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Abstract. Separation theorems play a central role in the theory of Func-
tional Inequalities. The importance of Convex Geometry has led to the
study of convexity structures induced by Beckenbach families. The aim
of the present note is to replace recent investigations into the context
of an axiomatic setting, for which Beckenbach structures serve as mod-
els. Besides the alternative approach, some new results (whose classical
correspondences are well-known in Convex Geometry) are also presented.
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1. Introduction

Separation theorems play a crucial role in many fields of Analysis. They have
basic applications in Nonsmooth Analysis [9], Functional Analysis [10], and
Convex Analysis [27]. However, besides these applications, they can be inter-
esting on their own sight: Let us recall here the theorem of Baron, Matkowski,
and Nikodem [2], the main motivation of the forthcoming investigations.

Theorem. Let I ⊂ R be an interval. There exists a convex function separating
the given ones f, g : I → R if and only if, for all x, y ∈ I and λ ∈ [0, 1], the
next inequality holds:

f
(
λx + (1 − λ)y

) ≤ λg(x) + (1 − λ)g(y).

The sufficient part of the statement is a straightforward calculation, while
proving necessity is highly nontrivial: The classical Carathéodory Theorem
[8], one of the most important tool of Convex Geometry, has to be applied.

This research has been supported by the Hungarian Scientific Research Fund (OTKA)
Grants K–111651 and by the SROP-4.2.2.B-15/1/KONV-2015-0001 project. The project
has been supported by the European Union, co-financed by the European Social Fund.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-015-0276-0&domain=pdf


78 M. Bessenyei and B. Popovics J. Geom.

The Baron–Matkowski–Nikodem Theorem initiated a blooming research in
the last few decades. Its counterpart, the characterization of the existence
of affine separators was obtained by Nikodem and Wasowicz [23]. The proof
is based on the Helly Theorem [13], an other key tool of Convex Geometry.
This stream concluded in the complete solution of the separation problem via
interpolation families. For polynomial systems [24], the characterization is due
to Wasowicz [31], and Balaj and Wasowicz [1]. For Chebyshev systems [16],
analogue results were presented by Bessenyei and Páles [5]. The general case,
when the underlying system is a convex-closed Beckenbach family, was studied
and solved by Bessenyei and Szokol [7].

During the investigations, the importance of Convex Geometry has become
clear. This phenomenon motivated the pioneer work of Krzyszkowski (see [18,
19]), who introduced convexity structures using two parameter Beckenbach
families and extended the Carathéodory Theorem. As an application, he proved
convex and affine separation theorems, as well. This work was continued by
Páles and Nikodem [22]. A systematic study of convexity structures induced
by two parameter Beckenbach families is presented in [4].

The aim of the present note is to enlighten a more effective and more general
treatment of the topic. This treatment imposes no algebraic and analytic struc-
ture, and hence the usual tools do not work. Therefore, alternative approach
and new ideas have to be applied. Following the idea of [30], first we give a set-
theoretic view of convexity. Then, keeping certain parts of on Hilbert’s System
[14], an axiomatic method provides to establish the correspondences of some
fundamental results of Convex Geometry. Finally we show, that Beckenbach
families serve as models of our structure. Hence most of the former results are
immediate consequences of the results to be presented.

2. Hull operators and pretopologies

In this section, we give a brief overview of some basic set theoretical facts. We
start with presenting the most important properties of hull operators defined
below (compare with the paper by R̊adström [26]).

Definition. If X is a given set, then a mapping Φ: P(X) → P(X) is termed to
be a hull operator, if it is increasing, extensive and idempotent. That is,

(i) Φ(A) ⊂ Φ(B) whenever A ⊂ B and A,B ∈ P(X);
(ii) H ⊂ Φ(H) for all H ∈ P(X);
(iii) Φ2 = Φ, where Φ2 := Φ ◦ Φ.

The next lemma characterizes increasing mappings in term of superadditivity.
It shows that each hull operator, in particular, needs to be superadditive.

Lemma 1. A mapping Φ: P(X)→P(X) is increasing if and only if it is super-
additive; that is, for any H ⊂ P(X), we have
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⋃

H∈H

Φ(H) ⊂ Φ
(⋃

H
)
.

Furthermore, an increasing mapping is extensive if and only if singletons belong
to their image.

