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Holonomy and contact geometry
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Abstract. On a Riemannian manifold, any parallel form is preserved by
the flow of any Killing vector field with constant magnitude. As a con-
sequence, on a 2n+1-dimensional K-contact manifold, there are no non-
trivial parallel forms except of degrees 0 and 2n+1. Flat contact metrics
on 3-manifolds are characterized by reducible holonomy.
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1. Introduction

This paper is an extension and a clarification of paper [5]. In [5], it was not clear
how the identity LZμ = 0 holds at the beginning of the proof of Proposition 2.1
therein. We show in here that any parallel form on a, not necessarily compact,
Riemannian manifold is left invariant by the flow of any Killing vector field with
constant magnitude. Using this result, we show that there are no nontrivial
parallel forms on any 2n+1-dimensional K-contact manifold, except in degrees
0 and 2n+1. The global version of this result is well known for closed Sasakian
manifolds [2].

2. Preliminaries

A contact form on a 2n + 1-dimensional manifold M is a 1-form η such that
η ∧ (dη)n is a volume form on M . There is always a unique vector field Z, the
characteristic vector field of η, which is determined by the equations η(Z) = 1
and dη(Z,X) = 0 for arbitrary X. The distribution Dp = {V ∈ TpM : η(V ) =
0} is called the contact distribution of η. Clearly, D is a symplectic vector
bundle with symplectic form dη.

On a contact manifold (M,η, Z), there is also a nonunique Riemannian metric
g and a partial complex operator J adapted to η in the sense that the identities
g(Z,Z) = 1 and

2g(X,JY ) = dη(X,Y ), J2X = −X + η(X)Z
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hold for any vector fields X, Y on M . We have adopted the convention for
exterior derivative so that

dη(X,Y ) = Xη(Y ) − Y η(X) − η([X,Y ]).

The tensors η, Z, J and g are called contact metric structure tensors and the
manifold M with such a structure will be called a contact metric manifold
[1]. We will use the notation (M,η, Z, J, g) to denote a contact metric mani-
fold M with specified structure tensors. Assuming that (M, g) is a complete
Riemannian manifold, let ψt, t ∈ R denote the 1-parameter group of diffeomor-
phisms generated by Z. The contact form η is invariant under the 1-parameter
group ψt, that is, ψ∗

t η = η. If ψt is also a 1-parameter group of isometries of
g, then the contact metric manifold is called a K-contact manifold. By ∇, we
shall denote the Levi-Civita covariant derivative operator of g. On a K-contact
manifold, one has the identity

∇XZ = −JX

valid for any tangent vector X. On a general contact metric manifold, the
identity

∇XZ = −JX − JhX

is satisfied, where hX = 1
2 (LZJ)X. If the identity

(∇XJ)Y = g(X,Y )Z − η(Y )X

is satisfied for any vector fields X and Y on M , then the contact metric
structure (M,η, Z, J, g) is called a Sasakian structure.

3. Holonomy on Riemannian manifolds

Given a path xt = x(t) on a Riemannian manifold (M, g), we denote by τa
b

the parallel translation along the path from xa to xb. The proof of the lemma
below can be found literally in [3]. We provide it here for completeness.

Lemma 3.1. Let (M, g) be a Riemannian manifold and X an arbitrary Killing
vector field on M . Let Ct = τ t

0 ◦(φt)∗ where φt is the (local) 1-parameter group
of isometries generated by X and τ t

0 is parallel translation from xt = φt(x) to
x0 = x along the flow line of X through x. Then Ct is a (local) 1-parameter
group of linear transformations of TxM , that is Cs+t = Ct ◦ Cs and Ct =
exp(−t(AX)x); where AX = LX − ∇X .

Proof. Since φt maps the flow line segment (x0, xs) into the flow line segment
(xt, xt+s) and since φt is compatible with parallel translation, one has:

(φt)∗ ◦ τs
0 = τ t+s

t ◦ (φt)∗.

Hence:

Ct ◦ Cs = τ t
0 ◦ (φt)∗ ◦ τs

0 ◦ (φs)∗
= τ t

0 ◦ τ t+s
t ◦ (φt)∗ ◦ (φs)∗

= τ t+s
0 ◦ (φs+t)∗ = Ct+s
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Thus, there is a linear endomorphism say A of TxM such that Ct = exp(tA).
Our claim is that

A = −(AX)x.

