
J. Geom. 107 (2016), 593–601
c© 2015 Springer Basel AG
0047-2468/16/030593-9
published online September 14, 2015
DOI 10.1007/s00022-015-0291-1 Journal of Geometry

Measure partitions via Fourier analysis II:
center transversality in the L2-norm for
complex hyperplanes

Steven Simon

Abstract. Applications of harmonic analysis on finite groups were recently
introduced to measure partition problems, with a variety of equipartition
types by convex fundamental domains obtained as the vanishing of pre-
scribed Fourier transforms. Considering the circle group, we extend this
approach to the compact Lie group setting, in which case the annihilation
of transforms in the classical Fourier series produces measure transver-
sality similar in spirit to the classical centerpoint theorem of Rado: for
any q ≥ 2, the existence of a complex hyperplane whose surrounding
regular q-fans are close—in an L2-sense—to equipartitioning a given set
of measures. The proofs of these results represent the first application
of continuous as opposed to finite group actions in the usual equivariant
topological reductions prevalent in combinatorial geometry.

Mathematics Subject Classification. 52A35 · 52A38 · 51M20 · 37F20 ·
42A16.

1. Introduction and main results

Partition of point collections, bodies, and other measures on Euclidian space
have a long history in combinatorial and discrete geometry. On the one hand
are the equipartition problems, beginning with the well-known ham sandwich
theorem: any d finite absolutely continuous measures on R

d (henceforth to
be called masses) can be bisected by a single hyperplane. More generally,
given n masses μ1, . . . , μn on R

d, one seeks a partition P = {R1, . . . ,Rm}
by a fixed type of “nice” convex regions—e.g., those determined by affine
independent or pairwise orthogonal hyperplane collections [3,4,6,10,11,17,21,
28], arrangements by more general fans [1,2,16], cones on polytopes [14,26,31],
et cetera—so that each region contains an equal fraction of each total measure:
μj(Ri) = μj(Rd)/m for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. On the other hand are
the center-transversality questions, in which the goal is to find an affine space
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A of a specified dimension such that each partition P with center containing A
comes “sufficiently close” to equipartitioning each measure. For instance, the
classical center-point theorem of Rado [20] claims for any mass μ on R

d the
existence of a point p so that |μ(H±)−μ(Rd)/2| ≤ μ(Rd)/6 for the half-spaces
H± of any hyperplane H passing through p, and moreover that the ratio 1/6
is minimal over all masses.

1.1. Finite Fourier analysis and equipartitions

As shown in [23], measure equipartition problems have a natural reformulation
in terms of harmonic analysis on finite groups: if each partition P := {Rg}g∈G

is naturally indexed by a free group action (e.g., via isometries of Rd), then
evaluating measures for each partition determines maps fμj

: G → R, g �→
μj(Rg), the Fourier expansion [7]

μj(Rg) =
∑

σ

dσ Trace(cj,σσg) (1.1)

of which is given explicitly in terms of the group’s irreducible unitary repre-
sentations σ : G → U(dσ) and their matrix-valued transforms

cj,σ =
1

|G|
∑

g∈G

μj(Rg)σ−1
g ∈ M(C, dσ) (1.2)

A variety of equipartition types could then be obtained as the vanishing of
judiciously chosen cj,σ, including full equipartitions when all transforms but
that given by the trivial representation were annihilated. Many previously con-
sidered problems could be seen as special cases of this viewpoint, including the
extensively studied Grünbaum and “generalized Makeev” hyperplane problems
mentioned above as Z

k
2 examples, including the ham sandwich theorem when

k = 1.

1.2. Compact groups and L2 center-transversality

Considering the circle group S1, we extend this harmonic analysis approach to
the compact Lie group setting, in which case the vanishing of Fourier trans-
forms will produce an “average” measure center transversality, described pre-
cisely in terms of the L2-norm on the group. First, we set some notation.

Definition 1. Let q ≥ 2. A complex regular q-fan Fq in C
d is the union of q

half-hyperplanes, centered about a complex hyperplane HC, whose successive
dihedral angles are all equal to 2π/q. The resulting closed regions are called
regular (q-)sectors.

