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Abstract. In Euclidean geometry and in absolute geometry fragments of
the principle of duality hold. Bachmann (Aufbau der Geometrie aus dem
Spiegelungsbegriff, 1973, §3.9) posed the problem to find a general the-
orem which describes the extent of an allowed dualization. It is the aim
of this paper to solve this problem. To this end a first-order axiomatiza-
tion of Euclidean (resp. absolute) geometry is provided which allows the
application of Gödel’s Completeness Theorem for first-order logic and the
solution of Bachmann’s problem.
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1. Introduction

The principle of duality is a guiding principle in geometry which allows the
deduction of new theorems from old ones and the discovery of relationships
between certain ideas and concepts. It was established in projective geometry
by Poncelet and Gergonne (see Gray [4]), but it also holds in metric geometries,
such as in elliptic planes (see Bachmann [1]) and in Galilean planes (see Yaglom
[11]).

In Euclidean geometry and in absolute geometry fragments of the principle of
duality hold (see Schmidt [7]). Bachmann [1, §3.9] posed the problem to find a
general theorem which describes the extent of an allowed dualization. It is the
aim of this paper to solve this problem for the Euclidean case and for plane
absolute geometry (in the sense of [1]).

The principle of duality is a theorem of the meta-theory of a geometric theory.
For projective planes, for example, it can be formulated in the following way
(see Hughes and Piper [5]): If Ω is a theorem about projective planes and if Ω∗
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is the statement obtained by interchanging the words ‘points’ and ‘lines’, then
Ω∗ is also a theorem about projective planes. Expressions of a meta-theory,
like ‘theorem about projective planes’, refer to the language of the underly-
ing theory which can be specified—for elementary theories—by a first-order
axiomatization (cp. Schwabhäuser et al. [8]; Pambuccian [6]).

In Sect. 2 we introduce the group-theoretical approach of Bachmann [1] to
plane absolute geometry and the associated group-theoretical language. In
Sects. 2.1 and 2.2 we present an axiom system A which contains with each
axiom the dual one and show that the models of A are exactly the models of
Bachmannn’s plane absolute geometry and their dual models.

Section 2.3 provides a first-order version of A. This step is essential not only
for a precise definition of the principle of duality but also for a solution of
Bachmann’s problem, since Gödel’s Completeness Theorem for first-order logic
is the key to the following theorem of Sect. 2.4:

If Ω is a statement of plane absolute geometry and Ω∗ the dual one (obtained
by interchanging the words ‘point’ and ‘line’) then the following holds:

• If Ω can be deduced from axiom system A then Ω and Ω∗ hold in plane
absolute geometry.

• If Ω and Ω∗ hold in plane absolute geometry then Ω can be deduced from A.

In Sect. 3 the Euclidean case is considered. We proceed in an analogous way
and introduce an axiom system E which contains with each axiom the dual
one, show that the models of E are exactly the Euclidean planes over fields of
characteristic �= 2 and their dual models (which are called co-Euclidean planes;
see H. Struve and R. Struve [9]), provide a first-order axiomatization of E and
prove the following completeness theorem:

Let Ω and Ω∗ be dual statements of plane Euclidean geometry.

• If Ω can be deduced from axiom system E then Ω and Ω∗ hold in plane
Euclidean geometry.

• If Ω and Ω∗ hold in plane Euclidean geometry then Ω can be deduced from E .

The development of an ‘Euclidean theory of duality’ (i.e., of the theory defined
by axiom system E) is left to a forthcoming paper.

2. The principle of duality in plane absolute geometry

2.1. The axiom system A
Following the group-theoretical approach of Bachmann [1, §3.2 and §20.2] we
start with the following Basic Assumption.
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Basic Assumption. Let G be a group and S and P invariant subsets of invo-
lutions of G such that S ∪ P generates G.

Elements a, b, c, . . . of S are called lines and elements A,B,C, . . . of P points.
If A = b then A, b are polar to each other and the point A is called the pole of
b and the line b the polar of A.