Proof. If Φ is increasing, then H ⊂ ∪H implies Φ(H) ⊂ Φ
(∪H)

. Therefore,
Φ is superadditive. The converse implication follows immediately choosing
H = {A,B\A}, where A ⊂ B. In case of extensive and increasing mappings,
singletons clearly belong to their image. The converse statement is a direct
consequence of superadditivity. �
It turns out that hull operators can be characterized via a representation for-
mula. This result shows the deeper reason why classical hulls are introduced in
the usual way. For the fixed points of a self-map Φ, we shall use the notation
Fix(Φ).

Lemma 2. A mapping Φ: P(X) → P(X) is a hull operator if and only if
Fix(Φ) �= ∅ and, for all H ⊂ X, we have

Φ(H) =
⋂

{K ∈ Fix(Φ) | H ⊂ K}.

Moreover, if F ∈ P(X) is arbitrary, then any hull operator Φ fulfills the inclu-
sion

⋃
{Φ(F ) ⊂ X | F ⊂ H, F ∈ F} ⊂ Φ(H).

Proof. For our convenience, let K := {K ∈ Fix(Φ) | H ⊂ K}. Assume first that
Φ is hull operator. Since Φ is extensive, X ⊂ Φ(X) holds. Thus X ∈ Fix(Φ).
If K ∈ K, then H ⊂ K holds; hence Φ(H) ⊂ Φ(K) = K follows. That
is, Φ(H) ⊂ ⋂

K. For the converse inclusion, observe that H ⊂ Φ(H) and
consequently Φ(H) ⊂ Φ2(H). These together imply Φ(H) ∈ K. Therefore,⋂
K ⊂ Φ(H).

For the converse implication, we shall prove that the representation formula
defines an increasing, extensive, and idempotent mapping. Take A,B ∈ P(X)
such that A ⊂ B, and define

A := {K ∈ Fix(Φ) | A ⊂ K}, B := {K ∈ Fix(Φ) | B ⊂ K}.

Then B ⊂ A and hence
⋂
A ⊂ ⋂

B, yielding Φ(A) ⊂ Φ(B). The property
H ⊂ Φ(H) is obvious. Finally, if K ∈ Fix(Φ) is such that H ⊂ K, then
Φ(H) ⊂ Φ(K) by monotonicity. On the other hand, if Φ(H) ⊂ K, then H ⊂ K
due to the extensiveness. Therefore,

{K ∈ Fix(Φ) | H ⊂ K} = {K ∈ Fix(Φ) | Φ(H) ⊂ K},

yielding Φ(H) = Φ2(H).

For the last statement, let L := {Φ(F ) ⊂ X | F ⊂ H, F ∈ F}. If K ∈ K

and F ∈ L, then F ⊂ K; by monotonicity, Φ(F ) ⊂ Φ(K) = K. This means
Φ(F ) ⊂ ⋂

K = Φ(H), yielding
⋃
L ⊂ Φ(H) as it was desired. �



80 M. Bessenyei and B. Popovics J. Geom.

A weaker version of Lemma 2 can be found in [4]. Note also that, in view of
the Tarski Fixed Point Theorem, an increasing mapping always has a fixed
point.

Those hull operators that possess finitely generated inner representations play
a distinguished role. The next lemma gives a sufficient condition to have this
property. To motivate it, assume that Φ is a hull operator and K ∈ Fix(Φ).
Then Φ({x, y}) ⊂ Φ(K) = K for all elements x, y of K. That is,

Fix(Φ) ⊂ {K ⊂ X | Φ({x, y}) ⊂ K, x, y ∈ K)}
remains true for any hull operator Φ. It turns out, that if the sets above
coincide, then Φ has a finitely generated inner representation.

Lemma 3. If Φ: P(X) → P(X) is nonempty valued, increasing and idempotent
mapping such that

Fix(Φ) = {K ⊂ X | Φ({x, y}) ⊂ K, x, y ∈ K)},

then

Φ(H) =
⋃

{Φ(F ) ⊂ X | F ⊂ H, card(F ) < ∞}.

