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Synthetic foundations of cevian geometry, I:
fixed points of affine maps

Igor Minevich and Patrick Morton

Abstract. We give synthetic proofs of new results in triangle geometry,
focusing especially on fixed points of certain affine maps which are defined
in terms of the cevian triangles of a point P and its isotomic conjugate
P ′, with respect to a given triangle ABC. We give a synthetic proof of
Grinberg’s formula for the cyclocevian map in terms of the isotomic and
isogonal maps, and show that the complement Q of the isotomic conjugate
P ′ has many interesting properties. If TP is the affine map taking ABC to
the cevian triangle DEF for P , it is shown that Q is the unique ordinary
fixed point of TP when P does not lie on the sides of triangle ABC, its
anticomplementary triangle, or the Steiner circumellipse of ABC. This
paper forms the foundation for several more papers to follow, in which the
conic on the 5 points A, B, C, P, Q is studied and its center is characterized
as a fixed point of the map λ = TP ′ ◦ T −1

P .

Mathematics Subject Classification. 51A05, 51A20, 51M99, 51N10.

1. Introduction

The cyclocevian mapping for a triangle ABC, which we will denote by φ, is
the mapping that takes a point P to a point φ(P ) for which the traces of P
and φ(P ) on the extended sides of triangle ABC, meaning the intersections

AP · BC, Aφ(P ) · BC,

BP · AC, Bφ(P ) · AC,

CP · AB, Cφ(P ) · AB,

lie on a common circle. By early 2004, the second author had independently
discovered and proved the fact that

φ = ι ◦ γ′ ◦ ι (1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-016-0324-4&domain=pdf
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where ι is the isotomic mapping for triangle ABC and γ′ is the isogonal map-
ping for the anticomplementary triangle of ABC (see [1,4]). The proof made
extensive use of computer-assisted algebra and absolute barycentric coordi-
nates. The coordinates of φ(P ) are 8th degree rational functions in the barycen-
tric coordinates (u, v, w) of P , but when φ is conjugated by the isotomic map-
ping there is a remarkable drop in degree: ι◦φ◦ι becomes a 2nd degree rational
function in (u, v, w), which turns out to be the same as γ′(P ). The formulas
that occur in this proof can be given a nice form, but are difficult to verify by
hand.

Let K denote the complement mapping with respect to triangle ABC: K is
the affine mapping which maps P to a point K(P ) on line PG (G the cen-
troid), for which the signed length K(P )G = 1

2GP . During the previous year,
unbeknownst to us, Grinberg, in [5], had announced the equivalent formula

φ = ι ◦ K−1 ◦ γ ◦ K ◦ ι, (2)

(γ is now the isogonal map for ABC itself) which he derived using the concept
of the isotomcomplement of a point P with respect to ABC (also called the
inferior of the isotomic conjugate of P , see [15].) This is the point

Q = K ◦ ι(P ).

Grinberg derived his formula with the help of homogeneous barycentric coor-
dinates, and noted that he had found synthetic arguments for all but one of the
main facts he had used in his proof of (2), which is Theorem 1 in his message
[5], given here as Theorem 2.4 in Sect. 2 below. This theorem is also contained
in Paul Yiu’s message [15] in slightly disguised form.

The starting point for this paper is to show how this theorem of Grinberg and
Yiu can be proved synthetically, thus filling in the synthetic gap in Grinberg’s
argument for (2). The key step is the Midpoint Perspectivity Theorem (The-
orem 2.3). For completeness we give the proof of Grinberg’s formula (2) using
the cross-ratio in Theorem 2.5.

In the process of finding this proof, we discovered that we could synthetically
prove many of the other facts concerning the isotomcomplement that have
been noted in the Hyacinthos messages. See [3,5–9]. For example, we prove
synthetically Ehrmann’s observation [3] that the point Q = K ◦ ι(P ) is a fixed
point of the affine mapping TP which maps triangle ABC to the cevian triangle
DEF of P with respect to ABC (see Theorem 3.2). We show in addition that
Q is the only fixed point of TP in the finite plane (under suitable hypotheses;
see Theorem 3.12) and that TP ◦ K(P ) = P (Theorem 3.7).

We also show that if P ′ = ι(P ) is the isotomic conjugate of P with respect to
ABC, then the affine mapping TP ◦TP ′ has a fixed point X which is the P -ceva
conjugate of Q, defined to be the perspector of the cevian triangle of P and
the anticevian triangle of the isotomcomplement Q of P (both with respect to
ABC). With this notation the anticevian triangle of Q with respect to ABC,
which is the unique triangle for which ABC is the cevian triangle of Q, turns
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out to be simply T−1
P ′ (ABC). Moreover, the set of points for which P ′ = ι(P )

is on the line at infinity, which is by definition the Steiner circumellipse, can
be characterized in terms of the mappings TP and TP ′ as the set of ordinary
points P for which TP ◦ TP ′ = K−1 equals the inverse of the complement
map for triangle ABC. Along the way, we prove several results that are of
independent interest, including the Collinearity Theorem (Theorem 3.5), which
gives relationships holding between the points P,Q, P ′, Q′ = K(P ), and X
defined above and their traces on the sides of ABC.