The ‘stroke relation’ α | β is an abbreviation for the statement that α, β and
αβ are involutory elements (i.e., group elements of order 2). Hence αβ = βα
so the relation is symmetric. The statement α, β | δ is an abbreviation of α |δ
and β |δ.
A point A and a line b are incident if A |b. Lines a, b ∈ S are orthogonal if a |b.
Points A,B ∈ P are polar if A | B. Two lines are called parallel if they have
no point of intersection. Dually, two points are called parallel if they have no
joining line.

A pair (A, b) is a flag if A, b are incident. Flags (A, a) and (B, b) are called
parallel if Aa = Bb.

A quadrangle is a set of four points A,B,C,D and four lines a, b, c, d with
a | A,B and b | B,C and c | C,D and d | D,A.

Let A be the axiom system which consists of the Basic Assumption and the
following axioms A1–A8.

A1. If a |b then ab ∈ P and if A |B then AB ∈ S.
A2. If A |b then Ab ∈ P ∪ S.
A3. For every pair (A, b) there exists (a,B) with a |A and B |b and Aa = bB

and if A �= b then (a,B) is unique.
A4. If A,B |c, d then A = B or c = d.
A5. If A,B,C |d then ABC ∈ P and if a, b, c |D then abc ∈ S.
A6. If A |a and B |b and C |c and Aa = Bb = Cc then ABC ∈P and abc∈S.
A7. If A |a and B |b then there exists e with e |A,B or E with E |a, b.
A8. There exists a quadrangle.

The axioms make the following statements: According to A1 orthogonal lines
a, b intersect in the point ab and polar points A,B are incident with the line
AB. Axiom A2 states that if (A, b) is a flag then (A,Ab) or (Ab, b) is also a flag.
A3 states that if A is a point and b a line, then there exists a line a through
A and a point B on b with Aa = bB (a ‘perpendicular’ from A to b with foot
B) and if A �= b then (a,B) is unique. According to A4 two distinct points
have at most one joining line and two distinct lines have at most one common
point. A5 states that if A,B,C are collinear points then ABC is a point (the
fourth reflection point) and that if a, b, c are copunctual lines then abc is a
line (the fourth reflection line). A6 states that parallel flags (A, a), (B, b) and
(C, c) have a fourth reflection point ABC and a fourth reflection line abc. A7
states that if (A, a) and (B, b) are flags then A and B have a joining line or a
and b have a point of intersection. According to A8 there exists a quadrangle.



710 R. Struve J. Geom.

If H and K are subsets of G then we denote the set of involutions of H by
I(H) and define H ·K := {αβ : α ∈ H and β ∈ K}. According to A1 and A2
the inclusions I(S2) ⊆ P and I(P 2) ⊆ S and I(PS) ⊆ P ∪ S hold.

Axiom system A contains with each axiom the dual statement (all axioms are
self-dual). Hence the principle of duality holds. Let (G,S, P ) be a model of
A. By interchanging points and lines we get the dual model (G,S′, P ′) with
S′ = P and P ′ = S which again satisfies A.

A triplet (G,S, P ) which satisfies the Basic Assumption and the axioms A1,
A3, A4, A5, A6, A8 is a Cayley–Klein group (see R. Struve [10]).

The groups of plane absolute geometry (which are called Bachmann groups)
are the Cayley–Klein groups with the property that any two points have a
joining line (see [10, Theorem 4.1]). Hence plane absolute geometry can be
axiomatized by an axiom system which contains the Basic Assumption, A1,
A3, A4, A5, A6, A8 and the axiom of the existence of a joining line (For A,B
there exists c with A,B |c). We denote this axiom system by B.

2.2. The models of axiom system A

Theorem 2.1. Let (G,S, P ) be a model of A. Then any two points have a
joining line or any two lines have a point of intersection.

