u)

×
(

−2aσ(u) + σ′(u) +
√

(σ′(u) − 2aσ(u))2 + e4au

)
.

�
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Remark 3.2. The Enneper solution ρEnn corresponds to a = 1, A = B = 1.

Using the solutions for ρ from Lemma 3.1 in Lemma 2.9 (and remembering
that we normalized b = 1), straightforward computations give

X̃ ′(s) = − 2ABeBs

A2e2Bs + 1
Ñ(s)

Ỹ ′(s) = 0

Ñ ′(s) =
2ABeBs

A2e2Bs + 1
X̃(s)

Integrating gives the following lemma:

Lemma 3.3. Up to a motion in space, the solution to this equation is given by

X̃(s) =
1

1 + e2BsA2

⎛
⎝

1 − A2e2Bs

0
−2AeBs

⎞
⎠ , Ỹ (s) =

⎛
⎝

0
1
0

⎞
⎠ ,

Ñ(s) =
1

1 + e2BsA2

⎛
⎝

2AeBs

0
1 − A2e2Bs

⎞
⎠

We have normalized the frame to that for s = −∞, X̃ = (1, 0, 0) and Ñ =
(0, 0, 1) in agreement with our parametrization of the Enneper surface.

Corollary 3.4. The space curve c̃(s) = f(s, 0) is given by

c̃(s) = −e2as

2B

(
eBsA

B + 2a
+

e−Bs

A(B − 2a)
, 0,

1
a

)

if B 
= ±2a. If B = 2a (say, the other case being similar), we have

c̃(s) = −e2as

4a2

(
1
4
Ae2as, 0, 1

)
+

s

4aA
(1, 0, 0) .

Proof. This follows by integrating

c̃′(s) =
d

ds
f(s, 0)

= I

(
∂

∂s
,X(s)

)
X̃(s) + I

(
∂

∂s
, Y (s)

)
Ỹ (s)

= −e2as

2B

(
AeBs − e−Bs

A
, 0, 2

)

using the previous lemma, and simplifying. �
Instead of now integrating the surface equations likewise along the curves
s �→ (u, s) for fixed u, we will use the Björling formula [1] to obtain the
parametrization more easily.

Recall that given a real analytic curve c̃ : (u1, u2) → R
3 and a real analytic

unit normal field Ñ : (u1, u2) → R
3 satisfying 〈c̃′(u), Ñ(u)〉 = 0, the unique
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minimal surface containing c̃ and having surface normal Ñ along c̃ can be
given in a neighborhood of (u1, u2) ⊂ C by

f(z) = Re
(

c̃(z) − i

∫ z

Ñ(w) × c̃′(w) dw

)

where we write z = u + iv and have extended c̃ and Ñ to holomorphic maps
into C

3.

In our case, we obtain for B 
= 2a

f(u, v) =
e2au

2B

⎛
⎜⎜⎝

e−Bu cos((2a−B)v)
2aA−AB − AeBu cos((2a+B)v)

2a+B

e−Bu sin((2a−B)v)
2aA−AB + AeBu sin((2a+B)v)

2a+B

− cos(2av)
a

⎞
⎟⎟⎠

and for B = 2a

f(u, v) =
1

4a2

⎛
⎜⎝

au
A − 1

4Ae4au cos(4av)
av
A + 1

4Ae4au sin(4av)

−e2au cos(2av)

⎞
⎟⎠ .

Note that in the last case scaling a by a constant and (u, v) by the reciprocal
only scales the surface, so we can as well assume that a = 1 in this case.

The Weierstrass data [1] of these surfaces are particularly simple. Using z =
u + iv, let (also for B = 2a)

G(z) =
1
A

e−Bz and dh = − 1
B

e2az dz.

be the Gauss map and height differential of the Weierstrass representation
formula

f(z) = Re
∫ z

⎛
⎝

1
2 (1/G − G)
i
2 (1/G + G)

1

⎞
⎠ dh.

This gives the surfaces f(u, v) above. This can be verified either by evaluating
the integral or by solving the Björling integrand c̃′(z) − iÑ(z) × c̃′(z) for G
and dh.