What results is a completely synthetic treatment of many new results in the
theory of cevian triangles. This turns out to be an extended and entertaining
exercise in classical projective geometry. Moreover, our development shows
that many important points in triangle geometry can be synthetically charac-
terized as fixed points of specific affine maps.

In further papers we will explore this connection more fully. In Parts II and III
of this paper [10,11] we will study the conic CP = ABCPQ on the five points
A,B,C, P,Q; along with the center Z of CP , which is the pole of the line at
infinity with respect to CP ; and the generalized orthocenter H of P , defined to
be the intersection of the lines through the vertices A,B,C which are parallel,
respectively, to the lines QD,QE,QF . We will give a synthetic proof that Z
is the generalized Feuerbach point, the point where the nine point conic NH

of the quadrangle ABCH (with respect to the line at infinity l∞) is tangent
to the inscribed conic I of ABC, the conic which is tangent to the sides at
the points D,E, F . Moreover, the point Z can be characterized as the center
of the map

ΦP = TP ◦ K−1 ◦ TP ′ ◦ K−1;

i.e., the unique ordinary fixed point of the homothety ΦP , if Z is ordinary, and
the direction of the translation ΦP when Z is on the line at infinity. See [12].

Notation. We use the results and notation of Coxeter’s book [2], which gives
a synthetic development of projective geometry. See also [4] for many of the
elementary geometrical results and concepts that we use, including directed
distance; and [13] or [14] or [16] for definitions of terms in triangle geometry.

More specifically, we use the following notation. If P is any point not on the
sides of the ordinary triangle ABC and not on the sides of its anticomplemen-
tary triangle K−1(ABC), we have the cevian triangles listed in Table 1.

For example, D0E0F0, the cevian triangle of the centroid G (i.e. the medial
triangle of ABC) is defined by D0 = AG · BC,E0 = BG · AC,F0 = CG · AB.
Here X is the fixed point (center) of S = TP ◦ TP ′ ; see Theorems 3.5 and 3.8.

Table 1 Cevian triangles

Centroid G P Q = K(ι(P )) P ′ = ι(P ) Q′ = K(P ) X
D0E0F0 D1E1F1 D2E2F2 D3E3F3 D4E4F4 D5E5F5
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Also, we set Ai = TP (Di), Bi = TP (Ei), Ci = TP (Fi), for 0 ≤ i ≤ 5. We will
occasionally replace P by the point P ′, and put primes on the above listed
points, to indicate that they correspond to the point P ′, so that, for example,
D′

1 = D3, A′
i = TP ′(D′

i), etc.

2. The Grinberg–Yiu theorem

In this section we explore some basic properties of the isotomcomplement of
a point. We always take the vertices of the triangle ABC to be ordinary. We
assume throughout this section that P does not lie on the extended sides of
triangle ABC or its anticomplementary triangle, so that the vertices of its
cevian triangle DEF are always ordinary points. Usually we will assume P is
also ordinary, but the isotomic point ι(P ) = P ′ of P may be infinite, if P lies
on ι(l∞), the Steiner circumellipse for ABC. (Cf. Theorem 3.14; l∞ is the line
at infinity). Note, however, that most of our proofs work when P is infinite (in
that case P ′ is ordinary). As in the introduction, K denotes the complement
map with respect to ABC and Q = K(P ′) = K◦ι(P ) is the isotomcomplement
of P .

Further, we let D0 = K(A), E0 = K(B), and F0 = K(C) denote the midpoints
of sides a = BC, b = AC, and c = AB, respectively.

Theorem 2.1 (Theorem 3 in [5]). Let ABC be a triangle and D,E, F the
traces of point P on the sides opposite A,B, and C. Let D0, E0, F0 be the
midpoints of the sides opposite A,B,C, and let Md,Me,Mf be the midpoints of
AD,BE,CF . Then D0Md, E0Me, F0Mf meet at the isotomcomplement Q =
K ◦ ι(P ) of P .

Proof. (See Fig. 1). We may assume P �= the centroid G of ABC. Without loss
of generality, assume P is not on AG. Let D3 be the trace of P ′ on side BC.