To prove the claim, we will show that

lim
t→0

1
t
(CtYx − Yx) = −(AX)xYx

for any Yx ∈ TxM . We first look at the case Xx �= 0. There is a local coordinates
system (x1, . . . , xm) where xt = (t, 0, . . . , 0) for small values of t. We extend
Yx into a local vector field Y on M such that φt∗(Yx) = Yxt

for those small
values of t. Then (LXY )x = 0. Moreover, one has:

−(AX)xYx = (∇XY )x − (LXY )x = (∇XY )x

= lim
t→0

1
t
(τ t

0Yxt
− Yx)

= lim
t→0

1
t
(τ t

0 ◦ ((φt∗)Yx − Yx))

= lim
t→0

1
t
(CtYx − Yx).

Secondly, we consider the case Xx = 0. In this case, φt leaves x fixed and τ t
0

is the identity of TxM . Thus, (∇XY )x = 0 and

−(AX)xYx = (∇XY )x − (LXY )x

= −(LXY )x

= − lim
t→0

1
t
(Yx − φt∗Yx)

= lim
t→0

1
t
(CtYx − Yx)

which completes the proof. �
The next proposition can be found in [3] for compact manifolds and arbitrary
infinitesimal affine transformations. Our proof is an adaptation to not nec-
essarily compact Riemannian manifolds, with a restriction to Killing vector
fields with constant magnitude.

Proposition 3.2. Let X be a Killing vector field with constant magnitude on a
Riemannian manifold (M, g). Then for each x ∈ M , the endomorphism (AX)x

belongs to the Lie algebra g(x) of the linear holonomy group Ψ(x).

Proof. In the Lie algebra E(x) of skew symmetric endomorphisms of TxM , we
define a positive definite inner product:

(A,B) = −trace(AB).

Let B(x) be the orthogonal complement of g(x) in E(x), with respect to the
above inner product. Let AX = SX + BX , where SX ∈ g(x), BX ∈ B(x),
x ∈ M . In order to continue with the proof, we need the following lemma:
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Lemma 3.3. In the orthogonal decomposition AX = SX + BX , the tensor field
BX is parallel.

Proof. Let c be an arbitrary curve from x to y in M . The parallel translation
τ along c gives an isomorphism τ(E(x)) = E(y) which maps g(x) into g(y).
Since τ preserves the inner products, it also maps B(x) into B(y). That is, for
any vector field Y on M , ∇Y (SX) ∈ g(x) whereas ∇Y (BX) ∈ B(x) at each
point x ∈ M . On the other hand, ∇Y (AX) = R(X,Y ) (valid for any affine
infinitesimal transformation X) implies that ∇Y (AX) ∈ g(x) at each x ∈ M .

∇Y (AX) = ∇Y (BX) + ∇Y (SX),

we see that ∇Y (BX) also belongs to g(x), hence ∇Y (BX) = 0. �
We will further show that BX = 0. On one hand, AXX = LXX − ∇XX = 0
implies that BXX = 0. On the other hand, given an orthonormal frame Ei,
i = 1, . . . , m and using the identity AXY = −∇Y X (see [3]), one has

0 = divBXX =
m∑

i=1

g(∇Ei
(BXX), Ei)

=
∑

g(BX∇Ei
X,Ei)

= −
∑

g(BXAXEi, Ei)

= −
∑

g(BX(BX + SX)Ei, Ei)

= −
∑

g(BXBXEi, Ei)

= −trace(BXBX) ≥ 0

Hence BX = 0. �
In [8], Wang established the invariance of parallel tensors by the identity com-
ponent of the isometry group on a compact manifold. We generalize this result
to any Riemannian manifold, but restricting to invariance by isometries gen-
erated by Killing vector fields with constant magnitude.

Theorem 3.4. Let (M, g) be a Riemannian manifold. Then every parallel tensor
field T on M is invariant by the flow of any Killing vector field with constant
magnitude on M .

