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Absolute geometry proofs of two geometric
inequalities of Chisini

Victor Pambuccian

Abstract. Two results, proved synthetically in plane Euclidean geometry
by Chisini in 1924—stating that: (i) if MAB is an isosceles triangle,
with MA ≡ MB, inscribed in a circle C, P1 and P2 are two points on C
such that {B,Pi} separates {A,M} for i ∈ {1, 2}, and {B,P2} separates
{M,P1}, then AP1+BP1 < AP2+BP2, and (ii) of all triangles inscribed
in a given circle the equilateral triangle has the greatest perimeter—are
proved inside Hilbert’s absolute geometry.
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1. Introduction

Following the example of his mentor Federigo Enriques (1871–1946), whom
he met as an engineering student at the University of Bologna, Oscar Chisini
(1889–1967) was actively involved in the teaching of mathematics at the sec-
ondary school level. He held the position of editorial secretary (segretario
di redazione) of the journal Il Periodico di Matematiche in 1921, when En-
riques became its managing editor (direttore), and after Enriques’ death in
1946 Chisini held the managing editorship until his death in 1967.

In 1925, another mathematician with an interest in elementary mathematics,
Alessandro Padoa, published a note [6] (and later an addendum [7]) in the
Periodico, in which he proved by using elementary inequalities that of all
triangles with a given perimeter, the equilateral triangle has the greatest radius
of the circumscribed circle. In the note [1], appearing right after Padoa’s paper,
Chisini provides a purely geometric proof of the validity of the theorem in plane
Euclidean geometry over the real numbers, rephrased as

Theorem 1. Of all triangles inscribed in a given circle, the equilateral triangle
has the greatest perimeter.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-016-0339-x&domain=pdf


266 V. Pambuccian J. Geom.

To prove it, Chisini first proved that the following

Lemma 1. If MAB is an isosceles triangle, with MA ≡ MB, inscribed in a

circle of center O,
�
AM denotes the shorter of the two arcs joining A and M ,

and P1 and P2 are two points on
�
AM with AP1 < AP2, then

AP1 + BP1 < AP2 + BP2. (1.1)

holds in plane Euclidean geometry over the real numbers.

After the passing of time allowed [1] to be forgotten, Lemma 1, in the spe-
cial case in which P2 = M , was proved by different means, also purely geo-
metrically, in [5, pp. 16–17], and later, in two different ways by two Dutch
mathematicians, in [4, pp. 21–24]. The first of the two later proofs, in [4, pp.
22–23], attributed to Jan van Yzeren, has the distinction of being valid in
Hilbert’s absolute geometry A (whose axioms are the plane axioms of groups
I, II, and III of Hilbert’s Grundlagen der Geometrie, or equivalently the ax-
ioms A1–A9 in [9]). Lemma 1 itself was reproved, with three different proofs,
all valid only in the Euclidean setting, in [3], where only [4] and [5] are cited
as references.

The aim of this paper is to show that both Theorem 1 and Lemma 1 hold in
Hilbert’s absolute geometry. Almost as an afterthought, we will also show that

Theorem 2. Let n be a natural number ≥ 3, and let H be a model of absolute
geometry in which there exists a regular n-gon. Then, of all convex n-gons
inscribed in a given circle, the regular n-gon has the greatest perimeter.

Chisini’s proof of Lemma 1 uses specifically Euclidean features and cannot be
used in the absolute setting. Our proof will expand on van Yzeren’s idea.

2. Proving Lemma 1

First, notice that, if M and O lie on the same side of AB, if C denotes the
other endpoint of the diameter through B, and if (i) both P1 and P2 lie on
the same side of BC as A, or (ii) P2 is C and P1 lies on the same side of BC
as A, then (1.1) follows from the fact that AP1 < AP2 (by hypothesis) and
BP1 < BP2 (since the perpendicular bisector b of P1P2 passes through O and
thus BP1 < BC, which is BP1 < BP2 in case (ii), and, since, in case (i), the

ray
−→
BP2 lies between the rays

−→
BC and

−→
BP1, b must intersect the side BP2 of

triangle BP1P2).1

Thus, if M and O lie on the same side of AB, it is enough to prove (1.1) in
the case in which both P1 and P2 lie on the same side of BC as M or in which
P1 = C and P2 lies on the same side of BC as M .