M G

P'

F3

E3

D3

Md

F

E

D D0

E0F0

A

B C

P

Figure 1 Proof of Theorem 2.1
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Then D0Md is the midline of ΔDAD3 and is thus parallel to AD3 = AP ′.
Draw P ′G, and let M be the intersection D0Md · P ′G. Since D0Md is parallel
to AP ′, the triangles GMD0 and GP ′A are similar; so AG = 2GD0 implies
GP ′ = 2GM . Thus, M = K(P ′) = Q and D0Md intersects GP ′ at Q; similarly,
so do E0Me and F0Mf . If P lies on BG it cannot lie on CG; in that case,
Q = D0Md · F0Mf , and P on BG implies that P ′, Q, and Me also lie on BG,
giving the assertion. This argument applies as long as the point M is ordinary.
If M = P ′G · l∞ is infinite, then P ′G ‖ D0Md ‖ P ′A implies, since P �= G,
that P ′ is infinite and M = P ′ = K(P ′) = Q. Since BP ′ and CP ′ are now
parallel to AP ′, the lines D0Md, E0Me, F0Mf meet at P ′ = Q. �
Corollary 2.2. D0Md = D0Q is parallel to AP ′ and K(D3) = Md.

The above theorem is in Altshiller-Court [1] (p. 165, Supp. Ex. 10), except
for the identification of the intersection of the lines D0Md, E0Me, F0Mf as the
isotomcomplement of P .

Theorem 2.3 (Midpoint Perspectivity Theorem). In triangle ABC, let E and
F be points on sides AC and AB. Let:

E0, F0 be the midpoints of b = AC and c = AB,
Ab, Ac be the midpoints of AE and AF ,
Me,Mf be the midpoints of BE and CF .

Then the triangles AbE0Me and AcF0Mf are perspective.

Proof. (See Fig. 2). We want to show that AbAc, E0F0,MeMf are concurrent
at a point O. Using quadrangle D0MeQMf , we have: QMf · D0Me = F0

by Theorem 2.1 and the fact that Me lies on the midline D0F0. Similarly,
QMe · D0Mf = E0 and D0Q · E0F0 = Md. Defining O = MeMf · E0F0, we

O

A0

AbAc

R

Q Mf

Me

Md E
F

D

D0

E0

F0

A

B

C
P

Figure 2 Midpoint Perspectivity Theorem



50 I. Minevich and P. Morton J. Geom.

obtain the harmonic relation H(E0F0,MdO), by the definition of a harmonic
set. See [2].

Now we use quadrangle AAbRAc, where R = AbF0 · AcE0. Since AcE0 is
the median of AFC, we have AcE0 · AP = midpoint of AP and similarly
AbF0 · AP = midpoint of AP , so AcE0, AbF0, AP are concurrent at R. This
implies that AAb · AcR = E0; AAc · AbR = F0; and AR · E0F0 = AP · E0F0 =
Md in quadrangle AAbRAc. But this says that AbAc · E0F0 is the harmonic
conjugate of Md with respect to E0F0, which is O by the first part of the
argument. Therefore, AbAc, E0F0,MeMf are concurrent at O. �
Theorem 2.4 (Grinberg–Yiu [5,15]). With D,E, F as before, let A0, B0, C0

be the midpoints of EF,DF , and DE, respectively. Then the lines AA0, BB0,
CC0 meet at the isotomcomplement Q of P .

Proof. Using the notation of Theorem 2.1, AbMe ·AcMf = A0 because AbMe is
a midline of ΔAEB and so passes through the midpoint of EF ; similarly, AcMf

is a midline of ΔAFC and also passes through the midpoint of FE. Thus we
have AbE0 ·AcF0 = A; AbMe ·AcMf = A0; and E0Me ·F0Mf = Q, by Theorem
2.1. By Theorem 2.3 and Desargues’ theorem, these three points are collinear.
Similarly, B,B0, and Q are collinear, and C,C0, and Q are collinear. �
Part of the statement of this proposition is in Altshiller-Court [1] (p. 165,
Supp. Ex. 8).

We now prove the following theorem of Grinberg using Theorem 2.4. We give
a simple proof using the cross-ratio. For Grinberg’s proof see [6].

Theorem 2.5 (Theorem 8 in [5]). Suppose P1 and P2 are cyclocevian conjugates
with respect to triangle ABC. Then their isotomcomplements Q1 and Q2 are
isogonal conjugates with respect to ABC. Equivalently, we have

P2 = φ(P1) = ι ◦ K−1 ◦ γ ◦ K ◦ ι(P1),

where ι is the isotomic map and γ is the isogonal map.

Proof. Let P1 and P2 be cyclocevian conjugates in triangle ABC, D,E, F the
traces of P1, and D′, E′, F ′ the traces of P2, on sides BC,AC,AB, respectively,
so that all six traces lie on a circle (see [14] and [16]). Also, on side EF of
triangle DEF let V be the trace of the angle bisector of ∠BAC = ∠FAE. On
the one hand, the cross-ratio of the lines AB,AC,AQ1, and AV is given by

A(BC,Q1V ) =
sinBAQ1

sinQ1AC
÷ sinBAV

sinV AC
=

sinBAQ1

sinQ1AC
.