Proof. Define L := {Φ(F ) ⊂ X | F ⊂ H, card(F ) < ∞}. Note that, under the
assumptions, singletons belong to Fix(Φ). In particular, Φ is necessarily a hull
operator, and H ⊂ ⋃

L always remains true. In view of the last statement
of Lemma 2, it suffices to show only the inclusion Φ(H) ⊂ ⋃

L. Let x, y ∈⋃
L. Then, there exist finite sets F (x) and F (y) such that x ∈ Φ(F (x)) and

y ∈ Φ(F (y)). Then, using monotonicity (or equivalently: superadditivity) and
idempotency, we arrive at

Φ({x, y}) ⊂ Φ
(
Φ(F (x)) ∪ Φ(F (y))

) ⊂ Φ
(
Φ(F (x) ∪ F (y))

)
= Φ

(
F (x) ∪ F (y)

)
.

Here F (x) ∪ F (y) is finite, providing Φ({x, y}) ⊂ ⋃
L. Therefore

⋃
L is such

that it belongs to Fix(Φ) and contains H. Hence in view of Lemma 2, we get
Φ(H) ⊂ ⋃

L, which was to proved. �
Finally, we formulate a variant of the classical Riesz lemma concerning com-
pactness. To do this, we shall need the concepts of pretopological notions.

Definition. Under a pretopology on a nonempty set X we mean a family of
P(X) containing the empty set and X. A set is called open if it belongs to the
pretopology; closed if its complement belongs to the pretopology. We say that
a set is compact, if its any open covering contains a finite open covering.

Lemma 4. Any closed and centered family in a pretopology that contains a
compact member has nonempty intersection.

Proof. Denote the family by F and assume to the contrary that
⋂
F = ∅. Then

the family H containing the complements of F fulfills X =
⋃
H according
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to the De Morgan identities. Therefore H is an open covering system for the
compact member F0. Hence

F0 ⊂ H1 ∪ · · · ∪ Hn

holds with suitable members H1, . . . , Hn of H. This implies F0 ⊂ (X\F1)
∪ · · · ∪ (X\Fn), where Fk stands for the complement of Hk. In other words,
F0 ∩ F1 ∩ · · · ∩ Fn = ∅, contradicting to the centered property of F. �

3. Basic axioms and their consequences

In order to introduce convexity in lack of algebraic manipulations, we use some
of the axioms of geometry proposed by Hilbert [14]. More precisely, we shall
need the axioms of incidence, the axioms of betweenness, and the axiom of
half-plane. For the Reader’s convenience, let us sketch here these axioms in
the nice and simplified way as it is presented in the book of Hartshorne [12].

Axioms of incidence and betweenness. Assume that X is a nonempty set,
whose elements are called points and we also consider certain subsets of X
whose elements are termed lines. Besides the usual relations of set theory, we
postulate a relation called betweenness among collinear points a, b, c abbrevi-
ated by (abc). We require that the next axioms are satisfied.

(i) Any two distinct points determine a unique line containing them.
(ii) Each line has at least two points.
(iii) There exist three noncollinear points (i.e., being not on the same line).
(iv) If (abc), then a, b, c are pairwise distinct and collinear; further, (cba).
(v) For distinct points a, b, there exists c such that (abc).
(vi) If (abc), then (acb) and (bac) do not hold.

For a line � determined by the distinct points a and b, we use the notation
� = �(a, b). Betweenness makes possible to introduce the notion of line segment
[a, b] spanned by the points a, b as follows. If a = b, then [a, b] := {a}; otherwise,

[a, b] := {t ∈ X | (atb)} ∪ {a, b}.

Once having segments, concepts of convexity can be defined in the next way.
To distinguish it from the classical setting and also to indicate the role of the
axioms above, we shall use the notation A-convexity.

Definition. We say that a set K ⊂ X is A-convex if [a, b] ⊂ K holds for all
a, b ∈ K. The A-convex hull of H ⊂ X is the intersection of those A-convex
sets that contain H. The A-convex hull of H is denoted by convA(H).

The following lemma subsumes the most important properties of A-convexity.
These properties are similar to the standard ones.

Lemma 5. Keeping the notation and axioms above,

(i) segments are A-convex sets;
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(ii) the intersection of A-convex sets is A-convex;
(iii) the union of nested A-convex sets is A-convex;
(iv) a set H is A-convex if and only if convA(H) = H;
(v) the mapping convA : P(X) → P(X) is a hull operator.

Proof. We concentrate only to the proof of last two assertions. For (iv), assume
first that H is A-convex. Then H ⊂ convA(H). For the converse inclusion, let
p ∈ convA(H). Then by definition, p belongs to every A-convex set containing
H; in particular, p ∈ H. That is,

H = convA(H).