1It follows from the triangle inequality that if the perpendicular bisector of side XY in
triangle XY Z intersects side XZ, then ZY < ZX.
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Figure 1 The triangles OSiRi after a rotation

For i = 1, 2, let Ki and Li denote the feet of the perpendiculars from O to PiA
and PiB respectively (i.e., the midpoints of the sides PiA and PiB). Let Ri and
Si denote the intersections of the perpendiculars dropped from O to PiA and

PiB with the arc
�
AMB respectively (these points are thus the midpoints of the

arcs
�
APi and

�
BPi (the ones included in

�
AMB , see Fig. 1). Here we define

the midpoint of the arc
�
XY as the point of intersection of the perpendicular

from O, the center of the circle C, with the arc
�
XY . Let Ui and Vi be the feet

of the perpendiculars from Ri and Si to OPi respectively. Since the triangles
OPiRi and OPiSi are isosceles, the altitudes PiKi and RiUi, and PiLi and
SiVi must be congruent. Thus RiUi + SiVi = PiKi + PiLi = (PiA + PiB)/2.

To prove the lemma it is thus enough to show that R1U1+S1V1 < R2U2+S2V2.
Since the altitudes OLi and OKi in the isosceles triangles OBPi and OAPi

are angle bisectors as well, the angles ̂SiORi, for i = 1, 2 are congruent, their
measure being half of ̂AOB if M and O lie on different sides of AB, or the
supplement of half of ̂AOB in case O and M lie on the same side of AB. The
triangles R1OS1 and R2OS2 are thus congruent, and, by the assumption on
the relative positions of P1 and P2, we have ̂R1OP1 < ̂R2OP2. If we rotate
triangle R2OS2 about O, so that the point R2 is mapped into R1, then the
two triangles R1OS1 and R2OS2 will coincide, and the point P1 will lie inside
the angle ̂R1OP ′

2, where P ′
2 is the image of P2 under the rotation about O

that mapped R2 into R1. In other words, we have laid off ̂R2OP2 on the side

of ray
−→

OR1 on which P1 lies, to get an angle ̂R1OP ′
2 congruent to ̂R2OP2.

Given our assumption on the positions of P1 and P2 in case M and O lie on
the same side of AB, we have that ̂S1OP1 is ≤ 90◦. Since the points Pi are on
�
AM , we also have that ̂R1OP ′

2 is < 90◦. Thus, ̂S1OP ′
2, ̂R1OP ′

2, ̂R1OP1 are all
acute and ̂S1OP1 ≤ 90◦. Since, for any point F between R1 and S1, we have
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OF < OR1 (as ̂OFR1 > ̂OS1F (as external angle) and thus ̂OFR1 > ̂OR1F ,
and across the greater angle lies the greater side) the segments OP1 and OP ′

2

intersect the segment R1S1 in two points T1 and T ′
2 respectively. Given that a

side of a right triangle is less than the hypotenuse, this implies that the feet
of the perpendiculars from R1 and S1 to OP1 and OP ′

2 all lie on the closed
segments OP1 and OP ′

2. These feet are U1, V1 and U ′
2 and V ′

2 respectively.
Notice that R1U

′
2 and S1V

′
2 are congruent with R2U2 and S2V2 respectively.

Given that the other angles of a right triangle must be acute, we have the
following order on the lines OP1 and OP ′

2: OV1WT1XU1P1 and OZV ′
2T

′
2U

′
2P

′
2

(where we may have V ′
2 = T ′

2 = U ′
2, a situation which occurs only if P2 = M),

where W denotes the intersection of the ray
−→

S1V
′
2 with the segment V1T1, X

is the point of intersection of the segment OP1 and R1U
′
2, and Z is the point

of intersection of the segment S1V1 with the segment OV ′
2 .

Now, given that the hypotenuse is greater than the side, we have (α) S1W =
S1V

′
2+V ′

2W > S1V1, (β) R1X > R1U1. Given that—as can be seen by applying
the fact that the base of a Saccheri quadrilateral is parallel to its summit
(see [2, p. 177] for a definition of the base and the summit of a Saccheri
quadrilateral) and the Pasch axiom—if F is between E and G, and g is a
line through E that does not go through F , then the distance from F to g
is less than that from G to g, we also have (γ) XU ′

2 ≥ V ′
2W (equality holds

only if U ′
2 = V ′

2 , which occurs only if P2 = M , i.e., if we are in the case
solved by van Yzeren). Thus, applying in this order (γ), (α), and (β), we get
R2U2 + S2V2 = R1U

′
2 + S1V

′
2 = S1V

′
2 + R1X + XU ′

2 ≥ S1V
′
2 + R1X + V ′

2W >
S1V1 + R1X > S1V1 + R1U1.