Of particular interest are the cases when B and 2a are integers. Then the
substitution z = − log(w) changes the Weierstrass data into

G(z) =
1
A

wB and dh =
1
B

w−2a−1 dw,

defined on the punctured plane C
∗ and being minimal surfaces of finite total

curvature.

A substitution in the domain of the form w �→ λw will scale G and dh by
powers of λ, so we can assume without loss of generality that A = 1.
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Figure 3 The Enneper surface of order 5

Figure 4 Planar Enneper surfaces. a Order 1, and b order 6

Some of the minimal surfaces we have obtained are described in [4]. We will
now discuss examples.

In case that B = 2a−1 ∈ N, we obtain the Enneper surfaces of cyclic symmetry
of order B + 1, see Fig. 3. For B = 2a − 1 = 1, we obtain the original Enneper
surface.

The planar Enneper surfaces of order n are given by choosing B = n + 1 and
2a = n. See Fig. 4 for the cases n = 1 and n = 6. These surfaces feature an
Enneper type end and a planar end. Remarkably, in the non-zero CMC case,
there are only one-ended solutions [5].

Other choices of a and B lead to more wildly immersed examples. In Fig. 5
we show images of thin annuli u1 < u < u2.

There is one case that deserves attention: If B = 2a, the Weierstrass 1-forms
have residues, and hence the surface can become periodic. The prototype case
here is B = 1 and a = 1/2 (see Fig. 6) which leads to a translation invariant
surface that hasn’t made it into the literature to our knowledge. It deserves
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Figure 5 Generalized Enneper surfaces. a B = 1, a = 3/2,
and b B = 7, a = 2

Figure 6 The translation invariant Enneper surface

attention because it is in the potentially classifiable list of minimal surfaces in
the space form R

3/Z (where Z acts through a cyclic group of translations) of
finite total curvature −4π. Other surfaces in this list include the helicoid and
the singly periodic Scherk surfaces.

4. Constant mean curvature

In [5], Smyth considers intrinsical surfaces of revolution under a different view-
point: He assumes from the beginning that his surfaces have constant mean
curvature, but does not make further assumptions about the shape operator.
Nevertheless, we both end up with the same class of surfaces. Therefore we
would like to connect our approach with Smyth’s in the CMC case.

First we can compute the Hopf differential using the coordinate z = u + iv:
Using the Definitions 1.1 of I and 1.2 of S, and the formulas for α, λ1 and λ2

from Theorem 1.4, a straightforward computation shows that
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Ω = I

(
S · d

dz
,

d

dz

)

= I

(
S · 1

2

(
1
−i

)
,
1
2

(
1
−i

))

=
1
2
be2au (cos(2av) + i sin(2av))

=
1
2
be2az

is indeed holomorphic and agrees with Smyth’s computation. Secondly, to show
that our equation for ρ is equivalent to Smyth’s equation, we substitute

ρ(u) = eφ(u)/2

φ(u) = F (u) − 2au + log(b)

and obtain

F ′′(u) = −4be−2au sinh(F (u))

in the case that H = 2 (which is Smyth’s case H = 1). This again agrees with
Smyth’s equation, up to a normalization of constants.

In general, there are apparently no explicit solutions to Eq. (4) for H 
= 0 in
the literature. There is, however, one explicit solution given by

ρ(u) =
√

2
√

beau

√
H

.

By Lemma 2.7, the principal curvatures become simply λ1 = H and λ2 = 0.
This implies that the surface under consideration is in fact a cylinder. This
is somewhat surprising, as the standard parametrization of a cylinder over a
circle of radius 1/H as an extrinsic surface of revolution has twist 0. In our
case, however, the cylinder is parametrized using geodesic polar coordinates
(see the left image in Fig. 7) as

f(u, v) =
1
H

⎛
⎜⎜⎝

cos
(

1
a

√
2bHeau cos(av)

)

sin
(

1
a

√
2bHeau cos(av)

)

1
a

√
2bHeau sin(av)

⎞
⎟⎟⎠

For other initial data of the Eq. (4), only numerical solutions are available.
These can be obtained easily by integrating the surface equations. The right
image in Fig. 7 was obtained using a = 1, b = 4.2625, H = 1/2, and ρ(0) =
ρ′(0) = 2.