The regular sectors of all complex regular q-fans Fq centered about a fixed
complex hyperplane are parametrized by the free rotational S1-action, so as
before one has a natural class of convex decompositions Dq(S1) = {Sq,λ}λ∈S1

and resulting maps fμj
: S1 → R, λ �→ μj(Sq,λ), whose Fourier series
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μj(Sq,λ) =
∑

m∈Z

cj,mλm (1.3)

converge uniformly because the measures are continuous. Technically speak-
ing, our main result guarantees the vanishing of arbitrarily prescribed Fourier
coefficients

cj,m =
∫

S1
μj(Sq,λ)λ−mdλ ∈ C, (1.4)

and hence their conjugates cj,m = cj,−m, whenever m �= 0:

Theorem 1.1. Let q ≥ 2. For any d masses on C
d and any m1, . . . ,md >

0, there exists a complex hyperplane whose surrounding regular q-sectors
{Sq,λ}λ∈S1 satisfy cj,mj

= cj,−mj
= 0 in (1.3) for each 1 ≤ j ≤ d.

For the finite subgroups Zq of the circle, annihilating coefficients showed that
any d masses on C

d(q−r) could be simultaneously equipartitioned by each of
the r regular p-fans composing some complex regular q = pr-fan Fq, provided
p was prime (see [23]). Passing to the full Lie group, for arbitrary q ≥ 2 we
have a complex hyperplane whose surrounding regular q-fans are all close to
equipartitioning a given set of masses, provided the L2-norm for functions on
the circle is used. For instance, annihilating each first Fourier coefficient will
show that

Corollary 1.2. For any d masses μ1, . . . , μd on C
d and any q ≥ 2, there exists

a collection of regular q-sectors centered about a complex hyperplane such that

‖μj(Sq,λ) − μj(Cd)/q‖2 ≤
√

1
3

− 2
π2

− 1
3q2

μj(Cd) (1.5)

for each 1 ≤ j ≤ d.

One comes arbitrarily close to equipartitioning in sufficiently high dimensions
by annihilating further coefficients:

Corollary 1.3. For any d masses μ1, . . . , μd on C
dn and any integer q ≥ 2, there

exists a collection of regular q-sectors centered about a complex hyperplane such
that

‖μj(Sq,λ) − μj(Cdn)/q‖2 <
κ√
n

μj(Cdn) (1.6)

for each 1 ≤ j ≤ d, where κ is a constant independent of d, n, and q.

Corollary 1.2 is of particular interest when d = 1 and q = 2. In this case a
complex hyperplane is a point in R

2 and a regular 2-fan is a line, so (1.5) is a
L2-analogue in the plane of the centerpoint theorem above, i.e., the existence
of a point c whose surrounding regular 2-sectors satisfy the uniform bound
‖μ(S2,λ) − μ(R2)‖∞ = maxλ∈S1 |μ(S2,λ) − μ(R2)| ≤ μ(R2)/6. This 1/6 is
smaller than that of Corollary 1.2, but Proposition 2.1 below will show that
our L2 bounds are smaller than those in the L∞ norm if q �= 2, 4, 5, 6. We also
observe that even though the center-transversality obtainable via Theorem 1.1.
is in general most naturally stated in terms of the L2-norm, some L∞ estimates
can also be obtained via transform annihilation if further assumptions on the
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measures are made, e.g., the “rotational acceleration” criteria of Remark 1
below.

1.3. Equivariant topological underpinnings

Measure equipartitions are ordinarily obtained topologically, with the
configuration-space/test-map paradigm, applied throughout discrete geometry
and combinatorics, the main tool for the problem’s reduction to an equivari-
ant framework (see, e.g., [18,29,30] for an introduction). Although suggested
by Sarkaria [22] for their potential use in the topological Tverberg conjecture,
our proof of Theorem 1.1 given in Sect. 3 represents the first use of continuous
group actions in this scheme. As in the finite cases, owing to the group sym-
metry on each decomposition, the desired partition is shown to be equivalent
to the zero of a certain equivariant map, guaranteed here by a simple degree
argument. A variety of powerful cohomological techniques are employed in this
context more generally (e.g., the ideal-valued index theory of [9], characteristic
and more general obstruction classes, et cetera) and it should be noted that the
specific use of the circle group offers a technical advantage. Namely, while tor-
sion in finite group cohomology placed restrictions on the partition types (i.e.,
transform annihilation) obtainable by these methods, including full equiparti-
tions only when the number of regions is a prime power (see, e.g., [4,5,14,15]),
there are only trivial conditions on transform annihilation here because the
group cohomology is now torsion free. In particular, our center-transversality
holds for partitions by an arbitrary number of sectors.