Conversely, assume that convA(H) = H holds. Using assertion (ii), we get
that convA(H) is A-convex set which implies that H need to be A-convex, as
well.

For (v), observe that singletons belong to Fix(convA), therefore the mapping
convA is a hull operator due to its definition and Lemma 2. �
Further consequence of the axioms of incidence and betweenness that the oper-
ator convA has finitely generated inner representation, analogously to standard
convex hulls:

Lemma 6. If X satisfies the axioms of incidence and betweenness, and H ⊂ X
is a nonempty set, then

convA(H) =
⋃

{convA{p0, . . . , pn} | p0, . . . , pn ∈ H, n ∈ N}.

Proof. Assertion (iv) of Lemma 5 provides that Fix(convA) = {K ⊂ X |
convA{x, y} ⊂ K}. Thus Lemma 3 completes the proof. �
As Moore pointed out [20], Hilbert’s System in its original form is redundant.
Moreover, only one primitive notion, the notion of point is enough for estab-
lishing geometry. However, the axiom of half planes still remains a basic tool.
It will be important also for us to obtain more delicate results on A-convexity.

Axiom of half-planes. Let � be a line of X. Then there exists an A-convex
partition {H1,H2} of X\� such that [p1, p2]∩ � is nonempty whenever p1 ∈ H1

and p2 ∈ H2.

This axiom is crucial for the Pash and Peano properties below. These properties
provide the validity of drop representation, which is important in proving a
separation theorem via complementary convex sets.

Lemma 7. Assume that a, b, c are not collinear points of X, where X fulfills
the axioms of incidence, betweenness, and half-plane.

(i) If (byc) and (azy), then �(c, z) ∩ [a, b] is nonempty.
(ii) If (axb) and (byc), then [a, y] ∩ [c, x] is nonempty.

Proof. Due to the Half-plane axiom, there exists an A-convex partition {H1,H2}
of X\�(c, z) such that [h1, h2] ∩ �(c, z) is nonempty whenever h1 ∈ H1 and
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h2 ∈ H2. Since z ∈ [a, y]∩ �(c, z), then a ∈ H1 and b ∈ H2 or conversely, which
means that [a, b] ∩ �(c, z) is nonempty.

Similarly, due to the half-plane axiom, (axb) implies that �(c, x) ∩ [a, y] �= ∅
and (byc) follows that �(a, y) ∩ [c, x] �= ∅. On the other hand, [a, y] ⊂ �(a, y)
and [c, x] ⊂ �(c, x), hence �(a, y) ∩ �(c, x) is nonempty. Finally, using the fact
that two distinct lines can have at most one point in common, we get that the
unique member of the previous intersection belongs to both [a, y] and [c, x]. �
Lemma 8. Assume that X satisfies the axioms of incidence, betweenness, and
half-plane. If A ⊂ X is an A-convex set and p ∈ X, then

convA({p} ∪ A) = {[p, a] | a ∈ A}.

Proof. If x ∈ {[p, a] | a ∈ A} is arbitrary, then there exists a ∈ A such that
x ∈ [p, a]. If K is an A-convex set such that {p} ∪ A ⊂ K, then [p, a] ⊂ K
yielding x ∈ K. Therefore,

{[p, a] | a ∈ A} ⊂ convA({p} ∪ A).

For the converse inclusion, observe first that {p} ∪ A ⊂ {[p, a] | a ∈ A} holds
evidently. Therefore it suffices to prove that this latter set is A-convex. Fix
elements q1, q2 of {[p, a] | a ∈ A}. Then there exist a1, a2 ∈ A such that
q1 ∈ [p, a1] and q2 ∈ [p, a2] remain true. If q belongs to the segment [q1, q2],
then the Pash property guarantees that �(p, q)∩[a1, a2] = {r} and (pqr) is valid.
Since A is A-convex, therefore r ∈ [a1, a2] ⊂ A, yielding q ∈ {[p, a] | a ∈ A}.
In other words, the set {[p, a] | a ∈ A} is A-convex, indeed. Hence

convA({p} ∪ A) ⊂ {[p, a] | a ∈ A}
holds, completing proof. �

4. The main results

In what follows, some basic theorems of Convex Geometry and Convex Analy-
sis are discussed. The first one corresponds to the result of Kakutani [15] and
Stone [28]. This extension remains true in such geometries, where planes are
also postulated and possess the axiom of half-plane.