Proof. Let (G,S, P ) be a model of A and (A, b) a flag. Then Ab ∈ S ∪ P
(according to A2). We show that if Ab ∈ S then any two points have a joining
line. This proves the theorem since the principle of duality implies that if
Ab ∈ P then any two lines have a point of intersection.

Let A | b and Ab ∈ S. Then b and Ab are orthogonal lines of the Cayley–
Klein group (G,S, P ). The existence of orthogonal lines implies P = I(S2)
and I(P ·S) = S (see [10, Theorem 3.5 and Theorem 3.9]).

We can assume P ∩S = ∅ since otherwise (G,S, P ) is an elliptic Cayley–Klein
group and any two points have a joining line and any two lines have a point of
intersection (see [10, Theorem 4.3 and Theorem 4.5]). Under this assumption
A2 states the existence and uniqueness of a perpendicular.

Now let D and E be two distinct points and d and e lines with d | D and
e |E,Dd (the line e is the perpendicular from E to the line Dd). Then (D, d)
and (E, e) are flags with lines d and e which have a common perpendicular
Dd. The uniqueness of a perpendicular implies that d and e have no common
point. By A7 there exists a joining line of D and E. �
According to this theorem a model of A is a Cayley–Klein group with the
property that any two points have a joining line or any two lines have a point
of intersection. These Cayley–Klein groups are exactly the groups of plane
absolute geometry (Bachmann groups) and their dual groups (see [10, Theorem
4.1 and Theorem 5.1]).
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Theorem 2.2. The models of A are exactly the groups of plane absolute geom-
etry and the associated dual groups.

2.3. A first-order version of axiom system A
In this section we provide a first-order version of axiom system A (i.e., a first-
order axiomatization of the theory defined by A). The axiom system, which we
denote by D, can be expressed with one sort of individual variables (elements
α, β, γ, . . . of a set G), two unary predicates, which correspond to subsets P and
S of G, and a binary operation · on G. The elements of S are to be interpreted
as ‘lines’ and are denoted by lowercase Latin variables a, b, c, . . .. The elements
of P are to be interpreted as ‘points’ and are denoted by uppercase variables
A,B,C, . . ..

To improve the readability of the axioms, we introduce the following abbrevi-
ations:

ε(α) ⇔ α · α = α (to be interpreted as α is an idempotent element)
ι(α) ⇔ ε(α · α) ∧ ¬ ε(α) (to be interpreted as α is an involution of (G, ·))
α |β ⇔ ι(α) ∧ ι(β) ∧ ι(α · β) (we write α, β | γ if α | γ ∧ β | γ)

We present the axioms in informal language (their formalization being straight-
forward).

D1. If α, β, γ ∈ G then (α · β) · γ = α · (β · γ).
D2. If α ∈ S ∪ P then ι(α).
D3. If a, b ∈ S and A,B ∈ P then bab,BaB ∈ S and bAb,BAB ∈ P .
D4. If α, β ∈ G and α · α = α then α · β = β = β · α.
D5. If α ∈ G then there are a, b with α = a · b or A,B with α = A · B or

a,A with α = a · A.
D6. If a |b then ab ∈ P and if A |B then AB ∈ S.
D7. If A |b then Ab ∈ P ∪ S.
D8. For every pair (A, b) there is a unique pair (a,B) with a | A and B | b

and Aa = bB.
D9. If A,B |c, d then A = B or c = d.

D10. If A,B,C |d then ABC ∈ P and if a, b, c |D then abc ∈ S.
D11. If A|a and B|b and C|c and Aa = Bb = Cc then ABC ∈P and abc∈S.
D12. If A |a and B |b then there exists e with e |A,B or E with E |a, b.
D13. There exists a quadrangle (distinct points A,B,C,D and lines a, b, c, d

with a | A,B and b | B,C and c | C,D and d | D,A).