2. Transversality in the L∞-norm and proof of corollaries

Before proving the above corollaries, we provide a comparison of the d = 1
case of Corollary 1.2 to the corresponding uniform bounds.

Definition 2. Let ε∞(q) denote the minimum ε such that for any mass μ on
R

2, there exists some {Sq,λ}λ∈S1 for which ‖μ(Sq,λ) − μ(R2)/q ‖∞ ≤ εμ(R2),
and let ε2(q) be the analogous minimum in the L2-norm.

The original centerpoint theorem is ε∞(2) = 1/6, while for q ≥ 3 a continuous
extension of the “wedge centerpoint” theorems of [8] given for point collections
shows that

Proposition 2.1. (a) ε∞(q) = max{1/q, (q − 2)/2q} for q ≥ 3 and
(b) ε2(q) ≤

√
1
3 − 2

π2 − 1
3q2 < ε∞(q) for q = 3 and all q > 6.

Proof. To show that ε∞(q) ≤ max{1/q, (q−2)/2q}, it suffices as usual (see e.g.,
[26,27]) to assume that the density function of μ = h dm is C∞ with connected
compact support. As in [8], the key ingredient is demonstrating a regular 6-
fan whose three lines all bisect μ, and this follows from the intermediate value
theorem: as in the original proof [24] of the ham sandwich theorem, each x ∈ S1

determines a unique t(x) ∈ R such that the line L(x) := {u | 〈u, x〉 = t(x)}
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bisects μ. Letting Lk(x) := L(exp(πik/3)x) for each 0 ≤ k ≤ 2 and denoting
their intersections by pk(x) = Lk(x) ∩ Lk+1(x), the three lines form a regular
6-fan provided p1(x) ∈ L0(x). If f(x) = 〈p1(x), x〉 − t(x)x, it follows that
f(−x) = −f(x) for all x ∈ S1, and therefore some ∪2

k=0Lk(x) must be a
regular 6-fan. Letting c be the center of such a F6, one easily sees that 0 ≤
μ(Sq,λ) ≤ μ(R2)/2 for each of the regular q-sectors centered at c, and hence
that ‖μ(Sq,λ) − μ(R2)/q‖∞ ≤ max{1/q, (q − 2)/2q}μ(R2).

That ε∞(q) ≥ max{1/q, (q − 2)/2q} follows as in Lemmas 1 and 5 of [8]: for
large r > 0, consider 2n points P on the real line which are separated into
two collections P1 ⊂ [−r − 1,−r] and P2 ⊂ [r, r + 1] of n points each. For
small δ > 0, let μr,δ consist of the 2n disjoint disks of radius δ whose centers
are in P . Assuming that r is sufficiently large and δ is sufficiently small, the
distance between c and P1 or c and P2 is at least r for any point c ∈ R

2, so any
{Sq,λ}λ∈S1 has some regular q-sector containing all the disks with centers in
P1 or all the disks with centers in P2. On the other hand, one of these sectors
has measure at most πδ2/q. Thus ‖μr,δ(Sq,λ) − μr,δ(R2)‖∞ ≥ max{1/q −
1/2nq, (q − 2)/2q}μr,δ(R2) for any point in R

2, so ε∞(q) = max{1/q, (q −
2)/2q}, and therefore ε2(q) ≤

√
1
3 − 2

π2 − 1
3q2 < ε∞(q) for q = 3 and q > 6 by

Corollary 1.2. �

2.1. Proof of Corollaries 1.2–1.3

Proof. Let q ≥ 2, and suppose that μ1 = h1 dm, . . . , μd = hd dm, hj : Cdn →
[0,∞). For any Dq(S1) = {Sq,λ}λ∈S1 , it is easily seen from substitution that
(i) cj,m = 0 for all m ∈ qZ+ and that (ii) cj,0 = μj(Cdn)/q. By Theorem 1.1,
there exists some complex hyperplane HC with cj,±m = 0 for each 1 ≤ j ≤ d
and each 1 ≤ m ≤ n, so