Proof. Let X be a Killing vector field with constant magnitude on (M, g) and φt

the (local) 1-parameter group of isometries generated by X. By Lemma 3.1 and
Proposition 3.2, the 1-parameter group Ct = τ t

0◦(φt)∗ of linear transformations
of TxM is contained in the linear holonomy group Ψ(x). When Ct is extended
to a 1-parameter group of automorphisms of the tensor algebra over TxM , it
leaves T invariant. Thus,

φ∗
t
−1(Tx) = τ0

t Tx = Txt

for every t, where xt = φt(x). It follows that φt leaves T invariant. �
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4. Parallel forms of even-degrees

In [7], Tachibana, proved that if μ is a harmonic p-form with 1 ≤ p ≤ n on
a compact Sasakian manifold M2n+1, n ≥ 1, then μ(Z, . . . ) = 0, where Z is
again the Reeb vector field. For parallel forms of even degree, the compactness
condition can be dropped and the Sasakian condition weakened so that the
same conclusion extends to 2p-forms, 1 ≤ p ≤ n, on K-contact manifolds.

Proposition 4.1. On a K-contact manifold (M2n+1, η, Z, J, g), n ≥ 1; if μ is a
parallel 2p-form, 1 ≤ p ≤ n, then μ is orthogonal to Z, that is,

μ(Z, . . . ) = 0.

The proof of this proposition uses the following lemma:

Lemma 4.2. On a K-contact manifold (M,η, Z, J, g), the K-contact flow ad-
mits local J-parallelisms {Z,Ei, JEi} such that [Z,Ei] = 0 = [Z, JEi] for
i = 1, 2 . . . , n.

Proof. Every point on the manifold admits a neighborhood with Darboux lo-
cal coordinates z, xi, yi, i = 1, 2, . . . , n, in which the contact form takes the
expression:

η = dz −
n∑

i=1

yidxi

and the Reeb field is Z = ∂
∂z . Let Ei = ∂

∂yi
. Clearly [Z,Ei] = 0 and [Z, JEi] = 0

if the contact form is K-contact. �

Proof of the Proposition

Proof. Let μ be a parallel 2p-form on a K-contact manifold M of dimension
2n+1. Let also Z denote the characteristic vector field of the K-contact form
η on M . By Theorem 3.4, μ is invariant under the one-parameter group of
isometries generated by Z, hence the Lie derivative of μ in the direction of Z,
LZμ, is identically zero, i.e, the identity

LZμ = 0

is satisfied everywhere on M .

Let P be an arbitrary point in M . On a neighborhood of P one can find a
frame field {Z,E1, . . . , E2n}, such that [Z,Ei] = 0, for i = 1, 2, . . . , 2n. (Pick
a local J-parallelism, as provided by Lemma 4.2.)

From (LZμ)(E1, . . . , E2p−1, Z) = 0, one has

μ(−JE1, E2, . . . , E2p−1, Z) + · · · + μ(E1, . . . ,−JE2p−1, Z) = 0 (1)

Covariantly differentiating with respect to Z, one obtains:

− (2p − 1)μ(E1, .., E2p−1, Z) +
∑

i�=j

μ(.., JEi, .., JEj , .., Z) = 0 (2)
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Thus,

μ(E1, .., E2p−1, Z) =
1

2p − 1

∑

i�=j

μ(.., JEi, .., JEj , .., Z) (3)

Covariantly differentiating with respect to Z again shows that the Left Hand
Side terms in (3) become the Left Hand Side terms of (1), thus vanish. There-
fore,

0 = −
∑

i�=j �=k

μ(.., JEi, .., JEj , .., JEk, .., Z) + (2p − 2)
∑

i

μ(.., JEi, .., Z) (4)

The second sum in (4) vanishes by (1), so that
∑

i�=j �=k

μ(.., JEi, .., JEj , .., JEk, .., Z) = 0. (5)

Another covariant derivative with respect to Z shows that

(2p − 3)
∑

j �=k

μ(.., JEj , .., JEk, .., Z)

−
∑

i�=j �=k �=l

μ(.., JEi, .., JEj , .., JEk, .., JEl, .., Z) = 0

and hence, using (3),
∑

i�=j �=k �=l

μ(.., JEi, .., JEj , .., JEk, .., JEl, .., Z)

= (2p − 3)
∑

j �=k

μ(.., JEj , .., JEk, .., Z)

= (2p − 3)(2p − 1)μ(E1, .., E2p−1, Z).

Continuing this way, one sees that when the number of J ’s in the argument of
μ is odd, the summation

∑
μ(.., Z) satisfies:
∑

μ(. . . , Z) = 0,

and when the number of J ’s in the argument of μ is even, then the summation
is a constant multiple of μ without any J in its argument:

∑
μ(. . . , Z) = [constant]μ(E1, . . . , E2p−1, Z).