The axioms make the following statements: D1 states that the binary
operation · on G is associative. D2 states that the elements of S and P are
involutions of G. D3 states that the subsets S and P of G are invariant with
respect to transformations with elements of S ∪P . Axiom D4 states that every
idempotent element is a neutral element. D5 states that every element of G
is the product of two elements of S ∪ P . The axioms D6–D13 are the axioms
A1–A8 of Sect. 2.1 with the interpretation described in that section.
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Theorem 2.3. Axiom system D provides a first-order axiomatization of the
theory which is defined by A.

Proof. A model of A obviously satisfies the axioms of D. We show conversely
that any model of D satisfies the axioms of A.

According to D1 the operation · is a binary associative operation on G. Let
α ∈ S. Then α4 = α2 (according to D2) and α2 is a neutral element (according
to D4) which we denote by 1. This definition does not depend on the choice of
α: If β ∈ S then (αα)β = β (since αα is a neutral element) and ((αα)β)β = ββ
which implies αα = ββ (since ββ is a neutral element).

We show that every element α ∈ G has an inverse element with respect to 1.
If α = ab or α = AB or α = aA (see D5) then α−1 = ba resp. α−1 = BA
resp. α−1 = Aa since ab · ba = a(bb)a = aa = 1 resp. aA · Aa = aa = 1. This
proves that (G, ·) is a group with 1 as identity element. Hence the elements
α ∈ G with ι(α) are the involutions of G. The sets S and P are invariant sets
of involutions of G (according to D2 and D3) which generate G (according to
D5). Hence the Basic Assumption is satisfied.

The axioms D6–D13 are the axioms A1–A8 of Sect. 2.1 with the interpretation
described in that section. �

2.4. The completeness theorem

We now give an answer to the problem of Bachmann to find a general theorem
which describes the extent of an allowed dualization of statements of plane
absolute geometry.

Theorem 2.4. If Ω is a statement of plane absolute geometry (a statement of
the theory axiomatized by B)1 and Ω∗ the dual one then the following holds:

(a) If Ω can be deduced from axiom system A then Ω and Ω∗ hold in plane
absolute geometry.

(b) If Ω and Ω∗ hold in plane absolute geometry then Ω can be deduced from A.

Proof. (a) A group (G,S, P ) of plane absolute geometry (a Bachmann group)
is a model of axiom system A (see Theorem 2.2) and hence satisfies every
conclusion Ω of A. Since A contains with each axiom the dual one, the dual
statement Ω∗ of Ω is also a conclusion of A. Hence Ω and Ω∗ hold in (G,S, P ).

(b) According to Theorem 2.2 the models of A are exactly the groups of
plane absolute geometry and the associated dual groups. According to Gödel’s
Completeness Theorem for first-order logic every universally valid statement
of the theory axiomatized by A is formally provable, i.e., if a statement Ω and
the dual one Ω∗ hold in plane absolute geometry then they can be deduced
from A (see Gödel [3]). �

1See Sect. 2.1 for the axioms of B.
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3. The principle of duality in Euclidean geometry

3.1. The axiom system E
Let E be the axiom system which consists of the Basic Assumption (introduced
in Sect. 2.1) and the following axioms E1–E9.

E1. If a |b then ab ∈ P and if A |B then AB ∈ S.
E2. If A |b then Ab ∈ P ∪ S.
E3. For every pair (A, b) there is a unique pair (a,B) with a |A and B |b and

Aa = bB.
E4. If A,B |c, d then A = B or c = d.
E5. If A,B,C |d then ABC ∈ P and if a, b, c |D then abc ∈ S.
E6. If A |a and B |b and C |c and Aa = Bb = Cc then ABC ∈P and abc∈S.
E7. For A, b with A � b there is at most one line through A which has no

common point with b.
E8. For a,B with a � B there is at most one point on a which has no joining

line with B.
E9. There exists a quadrangle.