Next, consider the isogonal conjugate γ(Q1) = Qγ
1 . Since ∠BAQγ

1
∼= ∠CAQ1

and ∠CAQγ
1

∼= ∠BAQ1, we have

A(BC,Qγ
1V ) =

sinBAQγ
1

sinQγ
1AC

=
sinQ1AC

sinBAQ1
=

1
A(BC,Q1V )

.
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On the other hand, by Theorem 2.4 and the fact that A0 is the midpoint of
EF we have

A(BC,Q1V ) = (FE,A0V ) =
FA0

A0E
÷ FV

V E
=

AE

AF
,

since
FV

V E
=

AF

AE
in triangle AFE. In the same way, we have

A(BC,Q2V ) =
AE′

AF ′ =
AF

AE
=

1
A(BC,Q1V )

= A(BC,Qγ
1V );

the second equality holding because E,E′, F, F ′ lie on a circle, so that the
products AE′ · AE = AF ′ · AF are equal. This implies that AQ2 is precisely
the reflection of AQ1 across the angle bisector, i.e., AQ2 = AQγ

1 . Applying
the same argument to the vertices B and C, we see that Q2 is the isogonal
conjugate of Q1. �

3. Cevian triangles and affine maps

In this section we consider the affine transformation TP which maps the tri-
angle ABC to the cevian triangle DEF of point P , so that TP (A) = D,
TP (B) = E, TP (C) = F . We also consider some important points related to
the mapping TP on the sides of DEF . We first give a basic lemma in order to
prove geometrically that the fixed point of the affine transformation TP is Q.

Lemma 3.1. Let X be on EF such that the signed distances satisfy
FX

XE
=

BD

DC
.

Then DX ‖ AA0.

Proof. (See Fig. 3). Draw lines through E and F parallel to AA0, and let them
intersect BC at L and M , respectively, and let AA0 intersect BC at K1. Draw
a line through D parallel to AA0 and let it intersect EF at Y . We must show
that X = Y . The parallel lines give us the equalities

CE

EA
=

CL

LK1
,

AF

FB
=

K1M

MB
,

FY

Y E
=

MD

DL
.

X

M LK1

A0

A

B C

F

E

D

Figure 3 Proof of Lemma 3.1
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TP(Q)
G'

A0

F

E

D

A3

TP(P')

Figure 4 Proof of Theorem 3.2

By Ceva’s theorem, 1 =
AF

FB

BD

DC

CE

EA
=

K1M

MB

BD

DC

CL

LK1
.

Since A0 is the midpoint of EF , K1 is the midpoint of LM , so LK1 = K1M
implies that

1 =
CL

MB

BD

DC
, so

BM

LC
=

MB

CL
=

BD

DC
=

BM + MD

DL + LC
=

BM + MD

LC + DL
.

This last equality implies that

BM

LC
=

MD

DL
=

FY

Y E
, i.e.

FX

XE
=

BD

DC
=

BM

LC
=

FY

Y E
.

But there is exactly one point X on EF such that the signed ratio
FX

XE
equals

BD

DC
, so X = Y . �

Theorem 3.2 (Ehrmann). If TP is the unique affine mapping which takes ABC
to DEF , then TP (Q) = Q. (This holds even when the point P lies on l∞).

Proof. (See Fig. 4). We show that AA0 passes through TP (Q). It will follow
similarly that BB0 and CC0 also pass through TP (Q). This implies the result
because these lines intersect at Q.

First, if K is the complement map with respect to triangle ABC and K ′ the
complement map with respect to triangle DEF , then TP ◦ K = K ′ ◦ TP . This
is because TP preserves ratios; so if Y1 = K(Y ), then Y1 is collinear with G
and Y , and Y G = 2 · GY1 implies TP (Y )TP (G) = 2 · TP (G)TP (Y1); hence
TP (Y1) = K ′(TP (Y )), since G′ = TP (G) is the centroid of DEF .

Now, TP (Q) = TP (K(P ′)) = K ′(TP (P ′)), so we really need to prove that AA0

passes through the complement, in triangle DEF , of TP (P ′). Since P ′ lies on
AD3, TP (P ′) lies on TP (A)TP (D3) = DA3 and

BD

DC
=

D3C

BD3
=

A3F

EA3
=

FA3

A3E
.
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Lemma 3.1 now gives that DA3 ‖ AA0. If P ′ = Q is an infinite point, then
this implies that TP (P ′) = Q, and so TP (Q) = K ′(Q) = Q is fixed. If P ′ and
Q are ordinary, then letting G′ = TP (G) and I = TP (P ′)G′ ·AA0 we have that
ΔTP (P ′)DG′ ∼ ΔIA0G

′. Since G′ is the centroid of triangle DEF , we have
DG′ = 2 · G′A0, so also TP (P ′)G′ = 2 · G′I, which means that I = TP (Q) is
the complement of TP (P ′) and AA0 lies on the point TP (Q). �
Corollary 3.3. The point Q is the complement of TP (P ′) with respect to the
triangle DEF .

