

An easy characterization of PG(4*, n*)

Vito Napolitano and Domenico Olanda

Abstract. In this paper, a characterization of the projective space PG(4*, n*) in terms of finite planar spaces is given.

Mathematics Subject Classification. 51E26. **Keywords.** Projective space, planar space.

1. Introduction

In order to make the reading of this article self-contained we recall some wellknown definitions. A *(finite) linear space* is a pair (S, \mathcal{L}) , where S is a (finite) non-empty set whose elements are called *points*, and $\mathcal L$ is a family of proper subsets of P each of size at least two, whose elements are called *lines* such that

(i) *any two distinct points belong to exactly one line.*

A subset of S is a *subspace* if it contains the line through any two of its distinct points.

A *(finite) planar space* is a triple $(S, \mathcal{L}, \mathcal{P})$, where (S, \mathcal{L}) is a *(finite)* linear space and P is a family of proper subspaces called *planes* such that:

(ii) *Every plane contains at least three non-collinear points*.

(iii) *Every triple of non-collinear points is contained in a single plane*.

Let $(S, \mathcal{L}, \mathcal{P})$ be a finite planar space. Let us denote by v, b and c respectively the sizes of S , $\mathcal L$ and $\mathcal P$. The number $[p]$ of all lines passing through a fixed point p of S is the *degree* of p. The set of the lines through a point p of S and contained in a plane π through p is called a *pencil of lines with center* p and it is denoted with \mathcal{F}_p . If $n+1$ is the maximum size of the pencils of lines, then

This research was partially supported by G.N.S.A.G.A. of INdAM and the Italian Ministry MIUR.

the integer n is the *order* of the planar space. The set of all planes through a given line ℓ is called a *pencil of planes with axis* ℓ . The *length* of a line ℓ is its size and it is denoted with $|\ell|$.

Two lines ℓ and ℓ' are *parallel* either if $\ell = \ell'$ or if they are coplanar and $\ell \cap \ell' = \emptyset$. Two distinct non-coplanar lines are called *skew*. A line and a plane are *parallel* either if the line is contained in the plane or if their intersection is the empty-set.

Let n and q be two integers, $n \geq 2$, a finite planar space is (n, q) -regular if it satisfies the following properties:

I. *Every pencil of lines has size* $n + 1$.

II. *Every pencil of planes has size* $q + 1$.

Namely, from Property I it follows that $q \geq n$ and

Proposition 1.1. $|\ell| \leq n+1$ *for every line* ℓ *of the planar space.*

A line of length n + 1 is called a *projective line*. Clearly, by Property I, a projective line is intersected by any of its coplanar line.

In this note, we will assume that the planar space $(S, \mathcal{L}, \mathcal{P})$ is (n, q) -regular and it satisfies the following two properties:

a. $q>n$

b. *The intersection of any two planes is non-empty*.

Every projective space $PG(r, n)$, $r \geq 3$, is an (n, q) -regular planar space. If $r = 3$, then Property a. is not satisfied. If $r \geq 5$, then Property b. is not satisfied. Thus, the only projective space satisfying both properties is $PG(4, n)$. Moreover, the planar space obtained from $PG(4, n)$ by deleting one point is (n, q) -regular and it satisfies Property a. but not Property b.

The authors believe that it is possible to propose the following:

Conjecture. An (n, q) -regular planar space satisfying properties a. and b. is necessarily $PG(4, n)$.

In a previous paper $[2]$, the authors prove that the conjecture is true when the (n, q) -regular planar space satisfies the following extra condition:

c. *It there exists at least one projective line*.

In the appendix, for completeness it is given an easy proof of the following

Theorem I. An (n, q) -regular planar space $(S, \mathcal{L}, \mathcal{P})$ is $PG(4, n)$ if and only if *it satisfies properties a., b. and c.*

In this paper, the authors support their conjecture by proving the following

Theorem II. An (n, q) -regular planar space $(S, \mathcal{L}, \mathcal{P})$ is $PG(4, n)$ if and only *if it satisfies the following two properties:*

a'. $q > n^2 - n - 5 > n$ b. *The intersection of any two planes is not empty.*

Thus, the conjecture is true when q is large enough compared to n .

2. First properties of an (n, q) -regular planar space with $q > n$

Proposition 2.1. *Every point* p *has constant degree*

$$
[p] = (q+1)n + 1.
$$
\n(2.1)

Proof. Let p be a point and ℓ be a line through p. The lines through p and different from ℓ are divided in groups of n in the $q + 1$ planes through ℓ and so (2.1) follows.