The axioms E1, E2, E4, E5 and E6 are the axioms A1, A2, A4, A5 and A6 of
Sect. 2.1 with the interpretation described in that section. E3 states that if A
is a point and b a line, then there exists a unique pair (a,B) with a | A and
B | b and Aa = bB (and hence a unique ‘perpendicular’ from A to b). Please
observe that E3 is a stronger version of axiom A3 since the uniqueness of a
perpendicular is postulated without exception. E7 is the Euclidean parallel
axiom, stated in a form which is often called ‘Playfair’s axiom’, even though
it already appears in the commentary of Proclus (If A is not incident with b
then there is at most one line through A which has no common point with b).
E8 is the dual statement. According to E9 there exists a quadrangle.

Axiom system E contains with each axiom the dual statement. Hence the
principle of duality holds.

Since the models of E satisfy the Basic Assumption and the axioms E1, E3,
E4, E5, E6 and E9 they are Cayley–Klein groups (see R. Struve [10, Section
3.1]). If in addition any two points have a joining line they are non-elliptic
Bachmann groups (see [10, Theorem 4.1])2 which axiomatize plane Euclidean
geometry if the following additional axiom holds (see [10, Theorem 4.7]):

E7∗. For A, b with A � b there is exactly one line through A which has no
common point with b.

Axiom E7∗ is a stronger version of E7 and implies that a Bachmann group is
non-elliptic (see [1, §6.12]).

2A Bachmann group (G,S, P ) is called non-elliptic if P ∩ S = ∅. This condition is in
Bachmann groups equivalent with the uniqueness of a perpendicular and with E3 (see [1,
§20.5] and [2, §1.7]).
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We denote the axiom system for Euclidean Bachmann groups (which contains
the axioms of B and E7∗) by B∗.

In the framework of Cayley–Klein groups the Euclidean Bachmann groups
(G,S, P ) are called Euclidean Cayley–Klein groups and their dual models
(G,S′, P ′) with S′ = P and P ′ = S co-Euclidean Cayley–Klein groups.

3.2. The models of axiom system E
We start the determination of the models of E with two theorems about the
existence of joining lines and of points of intersections.

Theorem 3.1. Let (G,S, P ) be a model of E and let B be a point which is not
incident with a line a. If B has a joining line with every point of a then the
following holds:

(1) There exist orthogonal lines.
(2) If A |b then Ab ∈ S.
(3) Any two points have a joining line.

Proof. Let (G,S, P ) be a model of E and let B be a point which has a joining
line with every point of a line a with a � B.

Proof of (1). By axiom E3 there exist (A, b) with A |a and b |B and Aa = bB.
According to our assumption there exists a line e with e | A,B. Hence it is
eAa | AAa, BAa. Since AAa = Aa = A and BAa = BBb = Bb = B it is
e, eAa |A,B and e = eAa (according to E4; it is A �= B since A |a but B �a).

Since e |A implies e = eAa = ea it is e = a or e | a. Since B | e but B � a it is
e �= a. This proves e |a and statement (1).

Proof of (2). In Cayley–Klein groups (1) implies (2) (see [10, Theorem 3.5]).

Proof of (3). Suppose B and C are points which have no joining line. Let a be
a line through C. According to E3 and (2) there exists a perpendicular b from
B to a with b |B, a. Hence C and Cb are points of a which have no joining line
with B. According to E8 it is C = Cb. Hence C = b or C |b.
If C = b then B,C |Bb with Bb ∈ S (according to (2)) which contradicts our
assumption that B and C are points which have no joining line. If C | b then
B,C |b which leads to the same contradiction. This proves that any two points
have a joining line. �
Theorem 3.1 and axiom E8 allow the distinction of two cases.

Theorem 3.2. Let (G,S, P ) be a model of E. Then either any two points have
a joining line or for every pair (a,B) with a � B there is exactly one point on
a which has no joining line with B.

The dual statement is formulated in the next theorem.

Theorem 3.3. Let (G,S, P ) be a model of E. Then either any two lines have
a point of intersection or for every pair (A, b) with A � b there is exactly one
line through A which has no point of intersection with b.
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We now show that the models of E which satisfy the axiom of the existence of
a joining line are exactly the Euclidean Cayley–Klein groups.