Theorem 1. Assume that X satisfies the axioms of incidence, betweenness, and
half-plane. If A,B ⊂ X are nonempty, disjoint, A-convex sets then there exist
A∗ and B∗ A-convex partition of X such that A ⊂ A∗ and B ⊂ B∗.

Proof. Let P be the set of all pairs (C,D) where C,D are nonempty disjoint
A-convex sets such that A ⊂ C and B ⊂ D hold. Clearly, (A,B) ∈ P showing
that P �= ∅. For pairs (C1,D1) and (C2,D2) of P, we write (C1,D1) � (C2,D2)
if and only if C1 ⊂ C2 and D1 ⊂ D2 remain true. It is immediate to see that
(P,�) is a partial ordered set. Assume that L = {(Cγ ,Dγ) | γ ∈ Γ} is a chain
in P. Define

C =
⋃

γ∈Γ

Cγ , D =
⋃

γ∈Γ

Dγ .
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Then, C and D are A-convex sets, since they are obtained as the nested union
of A-convex sets. Moreover, C and D are disjoint. Indeed, if p ∈ C ∩ D, then
there exist γ1, γ2 ∈ Γ such that p ∈ Cγ1 and p ∈ Dγ2 hold. The chain property
of L ensures that one of the relations below is satisfied:

(Cγ1 ,Dγ1) � (Cγ2 ,Dγ2); (Cγ2 ,Dγ2) � (Cγ1 ,Dγ1).

In the first case, Cγ1 ⊂ Cγ2 implies p ∈ Cγ2 . That is, p ∈ Cγ2 ∩ Dγ2 , contra-
dicting to the disjointness. The other case leads to contradiction in a similar
way. Therefore, (C,D) is an upper bound for L in P.

The Kuratowski–Zorn lemma guarantees that there exists a maximal element
(A∗, B∗) of P. We are going to verify that A∗, B∗ are proper choices. Assume
to the contrary that there exists some p ∈ X such that p �∈ A∗ ∪ B∗. Then
the maximality forces convA(A∗ ∪ {p}) ∩ B∗ �= ∅. In other words, taking into
consideration Lemma 8, there exist a∗ ∈ A∗ and b ∈ B∗ such that b ∈ [p, a∗].
Similarly, there exist b∗ ∈ B∗ and a ∈ A∗ such that a ∈ [p, b∗]. Then Lemma 7
gives [a, a∗] ∩ [b, b∗] �= ∅. Hence, using also the convexity, A∗ ∩ B∗ turns out to
be nonempty, which is a contradiction. �
The next result is an extension of the Carathéodory Theorem (see the original
paper [8]).

Theorem 2. Assume that X satisfies the axioms of incidence, betweenness, and
half-plane. If H ⊂ X is a nonempty set and p ∈ convA(H), then there exist
h0, h1, h2 ∈ H such that p ∈ convA{h0, h1, h2}.
Proof. If p ∈ convA(H), then there exist points p0, . . . , pn of H such that
p ∈ convA{p0, . . . , pn} in view of Lemma 6. We may assume that pk �∈
convA({p0, . . . , pn}\{pk}) holds for all indices k. Then, the vertices can be
labeled so that the line �(p0, pk) separate the sets {p0, . . . , pk−1} and {pk+1,
. . . , pn}, respectively. Then,

convA{p0, . . . , pn} =
n−1⋃

k=1

convA{p0, pk, pk+1}.

Therefore, p ∈ convA{p0, pk, pk+1} with some suitable index k, and the proof
is completed choosing h0 = p0, h1 = pk and h2 = pk+1. �
The last result contains two generalized versions of the Helly Theorem. Be-
sides the original paper [13], let us quote here [25] and [17] for alternative
approaches, and also [11] for interesting and important historical details. To
formulate the statement, we need a concept which plays the role of topology.

Definition. We say that p ∈ H is an A-interior point, if [p, x]∩(H\{p}) �= ∅ for
all x ∈ X. A subset of X is called to be A-open, if its any point is A-interior
point; A-closed, if its complement is A-open. We say that a set is A-compact,
if its any A-open covering contains a finite A-open covering.