3. Proving the Theorems

To prove our theorems, we’ll first prove the following in A:

Lemma 2. Let n ≥ 2 be a natural number, let P0 and Pn be two points on a

circle C, not necessarily different, let
�
P0Pn denote the arc, considered in some

fixed direction, bordered by P0 and Pn (if P0 = Pn, the arc is the entire circle),
and let α denote its measure. Let P1, . . . Pn−1 be, in this order, points on the

arc
�
P0Pn , dividing it into equal parts, i. e., such that the measure of

�
PiPi+1

is α
n , for all i ∈ {0, 1, . . . , n − 1}. Let P ′

1, . . . P
′
n−1 be, in this order, arbitrary

points on the arc
�
P0Pn . Then, by setting P ′

i = Pi for i ∈ {0, n}, we have
∑n−1

i=0 P ′
iP

′
i+1 ≤ ∑n−1

i=0 PiPi+1, equality holding if and only if P ′
i = Pi for all

i.2

2The reference to the measure of an angle is to be understood here as a figure of speech.

That a certain arc
�
X0X1 is the nth part of another arc

�
UV in the same circle C can be

expressed by stating that UV ≡ X0Xn, where Xi are defined as different points on C with
Xi−1Xi ≡ XiXi+1, for i ∈ {1, 2, . . . , n − 1}.
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Proof. The proof will proceed by induction. The n = 2 case is Lemma 1
with P2 = M , which was proved by van Yzeren. Suppose the statement is
true for some n ≥ 2. We will prove that the statement holds for n + 1 as
well. Unless P ′

i = Pi for i ∈ {0, . . . n + 1}, there must be two adjacent arcs

among the
�

P ′
iP

′
i+1 , say

�
P ′

mP ′
m+1 and

�
P ′

m+1P
′
m+2 , such that one (say, the

first) has measure less than α
n and the other (say, the second) has measure

greater than α
n . Let M be the midpoint of the arc

�
P ′

mP ′
m+2 . If the mea-

sure of
�

P ′
mP ′

m+2 is greater than 2α
n , then the point R for which

�
P ′

mR has

measure α
n is on the arc

�
P ′

mM , included in
�

P ′
mP ′

m+2 , so, by Lemma 1, we
have P ′

mR + RP ′
m+2 > P ′

mP ′
m+1 + P ′

m+1P
′
m+2, and thus, by transporting the

segment P ′
mR, such that P ′

m becomes P0 and R becomes R′
1, we can trans-

port the remaining segments of the polygonal line P0P
′
1 . . . P ′

nP ′
n+1 from R′

on, obtaining a polygonal line P0R
′
1 . . . R′

nPn+1, whose segments represent a
rearrangement of those in the polygonal line P0P

′
1 . . . P ′

nP ′
n+1, and thus have

the same length. However, the length of the polygonal line R′
1 . . . R′

nPn+1 is
known by the induction hypothesis to be ≤ n times P0R

′
1, and that equality

occurs if and only if the R′
i are equal division points. This proves the state-

ment for n + 1 under the assumption that the measure of
�

P ′
mP ′

m+2 is greater

than 2α
n . If the measure of

�
P ′

mP ′
m+2 is less than 2α

n , then the point R for

which
�

P ′
m+2R has measure α

n is on the arc
�

MP ′
m+2 , included in

�
P ′

mP ′
m+2 ,

so, by Lemma 1, we have P ′
mR + RP ′

m+2 > P ′
mP ′

m+1 + P ′
m+1P

′
m+2, and from

here we reason as in the case treated above. If the measure of
�

P ′
mP ′

m+2 is 2α
n ,

then, by appealing to the case proved by van Yzeren of Lemma 1, we get that
P ′

mM + MP ′
m+2 > P ′

mP ′
m+1 + P ′

m+1P
′
m+2, and from here we reason as in the

case treated in detail above. This ends the induction and thus the proof of
Lemma 2. �
Now Theorem 1 follows from the existence, proved in [8], of the angle of 120◦

in A and Lemma 2, whereas Theorem 2 is a direct consequence of Lemma 2.
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