Theorem 3.4. The models of E with the property that any two points have a
joining line are the Euclidean Cayley–Klein groups.

Proof. The Cayley–Klein groups with the property that any two points have a
joining line are exactly the Bachmann groups (see [10, Theorem 4.1]). A Bach-
mann group is Euclidean if and only if the stronger version E7∗ of Playfair’s
axiom E7 holds (for A, b with A � b there is one and only one line through A
which has no common point with b; see Sect. 3.1). In a non-elliptic Bachmann
group (G,S, P ) the statements E7 and E7∗ are equivalent since the line a with
a | A and Aa | b (which exists according to E3) has no common point with b
by the uniqueness of a perpendicular (also implied by E3). This proves the
theorem. �
By dualization one gets the following result.

Theorem 3.5. The models of E with the property that any two lines have a
point of intersection are the co-Euclidean Cayley–Klein groups.

The models of E , which satisfy none of the assumptions of Theorems 3.4
and 3.5, satisfy instead (according to Theorems 3.2, 3.3) stronger versions
of E7 and E8:

E7∗. If A is not incident with b then there is exactly one line through A which
has no common point with b.

E8∗. If a is not incident with B then there is exactly one point on a which has
no joining line with B.

The Cayley–Klein groups which satisfy the additional axioms E7∗ and E8∗ are
the Galilean Cayley–Klein groups (see R. Struve [10, Theorem 7.7]). Galilean
Cayley–Klein groups are not models of axiom system E since they do not
satisfy E2.

Our results are summarized in the following theorem.

Theorem 3.6. The models of E are exactly the Euclidean and the co-Euclidean
Cayley–Klein groups.

3.3. A first-order version of axiom system E
A first-order version of E (i.e., a first-order axiomatization of the theory defined
by E) can be obtained by a slight modification of the first-order axiomatization
of absolute and dual absolute geometry provided in Sect. 2.3: We substitute
D12 of axiom system D by E7 and E8. Let D∗ denote this new axiom system.

Theorem 3.7. Axiom system D∗ provides a first-order axiomatization of the
theory which is defined by E.
Proof. A model of E obviously satisfies the axioms of D∗. We show conversely
that any model of D∗ satisfies the axioms of E .
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According to Theorem 2.3 a model of D∗ satisfies the Basic Assumption and
the axioms A1, A2, A3, A4, A5, A6 and A8 of A which correspond to the Basic
Assumption and the axioms E1, E2, E3, E4, E5, E6, E9 of E . The axioms E7
and E8 are axioms of both axiom systems E and D∗. �

3.4. The completeness theorem

We now give an answer to the problem of Bachmann to find a general theorem
which describes the extent of an allowed dualization of statements of plane
Euclidean geometry.

Theorem 3.8. If Ω is a statement of plane Euclidean geometry (a statement of
the theory axiomatized by B∗)3 and Ω∗ the dual one then the following holds:

(a) If Ω can be deduced from axiom system E then Ω and Ω∗ hold in plane
Euclidean geometry.

(b) If Ω and Ω∗ hold in plane Euclidean geometry then Ω can be deduced
from E.

Proof. (a) A Euclidean Cayley–Klein group (G,S, P ) is a model of axiom sys-
tem E (see Theorem 3.4) and hence satisfies every conclusion Ω of E . Since E
contains with each axiom the dual one, the dual statement Ω∗ of Ω is also a
conclusion of E . Hence Ω and Ω∗ hold in (G,S, P ).

(b) According to Theorem 3.6 the models of E are exactly the Euclidean
Cayley–Klein groups and the associated dual groups (the co-Euclidean Cayley–
Klein groups). According to Gödel’s Completeness Theorem for first-order logic
every universally valid statement of the theory axiomatized by E is formally
provable, i.e., if a statement Ω and the dual one Ω∗ hold in plane Euclidean
geometry then they can be deduced from E (see Gödel [3]). �
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