5. The untwisted case

In this section, we will consider the exceptional case of Theorem 1.3 where
α(v) = a with a being an integral multiple of π/2, and prove Theorem 1.6.
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Figure 7 Two CMC surfaces. a Cylinder in polar coordi-
nates, and b intrinsic CMC surface of revolution (numerical
solution)

Thus we are given a first fundamental form Iρ and shape operator

S = ±
(

λ1(u) 0
0 λ2(u)

)
or S = ±

(
λ2(u) 0

0 λ1(u)

)
,

depending on the congruence class of a modulo 2π. Without loss of generality,
we will assume a = 0 and therefore

S =
(

λ1(u) 0
0 λ2(u)

)
.

The Gauss- and Codazzi equations become

λ1(u)λ2(u) =
ρ′(u)2 − ρ(u)ρ′′(u)

ρ(u)4

and
ρ′

ρ
(λ1 − λ2) = λ′

2.

Eliminating λ1 from the first equation using the second equation leads to the
differential equation

ρ′(u)2 − ρ(u)ρ′′(u)
ρ(u)4

= λ2(u)
(

λ2(u) +
ρ(u)λ′

2(u)
ρ′(u)

)

for λ2. Surprisingly, this equation can be solved explicitly by

λ1(u) =
ρ(u)ρ′′(u) − ρ′(u)2

ρ(u)2
√

c2ρ(u)2 − ρ′(u)2

λ2(u) = −
√

c2ρ(u)2 − ρ′(u)2

ρ(u)2
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for any choice of c that makes the radicand positive.

We now show that any untwisted surface is a general surface of revolution.
Recall that typically a surface of revolution is being parametrized as

f(u, v) = (g(u) cos(v), g(u) sin(v), h(u)).

However, by changing the speed of rotation, a surface of revolution can also
be given by

f(u, v) = (g(u) cos(cv), g(u) sin(cv), h(u))

where c is a positive constant.

We now show that we can find g and h defined on the interval (u1, u2) having
the first fundamental form and shape operator of the untwisted intrinsic surface
of revolution above, with the rotational speed-up c being the constant c in
Theorem 1.6 introduced above as an integration constant.

The first fundamental form of f is given by:

I =
(

g′(u)2 + h′(u)2 0
0 c2g(u)2

)
.

Comparing this to the definition of Iρ gives the following equations:

g′(u)2 + h′(u)2 = ρ(u)2

c2g(u)2 = ρ(u)2.

This determines g(u) = ρ(u)
c and h(u) by h′(u) = 1

c

√
c2ρ(u)2 − ρ′(u)2. Note

that the radicand is positive by our assumption about c.

Straightforward computation shows that the shape operator of f(u, v) with g
and h as above coincides with the shape operator S of the intrinsic surface of
revolution.

This completes the proof of Theorem 1.6.

Example 5.1. Knowing this, we can find surfaces of revolution with speed-up
c ≥ 3 that are locally isometric to the Enneper surface.

For the Enneper surface, we have

ρ(u) =
1
4
e2u

(
e−u + eu

)

so that the radicand c2ρ(u)2 − ρ′(u)2 becomes
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Figure 8 Surface of revolution isometric to one third of the
Enneper surface

1
16

e2uu
((

c2 − 9
)
e4u +

(
2c2 − 6

)
e2u + c2 − 1

)
.

Thus for c ≥ 3, we can find g and h as needed. The integral for h is generally
not explicit, but for c = 3 we can obtain

g(u) =
1
12

e2u
(
e−u + eu

)

h(u) =
1
36

(
2
√

3 sinh−1

(√
3
2
eu

)
+ 3eu

√
2 + 3e2u

)
.

This means that the surface of revolution in Fig. 8 is isometric to one third of
the Enneper surface, punctured at the “center”.

In contrast, if c = 1, the radicand is negative for all u, which implies that no
piece of the Enneper surface can be isometrically realized as a standard surface
of revolution (with no speed-up).
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