Proposition 2.2. *Through every point p there is a constant number* c_p *of planes, with*

$$
c_p = \frac{[p]([p]-1)}{n(n+1)}.\t(2.2)
$$

Proof. Given a point p, counting in double way the pairs $((\ell, \ell'), \pi)$, where ℓ and ℓ' are two distinct lines through p and π is the plane containing both ℓ and ℓ' it gives:

$$
[p]([p]-1) = c_p n(n+1)
$$
\n(2.3)

from which (2.2) follows.

Proposition 2.3. Let π be a plane and p be a point of π . The number I_p of *planes through* p *intersecting* π *exactly in* p *is given by*

$$
I_p = c_p - 1 - q(n+1).
$$
\n(2.4)

Proof. The number of planes through p different from π and intersecting π in a line through p, is $q(n+1)$ and so the assertion is proved. \Box

Hence, for any given plane π and for any point $p \in \pi$, the number of planes intersecting π exactly in p is a constant depending neither from π nor from the choosen point $p \in \pi$.

Let π be a plane and let b_{π} and v_{π} denote the number of lines and points of π , respectively.

Since the planes are pairwise intersecting it follows that

$$
q b_{\pi} + v_{\pi} I_p = c - 1. \tag{2.5}
$$

Thus, the following assertions are equivalent.

- (a) *Every plane has a constant number of lines*.
- (b) *All the planes have the same size*.
- (c) *All the lines have the same length*.

From [\(2.5\)](#page-3-0) the equivalence between (a) and (b) follows. If all the lines have constant length $k+1$ then every plane has size $(n+1)k+1$. If every plane has size h for any line ℓ one has

$$
v = |\ell| + (q+1)(h - |\ell|).
$$

Fundamental for our purposes is the following.

Lemma 2.1. *Every plane of size at most* $q + 1$ *is a projective plane of order n*.

Proof. Let π be a plane and assume that $|\pi| \leq q+1$. It will be sufficient to show that every line of π has length $n+1$. Assume, to the contrary that π has a line ℓ of length at most n. Let π' be a plane through ℓ , different from π . Let p be a point of π' not in ℓ . Since p has degree $n + 1$, there is at least one line t of π' through p and parallel to ℓ . For every point x of $\pi - \ell$ let $\pi_x = \langle x, t \rangle$ be the plane containing x and t. Since ℓ has at least two points, the points of $\pi - \ell$ are at most $q - 1$ and so the planes through t intersecting π are at most q. Thus, there is at least one plane through t which does not intersect π , which is a contradiction. -

3. (n, q) **-Regular planar spaces with** $q > n^2 - n - 5$ and with **no disjoint planes**

In this section, we are going to prove Theorem [II.](#page-2-2) Thus, we will suppose that $(S, \mathcal{L}, \mathcal{P})$ is a (n, q) -regular planar spaces with no disjoint planes. We will prove that if $q > n^2 - n - 5 \ge n$, then the planar space $(S, \mathcal{L}, \mathcal{P})$ is PG(4, n).

By Theorem [I](#page-1-0) it is sufficient to show that there exists at least one line of length $n + 1$. Assume on the contrary that no line has length $n+1$. Hence, by Lemma [2.1](#page-3-1) it follows that every plane has size at least $q + 2$.

Now, we prove that no line has length n . Assume, by way of contradiction, that there exists a line ℓ of length n. Since every point has planar degree $n+1$, the line ℓ , together with its parallel lines, gives rise to a line partition $\mathcal F$ of the planar space. By adding a common point ∞ to every line of the partition one obtains a planar space $(S', \mathcal{L}', \mathcal{P}')$ which is again q-regular and with a line

 $\ell' = \ell \cup \infty$ of length $n + 1$. Let π be a plane through ℓ and let p be a point of $\pi - \ell$ different from ∞ . Let t be a line through p and not contained in π . Since p has degree $n+1$, there are $q+1$ planes through ℓ and since $q > n$ there exists at least one plane π_0 through t intersecting π exactly in the point p. The plane π_0 does not contain ∞ otherwise it should contain the line connecting p and ∞ and such a line lies in π . Then, it follows that every plane through ℓ intersects π_0 in exactly one point and so π_0 has size $q + 1$. Since the plane π_0 does not contain ∞ it is a plane of P and since its size is $q + 1$ by Lemma [2.1](#page-3-1) every line of π_0 has length $n + 1$.

Thus, the maximum line size is $n-1$. Therefore, there are two possibilities:

- (i) *There is at least one line of length* $n-1$ *.*
- (ii) *All lines have lenght at most* $n-2$.

Let us examine Case (i).

Let ℓ be a line of length $n-1$ and let π be a plane containing ℓ . If all the lines of π have length $n-1$, counting the number of points of π via the lines through a given point of π gives $|\pi| = (n+1)(n-2)+1$.