‖μj(Sq,λ) − μj(Cdn)/q‖22 = 2
∑

m>n

m/∈qZ+

|cj,m|2 (2.1)

by the Parseval identity. Letting fμj
(λ) = μj(Sq,λ) and identifying λ

with θ ∈ [−π, π], one has |cj,m| ≤ Vj

m , where Vj = 1
2π

∫ π

−π
|f ′

μj
(θ)| dθ

is the total variation, and the latter is trivially bounded by μj(Cdn)/π:
After changing to polar coordinates and a possible translation, we may
assume fμj

(θ) =
∫ θ+2π/q

θ

∫ ∞
0

hj(r, φ)r dr dφ, so f ′
μj

(θ) =
∫ ∞
0

[hj(r, θ +
2π/q) − hj(r, θ)]r dr, and therefore Vj ≤ 1

2π

∫ π

−π

∫ ∞
0

|hj(r, θ + 2π/q) −
hj(r, θ)|r dr dθ ≤ 1

π

∫ π

−π

∫ ∞
0

hj(r, θ)r dr dθ = μj(Cdn)/π. One then has

‖μj(Sq,λ) − μj(Cdn)/q)‖22 ≤ 2μj(C
dn)2

π2

∑
m>n,m/∈qZ+

1
m2 <

2μj(C
dn)2

nπ2 . This
proves Corollary 1.3, while the explicit value

∑
m>1,m/∈qZ+

m−2 = (q2 −
1)π2/6q2 − 1 gives (1.5). �
Remark 1. Using similar reasoning, it is easy to see that uniform bounds via
transform annihilation also hold given further smoothness assumptions on the
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measures. For instance, if the density functions of μ = h dm are C1, esti-
mates can be given control on the “rotational acceleration” [μ(Sq,θ)]′′ of the
measures about the various complex hyperplanes. In particular, for any such
μ1 = h1 dm, . . . , μd = hd dm on C

d, there exists a complex hyperplane such that

|μj(Sq) − μj(Cd)/q| ≤ 2Aj

(
(q2 − 1)π2

6q2
− 1

)

for each sector Sq and each 1 ≤ j ≤ d, where Aj = supHC

1
2π

∫ π

−π
|[μj(Sq,θ)]′′|

dθ.

3. Proof of Theorem 1.1

Finally, we prove Theorem 1.1 via the configuration-space/test-map paradigm
mentioned in the introduction. For the configuration-space, to each x = (a, b) ∈
S(Cd+1), ‖a‖2 + |b|2 = 1, we define the sets

Sq,λ(x) = {u ∈ C
d | 〈u,a〉C + b̄ = λv, | arg v| ≤ π/q} (3.1)

for each λ ∈ S1, where 〈u,a〉 =
∑d

i=1 uiāi denotes the standard Hermitian
form on C

d. Note that each collection Dq(S1) of C
d is uniquely realized by

the S1-orbit of some x /∈ 0 × S1, and moreover that the S1-action on the
orbit corresponds precisely to the rotations of the sectors about their centering
complex hyperplane HC(x) = {u | 〈u,a〉C + b̄ = 0}. On the other hand, the
sets Sλ(0, b) are all of Cd if arg λ ∈ Ib := [−π/q − arg b, π/q − arg b] and are
empty otherwise.

Now suppose that μ1, . . . , μd are masses on C
d. Given m1, . . . ,md > 0, con-

sider the representation ρ = ⊕d
j=1χmj

: S1 → U(d), the direct sum of the
power maps χmj

(λ) = λmj . Evaluating the Fourier coefficients ranging over
all Dq(S1) = {Sq,λ}λ∈S1 can then be extended to a continuous test-map F :
S(Cd+1) → C

d defined on the full sphere by F(x) = (c1,m1(x), . . . , cd,md
(x)),

where

cj,mj
(x) =

∫

S1
μj(Sq,λ(x))λ−mj dλ (3.2)

Thus Theorem 1.1 will be proven if we can find some x /∈ 0 × S1 for which
F(x) = 0. Crucially, since Sq,λ1(λ2x) = Sq,λ1λ2(x) for all λ1, λ2 ∈ S1 for
any of the sets (3.1), this map is equivariant with respect to the standard
action on S(Cd+1) and the linear action on C

d given by ρ. Continuity of F
is demonstrated in an essentially standard fashion below, so a zero of this
map can be guaranteed from the degree calculation of Proposition 3.1. As
cj,mj

(0, b) =
∫
arg λ∈Ib

μj(Cd)λ−mj dλ �= 0, the zero cannot lie in 0 × S1, as
desired.