Lemma 3.4. Let G be the centroid of ABC; E and F points on AC and AB,
respectively, distinct from A, B and C; and AG · EF = A∗. Then

EA∗

A∗F
=

AE

AF
· AB

AC
.

Proof. Let V be the trace on segment EF of the angle bisector of ∠BAC =
∠FAE, and let V ′ be its trace on BC. If (EF,A∗V ) denotes the cross-ratio of
these four points, we have

EA∗

A∗F
÷ AE

AF
= (EF,A∗V ) A= (CB,D0V

′) =
BV ′

V ′C
=

AB

AC
.

�
In order to prove the next theorem we will make use of the following involution
on the line BC. (There are similar involutions for AB and AC). Let μ be the
perspectivity taking a point on EF to a point on BC by projection from A.
We define π = μ ◦ TP . Since TP maps BC to EF , π maps BC to itself. Thus,
if Y is a point on BC,

π(Y ) = μ(TP (Y )) = ATP (Y ) · BC.

Since π(B) = C and π(C) = B, π interchanges two points and is therefore
an involution on BC. The significance of this mapping is that if a point Y on
BC maps to TP (Y ) on EF , then TP maps the intersection ATP (Y ) ·BC = Y ′

back to AY · EF = TP (Y ′).

Now recall the definition of the points

D0 = AG · BC, D1 = D = AP · BC, D2 = AQ · BC,

D3 = AP ′ · BC, D4 = AQ′ · BC, D5 = AX · BC.

Here G is the centroid of ΔABC, Q is the isotomcomplement of P , and Q′ is
the isotomcomplement of P ′. Also, X is defined to be the intersection of the
cevians AA3, BB3, and CC3, where

A3 = TP (D3), B3 = TP (E3), C3 = TP (F3).

This intersection exists because A3B3C3 = TP (D3E3F3) is the cevian trian-
gle for TP (P ′) with respect to triangle DEF = TP (ABC), and is therefore
perspective to ABC, by the cevian nest theorem [1] (p. 165, Supp. Ex. 7).
Furthermore, Aj = TP (Dj) for 0 ≤ j ≤ 5.
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Y

B3

X
C3

D5

A3

D2

A2

A4

D4

A1
A5

P'

Q'

A'0

F3

E3

D3D0

Q

A0

F

E

D

A

P

CB

Figure 5 The points Ai and Di, i = 0, 1, 2, 3, 4, 5

Theorem 3.5 (Collinearity Theorem). The following sets of 4 points are
collinear: AA0QD2, AA1Q

′D4, AA2GD0, AA3XD5, AA4PD1, AA5P
′D3.

(Similar statements hold for the other vertices B and C. This also holds when
P or P ′ is infinite.)

Proof. (See Fig. 5). The collinearity of the four points AA3XD5 is immediate
from the definition of the point X. Hence π(D3) = D5. Now π(D5) = D3

implies that AP ′ · EF = TP (D5) = A5 and so AA5P
′D3 is a collinear set.

The collinearity AA0QD2 is immediate from Theorem 2.4, where we note
that TP (D0) = A0 since TP preserves ratios along lines. Hence π(D0) = D2,
which implies that π(D2) = D0, so AA2GD0 is also a collinear set, where
A2 = TP (D2).

It remains to prove that the sets AA1Q
′D4 and AA4PD1 are collinear. To do

this we first redefine A1 as the intersection A1 = AQ′ · EF and we show that
A1 = TP (D1). This will imply the collinearity of the points AA4PD1 with
A4 = TP (D4) using the map π. Using the cross-ratio and the fact that A0 is
the midpoint of segment EF we have that

EA1

A1F
=

A1E

FA1
= (FE,A0A1)

A= (BC,D2D4) =
BD2

D2C
÷ BD4

D4C
.

Using Lemma 3.4 with A∗ = A2 on EF and A∗ = A′
2 on E3F3, where we

denote the analogues of the points Di, Ai corresponding to P ′ by D′
i, A

′
i (so

that D′
2 = D4 and TP ′(B) = E3, etc.), we have
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BD2

D2C
=

EA2

A2F
=

AE

AF
· AB

AC
and

BD4

D4C
=

BD′
2

D′
2C

=
E3A

′
2

A′
2F3

=
AE3

AF3
· AB

AC
.