Eventually, one obtains

μ(JE1, . . . , JE2p−1, Z) = 0.

In other words, μ is orthogonal to Z. �
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5. Vanishing of parallel forms

In [2], Blair and Goldberg showed that on a compact Sasakian manifold M2n+1,
there are no nonzero parallel p-forms for 1 ≤ p ≤ 2n. Dropping the compact-
ness and weakening the Sasakian conditions, we generalize the above result to
all K-contact manifolds.

Theorem 5.1. On a K-contact manifold M2n+1 with K-contact form η and
Reeb field Z, there are no nonzero parallel p-forms for 1 ≤ p ≤ 2n.

Proof. We first prove that a parallel 2p-form on a K-contact manifold must be
trivial for 1 ≤ p ≤ n. It will follow that parallel forms of odd degrees are also
trivial since Hodge’s star ∗μ is parallel whenever μ is parallel and it is known
that ∗ is an isomorphism.

To show that a parallel 2p-form μ is identically zero, consider an orthonor-
mal tangent frame {E1, . . . , E2n−1, Z} at a point P of M and let Y be an
arbitrary tangent vector at P . Extend the frame into a frame field along the
geodesic tangent to JY at P by parallel translation. Since by Proposition 4.1,
μ(. . . , Z) = 0, covariantly differentiating with respect to JY yields:

0 = JY μ(E1, . . . , E2p−1, Z) = μ(E1, , . . . , E2p−1,−J2Y )
= μ(E1, . . . , E2p−1, Y − η(Y )Z)
= μ(E1, . . . , E2p−1, Y )

Since Y was arbitrary, it follows that any parallel 2p-form μ is identically
zero. �

Remarks. The K-contact condition is necessary in Theorem 5.1. Indeed,
nonzero parallel 1-forms and 2-forms are known to exist on contact metric
structures that are not K-contact. For example, consider the standard flat
contact metric structure on the torus T

3 with coordinates θi, i = 1, 2, 3 and
contact form

cos θ3dθ1 + sin θ3dθ2.

The 1-forms

dθi, i = 1, 2, 3

and 2-forms

dθi ∧ dθj , i, j = 1, 2, 3

are parallel nontrivial. Observe that for i, j = 1, 2, 3,

dθi ∧ dθj

are parallel 2-forms which are not even basic, illustrating the necessity of the
K-contact condition in Proposition 4.1 also.

Parallel, nonzero 1-forms are also found on any flat, 3-dimensional contact
metric manifold. It has been shown in [4] that any closed, flat contact metric
3-manifold carries a nontrivial, parallel 1-form.
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For the case of degree 2 alone, non-existence of parallel nonzero 2-forms on
K-contact manifolds follows also from a result of Sharma in [6].

6. Contact metric holonomy

The discussion in this section should be seen as a complement to the Houston
Journal paper [4]. A Riemannian manifold (M, g) is said to be locally reducible
if every point in M has a neighborhood U such that

U = Q × N

is a metric product. In particular, each factor is a totally geodesic submani-
fold. A Riemannian manifold is reducible in this sense when for instance its
Riemannian holonomy representation is reducible. The tangent bundle TM ad-
mits an orthogonal decomposition as TM = TQ⊕TN . Now, suppose (M, g, η)
is a contact metric manifold and let J denote any compatible almost complex
structure on the contact bundle ker(η).

Lemma 6.1. With the above notations, none of the factor tangent subbundles
TQ or TN is J invariant.

Proof. Suppose TQ is J invariant, hence TN is also J invariant. It follows that
the Reeb field Z of η must be tangent to one of the factors, say Q. This in
turn implies that Q is at least 2-dimensional, since the contact sub-bundle is
non-integrable. For any vector field X tangent to N , and any vector field Y
tangent to Q, one has, since Q is totally geodesic:

0 = g(∇Y Z,X) = g(−JY − JhY,X) = g(hY, JX). (6)

It follows from (6) that the tangent sub-bundle TQ is h invariant and so is the
tangent sub-bundle TN .