For continuity, it suffices to consider a single mass and a single χm : S1 →
U(1). To show that

∫
S1 μ(Sq,λ(xn))λ−m dλ → ∫

S1 μ(Sq,λ(x))λ−mdλ if xn =
(an, bn) → x = (a, b), one notes that the set ∂Sq,λ(x) := {u ∈ C

d |
〈u,a〉C + b̄ = rλe±πi/q, r ≥ 0} is half of a real hyperplane when x /∈ 0 × S1,
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while for x = (0, b) it is all of C
d if arg λ = ±π/q − arg b and is empty

otherwise. Thus μ(∂Sq,λ(x)) = 0 for all but at most two values of λ, so
as in the proof of the ham sandwich theorem given in [18], it follows from
the dominated convergence theorem that μ(Sq,λ(xn))λ−j → μ(Sq,λ(x))λ−j ,
almost everywhere. Thus F(xn) → F(x) again by dominated convergence,
since |μ(Sq,λ(xn))λ−j | ≤ μ(Cd) < ∞.

Proposition 3.1. If S1 acts on S(Cd+1) = S2d+1 by the standard action and lin-
early on C

d via ρ = ⊕d
j=1χmj

: S1 → U(d), then any continuous S1-equivariant
map h : S2d+1 → C

d has a zero if m1, . . . ,md �= 0.

Proof. If h were not to have a zero, the usual argument shows that composition
of k(x) := h(x)/‖h(x)‖ with the nullhomotopic inclusion S2d−1 ↪→ S2d+1

produces a degree zero S1-equivariant map f : S2d−1 → S2d−1. This is a
contradiction, because f has degree m = m1 · · · md mod q for any integer
q ≥ 2 (see, e.g., Proposition 4.12 of [25]), hence overall degree m �= 0. �

3.1. A cohomology perspective

As many of the results in combinatorial and discrete geometry obtained
by topological reduction rely on equivariant cohomological methods, we
conclude with a discussion of how the lack of restrictions on transform
annihilation of Theorem 1.1, as opposed to that for finite groups in the
CS/TM-scheme, can be seen at the level of group cohomology. Recall that
for each group G, there is a classifying space BG, unique up to homo-
topy, which is the quotient of a contractible space EG on which G acts
freely: G ↪→ EG → BG = EG/G (see, e.g., [13]), and one can define
the cohomology of the group G as H∗(BG;Z). For the circle group, one
can take ES1 = S∞ = ∪dS(Cd+1) with the standard S1 action, so that
BS1 = S∞/S1 = ∪dCP d = CP∞ is infinite dimensional complex projec-
tive space. It is a basic fact that H∗(CP∞;Z) is simply the polynomial ring
Z[a].

A typical means of showing that the equivariant map h : S2d+1 → C
d

vanishes is to quotient the trivial bundle S2d+1 × C
d by the diagonal S1-

action and demonstrate that the resulting complex vector bundle C
d ↪→ E :=

S2d+1 ×S1 C
d → CP d does not admit a non-vanishing section, and there-

fore that the particular section s : CP d → E induced from x �→ (x, h(x))
must have a zero. To that end, one calculates the bundle’s top Chern class
cd(E) ∈ H2d(CP d;Z) to be non-zero (see, e.g., [13,19]). From the viewpoint
of classifying spaces, E is the pullback under inclusion i : CP d ↪→ CP∞

of the bundle Eρ := ES1 ×S1 C
d given by the Borel construction, so that

cd(E) = i∗(cd(Eρ)) by naturality. As i∗ : H∗(CP∞;Z) → H∗(CP d;Z) is an
isomorphism in dimensions n ≤ 2d (see, e.g., [12]), one is ultimately reduced
to the computation cd(Eρ) = m1 · · · md ad �= 0 in the group cohomology
H∗(BS1;Z).
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