Hence, the above ratio EA1/A1F becomes
EA1

A1F
=

AE

AF

AF3

AE3
=

AE

AF

FB

EC
=

EA

AF

FB

CE
=

BD

DC
,

by Ceva’s theorem and the fact that (F, F3) and (E,E3) are isotomic pairs
of conjugates on AB and AC, respectively. This implies that A1 = TP (D) =
TP (D1) and completes the proof of the theorem. �
The results of Theorem 3.5 can be phrased in the following way. There is a
mapping δP , defined on arbitrary points X ′, for which

Y = δP (X ′) = ATP (AX ′ · BC) · BTP (BX ′ · AC),

and δP (Y ) = X ′.

Corollary 3.6. The mapping δP satisfies

δP (G) = Q, δP (P ) = Q′, δP (P ′) = X.

We will consider this mapping again in Part IV. The following fact is a simple
corollary of Theorem 3.5, but is important enough in the following development
to state as a theorem.

Theorem 3.7. TP K(P ) = TP (Q′) = P .

Proof. TP (Q′) = TP (AD4 · BE4) = DA4 · EB4 = DA · EB = P . �
Theorem 3.8 (Homothety theorem). The affine mapping TP TP ′ taking ABC
to A3B3C3 is either a homothety, whose center is the ordinary point X =
AA3 ·BB3 = AA3 ·CC3 lying on the line PQ′, or a translation in the direction
of the line PQ′. Thus, triangles ABC and A3B3C3 are either homothetic or
congruent.

Proof. Write T1 for TP and T2 for TP ′ , and let l∞ be the line at infinity, as usual.
We first show that T1 and T2 are inverse mappings on l∞. Assume that the
points P ′ and Q are ordinary. Note that T2 maps the line AQ to D3P

′ = AP ′,
since T2(Q) = P ′ (by Theorem 3.7). Hence, T2 maps the point at infinity A∞
on AQ to the point at infinity D∞ on AP ′. On the other hand, AP ′ is parallel to
D0Q (Corollary 2.2), so D∞ lies on D0Q. Moreover, T1(D0Q) = A0Q = AQ by
Theorem 3.2 and Theorem 2.4. Therefore, T1(D∞) = A∞. Arguing in the same
way with B∞ = BQ · l∞, C∞ = CQ · l∞ and E∞ = BP ′ · l∞, F∞ = CP ′ · l∞,
we see that on the line l∞

T2 induces the projectivity A∞B∞C∞ � D∞E∞F∞, while
T1 induces the projectivity D∞E∞F∞ � A∞B∞C∞.

The fundamental theorem of projective geometry now implies that T1T2 is the
identity map on l∞. (Note that A∞, B∞, C∞ are distinct points since they lie
on the concurrent lines AQ,BQ,CQ. If Q were on AB, say, then P ′ would
lie on the anticomplementary triangle of ABC, so the trace F3 = CP ′ · AB
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of P ′ would lie on l∞, implying that F = F3, and P would also lie on the
anticomplementary triangle, contrary to the standing hypothesis about P ).
On the other hand, if P ′ = Q is an infinite point, then P and Q′ are ordinary,
and we can apply the above argument to the map T2T1. Since this map is the
identity on l∞, so is T1T2.

Now it is clear that T1T2(ABC) = T1(D3E3F3) = A3B3C3. By the above
argument, the mapping S = T1T2 fixes the point AA3 · l∞, so S(A) = A3

implies that AA3 is an invariant line, as are BB3 and CC3 (and any line of
the form Y S(Y )). Hence X = AA3 · BB3 is an invariant point of S. If X is an
ordinary point, then S is a projective homology [2], which must be a homothety
since it takes any line to a parallel line. It follows that ABC and A3B3C3 are
homothetic from the center X. Since S(Q′) = T1T2(Q′) = T1(Q′) = P , X lies
on the line PQ′.

If X is a point at infinity, then AA3, BB3, CC3 are parallel, so S must be a
translation. Since S(Q′) = P , the translation is in the direction of the line
PQ′. �
In order to further describe the point X we prove the following theorem of
Grinberg.

Theorem 3.9 (Theorem 4 in [5]). If parallel lines are drawn to the sides
EF,DF , DE of the cevian triangle for P through the respective vertices A,B,
and C, then the resulting triangle is the anticevian triangle of Q for triangle
ABC.