Let b_{π} denote the number of lines of π . Counting in double way the point-line pairs (x, t) with $x \in t$ and t in π gives

$$
[(n+1)(n-2)+1](n+1) = b_{\pi}(n-1).
$$

Being b_{π} an integer, we have $n \leq 3$, while is $n \geq 4$ since $n^2 - n - 5 \geq n$.

Therefore, the plane π contains at least one line of length at most $n-2$, and so $|\pi| \leq n^2 - n - 2$.

Let π' be a plane through ℓ and different from π and let ℓ' be a line of π' different from ℓ and parallel to ℓ . The q planes through ℓ' different from π' intersect π in at least q different points not in ℓ , so

$$
|\pi| \ge q + n - 1.
$$

Since $q > n^2 - n - 5$, from

$$
q + n - 1 \le |\pi| \le n^2 - n - 2
$$

it follows that $n < 4$ contradicting $n \geq 4$.

Case (ii) *There is no line of length* $n-1$.

Let π be a plane. Counting the number of points of π via the lines through one of its points gives

$$
q + 2 \le |\pi| \le (n+1)(n-3) + 1
$$

from which it follows that $q \leq n^2-2n-4$ against the assumption $q > n^2-n-5$.

In both cases there is a contradiction, and so the planar space contains a line of length $n + 1$, and Theorem [II](#page-2-2) is completely proved taking into account Theorem [I.](#page-1-0)

Appendix: proof of Theorem [I](#page-1-0)

In such a section we are going to prove

Theorem I. An (n, q) -regular planar space $(S, \mathcal{L}, \mathcal{P})$ with $q > n$, with no dis*joint planes and having at least one line* L *of length* n + 1 *is the projective space* PG(4, n)*.*

Proof. We will proceed by steps.

STEP 1. *There are planes that intersect in a single point.*

Let π be a plane and p a point of π . Let ℓ be a line through p not contained in π . Each line of π through p, together with ℓ , gives rise to a plane intersecting π in a line. Thus, there are $n + 1$ planes through ℓ intersecting π in a line through p. The remaining planes through p intersect π in exactly the point p. Since $q > n$, the assertion follows.

Let L denote a projective line.

STEP 2. *There are planes disjoint with the projective line* L*.*

Let π be a plane through L and let p be a point of π not in L. Every plane intersecting π in exactly the point p is disjoint from L.

STEP 3. The planes disjoint from L have constant size $q + 1$ *.*

Let π be a plane disjoint from L. Every point x of π , together with L, determines a plane through L. Vice versa, since the planes have no empty intersection, a plane through L intersects π in a single point x, being L projective. Such a bijection shows the assertion.

STEP 4. *Every plane disjoint from* L *is projective.*

Let π be a plane disjoint from L and let r be a line of π . We prove that r has length $n + 1$. Assume, by way of contradiction, that $|r| \leq n$. Let π' be a plane through r, different from π , and let x be a point of π' not in r. Since $|r| \leq n$ in π' there is at least one line t through x parallel to r. Since $|r| \geq 2$, in the plane π there are at least $q-1$ points not in r. Each of such points together with t gives rise to a plane through t . It follows that the planes through t intersecting π are at most q. So, there is at least one plane through t disjoint from π , a contradiction. If every lines of π has length $n+1$, then π is a projective plane.

STEP 5. Every line skew with L has length $n + 1$.

Let r be a line skew with L. There are $q - n$ planes through r disjoint from L and so the assertion follows from Step 4.

STEP 6. Every line intersecting L has length $n + 1$.

Let r be a line different from L and intersecting L in a point p. Let π be a plane through r not containing L. Let x be a point of π not belonging to r. The n lines through x, different from the line containing x and p, are skew with L and so, by Step 5, their length is $n + 1$. Hence, each of such lines intersects r. It follows that $|r| = n + 1$.

So, through Steps 5 and 6 we have proved that every line of the space has length $n + 1$, it follows that every plane is a projective one and so the planar space is a projective space of dimension 4 since $q + 1 = n^2 + n + 1$.

Thus, Theorem [I](#page-1-0) is proved. \Box

References

- [1] Durante, N., Lo Re, P.M., Olanda, D.: *On regular planar spaces of type* (*k, n*). Discr. Math. **301**, 66–73 (2005)
- [2] Durante, N., Napolitano, V., Olanda, D.: *On projective spaces* $PG(r, q)$ *with* $r \geq$ 4. J. Geom. **87**(2), 50–54 (2007)

Vito Napolitano Dipartimento di Matematica e Fisica Seconda Universit`a degli Studi di Napoli Viale Lincoln 5 81100 Caserta Italy e-mail: vito.napolitano@unina2.it

Domenico Olanda Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Universit`a degli Studi di Napoli Via Cintia, Napoli Italy e-mail: domenico.olanda@unina.it

Received: April 21, 2016. Revised: July 22, 2016.