We also have, due to the h invariance of TN :

g(∇XZ, Y ) = g(−JX − JhX, Y ) = 0. (7)

If W is any other vector tangent to N , then

g(−JX − JhX,W ) = g(∇XZ,W ) = −g(Z,∇XW ) = 0. (8)

The combination of identities (7) and (8) implies that

−JX − JhX = 0

or equivalently,

hJX = JX

for any X tangent to N . But this leads to a contradiction, as

hX = −hJ2X = JhJX = J2X = −X

for any X tangent to N . �



Vol. 107 (2016) Holonomy and contact geometry 133

Theorem 6.2. Let (M, g, η) be a contact metric, 3-dimensional manifold. Then
(M, g) is locally reducible if and only if (M, g) is flat.

Proof. Since every flat Riemannian manifold is locally reducible, we need only
to show that a locally reducible, 3-dimensional contact metric manifold is
flat. So suppose (M, g, η) is a 3-dimensional, locally reducible contact metric
manifold. Then locally, (M, g) is a Riemann product L × N , where L is 1-
dimensional and N is 2-dimensional. The Reeb field Z of η is not tangent to L
because the contact subbundle, which is orthogonal to Z is not integrable. We
will show that under the above condition, Z is actually tangent to the factor
N . Let X be any non-singular vector field tangent to N satisfying η(X) = 0.
Denote by J the almost complex structure compatible with η and g on the
contact subbundle. JX admits an orthogonal decomposition into a component
tangent to N and one tangent to L:

JX = (JX)N + (JX)L.

Applying J on both sides of the decomposition, one obtains:

−X = J(JX)N + J(JX)L.

Since J(JX)L is tangent to N , it follows that J(JX)N = −X − J(JX)L

is tangent to N ; hence, since TN is 2-dimensional and not J invariant, we
deduce that, almost everywhere, (JX)N = 0 and hence JX is tangent to L or
(JX)N = fZ for some function f on M . In either case, we deduce that the
Reeb field Z is tangent to N .

Claim. Let E be a unit vector field tangent to L. Then E is parallel.

Indeed,

g(∇ZE,E) = 0,

and since N is totally geodesic,

g(∇ZE, JE) = −g(E,∇ZJE) = 0.
g(∇ZE,Z) = −g(E,∇ZZ) = 0.

This shows that ∇ZE = 0.

Also ∇EE = 0 since L is totally geodesic 1-dimensional. It remains to show
that ∇JEE = 0 also. g(∇JEE,E) = −g(E,∇JEE) = 0 because E has con-
stant magnitude, g(∇JEE, JE) = −g(E,∇JEJE) = 0 and g(∇JEE,Z) =
−g(E,∇JEZ) = 0, both follow from the fact thatN is totally geodesic.

Another claim. The Lie bracket of Z and JE satisfies [Z, JE] = 0.

Indeed, since Z preserves the contact distribution and Z and JE are tangent
to N , one has [Z, JE] is tangent to N and therefore [Z, JE] = aJE for some
smooth function a on M .

In that case, on one hand:

dη([Z, JE], E) = dη(aJE,E) = 2ag(JE, JE) = 2a.
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On the other hand:

dη([Z, JE], E) = Zdη(JE,E) − LZdη(JE,E) − dη(JE, [Z,E])
= −2g(JE, J [Z,E]) = −2g(E, [Z,E])
= 2g(E,∇EZ) since E is parallel

= −2g(∇EE,Z) = 0 for the same reason as above.

It follows that 2a = 0 and [Z, JE] = 0.

We now complete the proof of the theorem by showing that each of the sectional
curvature K(Z,E), K(Z, JE) and K(E, JE) vanishes. We denote by R the
Riemann curvature tensor given by

R(X,Y )W = ∇X∇Y W − ∇Y ∇XW − ∇[X,Y ]W.

with these notations, one has K(Z,E) = g(R(Z,E)E,Z) = 0 and K(JE,E) =
g(R(JE,E)E, JE) = 0 both follow from the fact that E is parallel. Let us
compute K(Z, JE) = g(R(Z, JE)JE,Z). Using the fact that JE is parallel
along Z, and [Z, JE] = 0, we obtain:

g(R(Z, JE)JE,Z) = g(∇Z∇JEJE − ∇JE∇ZJE − ∇[Z,JE]JE,Z)
= g(∇Z∇JEJE,Z)
= Zg(∇JEJE,Z) = −Zg(JE,∇JEZ)
= −Zg(JE,∇ZJE) = 0. �
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