Proof. Consider the polarity corresponding to the conic I inscribed in ABC
and lying on the points D,E, F . This is the unique conic which is tangent to
the sides of ABC at D,E, and F , respectively. Here is a short argument to
indicate why this conic exists. There is certainly a conic C through E and F
tangent to AB at F , to AC at E, and tangent to BC at some point D′. (This
is the dual of [2], 8.41, p. 78). We now appeal to the dual of Chasles’ Theorem
([2], 7.31, p. 64): If the poles of the sides of a triangle do not coincide with
their respective opposite vertices, then their joins with the opposite vertices are
concurrent. Applying this to the triangle ABC, we get that the joins of A,B,C
with the respective poles of BC,AC,AB are concurrent, i.e. AD′, BE,CF are
concurrent. Since BE ·CF = P , it follows that AD′ = AP , so D′ = AP ·BC =
D. Therefore d = BC is the tangent to C at D. Hence, the conic I = C exists.

Thus, the lines d = BC, e = AC, f = AB are the polars of the points D,E, F ,
while the polars of A,B,C are the lines a = EF, b = DF, c = DE. The lines
through A,B,C parallel to these lines are the polars a0, b0, c0 of the midpoints
A0, B0, C0 of the sides of DEF . This is because the polar of A0 is the line
through A and the harmonic conjugate of A0 with respect to E,F , which is
the point at infinity on EF . It follows from this that the pole of the line at
infinity lies on AA0, so Theorem 2.4 implies that this pole is Q. Let the vertices
of the triangle formed by a0, b0, c0 be A′ = b0 · c0, B

′ = a0 · c0, C
′ = a0 · b0.

We must show that A′Q lies on A, B′Q lies on B, C ′Q lies on C. Using the
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polarity we see that A′Q lies on A if and only if B0C0 · q = B0C0 · l∞ lies on
EF . But this is obvious because B0 and C0 are midpoints in triangle DEF ,
so that B0C0 is parallel to EF . �
We can now prove

Theorem 3.10. The fixed point X = AA3 · BB3 of TP TP ′ is the P -ceva con-
jugate of Q. The cevian triangle of P is homothetic to the anticevian triangle
of Q for triangle ABC from the center X if X is an ordinary point, and is
congruent to this triangle otherwise.

Proof. Let S = TP TP ′ . Consider the triangle A′B′C ′ = S−1(DEF ). Then
the sides of A′B′C ′ are parallel to the sides of DEF , since S fixes points
at infinity. Furthermore, triangle A3B3C3 is inscribed in triangle DEF , so
S−1(A3B3C3) = ABC is inscribed in triangle A′B′C ′. By Theorem 3.9,
A′B′C ′ must be the anticevian triangle of Q. The P -ceva conjugate of Q is by
definition the perspector of DEF and A′B′C ′, and by construction this point
is the center X = AA3 · BB3 of Theorem 3.8, whether S is a homothety or a
translation. This proves the assertion. �
Corollary 3.11. (a) The triangle T−1

P ′ (ABC) is the anticevian triangle of Q
for ABC.

(b) The point Q′ is the G-ceva conjugate of Q, so that the cevian triangle of
G, namely D0E0F0, is perspective to the anticevian triangle of Q from
the center Q′.

(c) If X ′ is the X-point corresponding to P ′, then TP (X ′) = X and TP ′(X) =
X ′.

(d) X is an ordinary point if and only if X ′ is.

Proof. (a) The anticevian triangle of Q is A′B′C ′ = S−1(DEF ) = T−1
P ′ (ABC).

(b) Applying the map T−1
P ′ to the collinear points A,A′

0, Q
′ (Theorem 2.4)

shows that T−1
P ′ (A),D0, and Q′ are collinear. Similar statements for the other

vertices and part (a) imply the assertion. (c) The perspector of D3E3F3, the
cevian triangle of P ′, and T−1

P (ABC), the anticevian triangle of Q′, is X ′. It
follows that TP (X ′) is the perspector of triangles A3B3C3 and ABC, hence
TP (X ′) = X. The second assertion in (c) follows on switching P and P ′. Part
(d) is immediate from (c). �
Theorem 3.12. If P does not lie on ι(l∞) (the Steiner circumellipse for ABC),
then Q is the only fixed point of TP in the finite plane.

Remark. If the point P does lie on the Steiner circumellipse for ABC, then
it can be shown that TP has no ordinary fixed points, but does have the line
GTP (G) as a fixed line, where G is the centroid of ABC. See the proofs of
Lemma 2.5 and Theorems 2.4 and 4.3 in [10].

Proof. Note, since P does not lie on ι(l∞), that the points P ′ and Q are ordinary
points. We already know from Theorem 3.2 that TP fixes Q. Suppose there
is another finite fixed point R of TP . Then m = QR is an invariant line for
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TP . The line at infinity, l∞, is also an invariant line since TP is an affine
transformation. Therefore, TP fixes the point M∞ = m · l∞. Since TP fixes
three points on m, it fixes every point on m.

Suppose m ·BC = S. Then S = TP (S) = TP (m ·BC) = m ·EF , which implies
S = BC · EF . Similarly, m · AB = AB · DE and m · AC = AC · DF , so m is
the line of perspectivity of triangles DEF and ABC. Hence, m is the trilinear
polar of the point P , and S is the harmonic conjugate of D with respect to
B and C. Projecting line BC to line FE from A gives (BC,DS) = −1 =
(FE,A4S) = (EF,A4S) and since S = TP (S), the signed ratio of S along BC
is the same as its ratio along EF = TP (BC):

BD

DC
= −BS

SC
= −ES

SF
=

EA4

A4F
.

But the only point A∗ on EF such that BD
DC = EA∗

A∗F is A1 = TP (D1), so
A1 = A4. By Theorem 3.5, AA1 = AQ′ and AA4 = AP , so we have AQ′ = AP .
Since K(P ) = Q′, this implies that the centroid G lies on AP , so P is on AG.
Similarly, P is on BG and CG, so P = G. But then TP = TG = K and the line
of perspectivity m = QR is the line at infinity, yet Q = G is not on m = l∞:
a contradiction. �
Theorem 3.13. If P is ordinary, the point Q′ = K(P ) is the isotomcomplement
of Q with respect to the anticevian triangle of Q for ABC.

Proof. The unique affine mapping taking the vertices of the anticevian triangle
A′B′C ′ = T−1

P ′ (ABC) of Q to the vertices of ABC is TP ′ . Since the point P is
ordinary, the point P ′ does not lie on the Steiner circumellipse for ABC, and
therefore the point Q = T−1

P ′ (P ′) does not lie on the Steiner circumellipse for
A′B′C ′. (If ι′ is the isotomic map for A′B′C ′, then T−1

P ′ ◦ ι = ι′ ◦ T−1
P ′ , and

affine maps fix the line l∞, so the Steiner circumellipse for ABC is mapped to
the Steiner circumellipse for A′B′C ′). It follows that the isotomcomplement of
Q with respect to A′B′C ′ is the unique ordinary fixed point of the mapping
TP ′ , by Theorem 3.12, so this point must be Q′. �
Next, we characterize the points P on the Steiner circumellipse in terms of the
mapping TP .

Theorem 3.14. The point P ( �= A,B, or C) lies on the Steiner circumellipse
ι(l∞) of ABC if and only if TP TP ′ = K−1.

Proof. Assume P lies on ι(l∞), so that the point P ′ = Q is an infinite point.
Let A′, B′, C ′ be the midpoints of segments AD3, BE3, CF3. We claim that
A′B′C ′ is the anticevian triangle of Q with respect to ABC. Note that A′ =
M ′

d, B
′ = M ′

e, C
′ = M ′

f in the notation of Theorem 2.1. By the corollary to
that theorem, K(DEF ) = A′B′C ′. Thus, the sides of A′B′C ′ are parallel to
the sides of DEF . By Theorem 3.9 we just have to show that ABC is inscribed
in A′B′C ′. We note that the complete quadrangle ABCP ′ has the diagonal
triangle D3E3F3. By the Collinearity Theorem (3.5) we know that AA′

4P
′D3
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is a collinear set of points, where A′
4 lies on E3F3. Thus, by the definition of

a harmonic set, A and P ′ are harmonic conjugates with respect to A′
4 and

D3. This implies that A is the midpoint of D3A
′
4. Now B′ and C ′ are the

midpoints of BE3 and CF3. Since B,C, and D3 are collinear, as are E3, F3,
and A′

4, and furthermore the lines BE3, CF3, and D3A
′
4 = AP ′ are parallel,

it is clear that the respective midpoints B′, C ′, and A are collinear as well.
Arguing the same with the other vertices shows that ABC is inscribed in
A′B′C ′. Hence, A′B′C ′ = K(DEF ) = KTP (ABC) is the anticevian triangle
of Q. From Corollary 3.11 we deduce that KTP (ABC) = T−1

P ′ (ABC), whence
the desired equation TP TP ′ = K−1 follows.

Conversely, suppose that TP TP ′ = K−1. Then TP (D3E3F3) = A3B3C3 =
K−1(ABC) is the anticomplementary triangle of ABC, from which it is clear
that AA3, BB3, and CC3 all pass through the centroid G of ABC. Theorem
3.5 implies that A3B3C3 = A2B2C2, hence D3E3F3 = D2E2F2, which gives
that P ′ = Q. Hence, the point P ′ coincides with its complement and must be
infinite (since P cannot be G), i.e., P lies on ι(l∞). �
Corollary 3.15. If P lies on the Steiner circumellipse ι(l∞), then the triangle
A2B2C2 = A3B3C3 is the anticomplementary triangle of ABC; the anticevian
triangle of Q with respect to ABC is the triangle K(DEF ); and the anticevian
triangle of Q′ is the triangle A′

0B
′
0C

′
0.
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