Theorem 3. Assume that X satisfies the axioms of incidence, betweenness, and
half-plane. If K is a finite collection of A-convex sets of which three member
subcollections are intersecting, then

⋂
K �= ∅. Moreover, if K is a family of
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A-convex, A-closed sets whose three member subfamilies are intersecting, and
K contains an A-compact member, then

⋂
K �= ∅.

Proof. Assume first that K = {K0,K1,K2,K3}. Then, for all index k ∈
{0, 1, 2, 3}, there exist some element pk belonging to

⋂{Kj | j �= k}. If
p0, p1, p2, p3 are collinear, then we may assume that [p1, p2] is contained by
[p0, p3]. This yields

[p1, p2] ⊂ [p0, p3] ⊂ K1 ∩ K2.

That is, p1, p2 ∈ ⋂
K holds. Assume that there exist at least three noncollinear

points. Then two of the points p0, p1, p2, p3 determine a line � that separates
the other two points. For simplicity, assume that � = �(p0, p1). Define p =
�(p0, p1) ∩ �(p2, p3). If (p0, p1, p) holds, then p1 ∈ ⋂

K; otherwise (p0, p, p1)
implies p ∈ ⋂

K.

Assume that the statement remains true for any n-element collection of A-
convex sets whose three element subcollections are intersecting. Take a collec-
tion of (n + 1) sets {K0, . . . ,Kn} satisfying the requirements of the theorem
and consider the n-member family {K0∩K1,K2 . . . ,Kn}. The previous part of
the proof ensures that its three element subcollections are intersecting. There-
fore, the entire intersection is nonempty, as well.

For the second statement, note that K has the finite intersection property
due to the first part. Therefore, Lemma 4 completes the proof choosing the
pretopology as the A-open sets in X. �

5. Applications

Beckenbach families are continuous functions having unique interpolation prop-
erty. These families were introduced and studied by Beckenbach [3] and Popovi-
ciu [24]. One of the most important result concerning pointwise convergence of
Beckenbach functions is due to Tornheim [29]. Applying Beckenbach families,
the relation betweenness can be introduced in the next way.

Definition. A set B of real valued continuous functions defined on an interval
I is called a Beckenbach family if, for all points p1, p2 of I × R with distinct
first coordinates, there exists unique Beckenbach line ϕp0,p1 of B interpolating
the points.

Clearly, the set of affine functions form a Beckenbach family and induce the
notion of standard convexity. An other example is the line of the Moulton
plane [21]. This construction has a particular importance in Projective Geom-
etry, since it demonstrates that the Desargues property is independent on the
axioms of projective plane.
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Under the segment spanned by p0 = (x0, y0) and p1 = (x1, y1) we mean the
set [p0, p1] given by (distinguishing the cases x0 = x1 and x0 �= x1)

[p0, p1] := {(x, y) ∈ I × R | x0 = x = x1, min{y0, y1} ≤ y ≤ max{y0, y1}};
[p0, p1] := {(x, y) ∈ I × R | min{x0, x1} ≤ x ≤ max{x0, x1}, y = ϕp0,p1(x)}.

The next result is a direct consequence of the definition above. The details of
the proof are left to the Reader. To prove the half-plane property, one should
use the Bolzano Theorem.

Theorem 4. Let B be a Beckenbach family over an open interval I. If X =
I × R, lines are either (standard) vertical or Beckenbach lines, furthermore
betweenness is determined via segments, then the structure obtained is an A-
convex structure.

Using this theorem, direct and alternative proofs can be obtained for most of
the result which concern the Convex Geometry of Beckenbach structures. The
first corollary is a direct consequence of Theorem 1 and was presented first in
[22]. The second one appears first in the works of Krzyszkowski (see [18,19])
and, together with the third one, in [4].

Corollary 1. If B is a Beckenbach family on an open interval, A,B ⊂ X
are nonempty, disjoint, B-convex sets then there exist A∗ and B∗ B-convex
partition of X such that A ⊂ A∗ and B ⊂ B∗.

Corollary 2. If B is a Beckenbach family on an open interval, H ⊂ X is a
nonempty set and p ∈ convB(H), then there exist h0, h1, h2 ∈ H such that
p ∈ convB{h0, h1, h2}.
Corollary 3. If B is a Beckenbach family on an open interval, K is a finite col-
lection of B-convex sets of which three member subcollections are intersecting,
then

⋂
K �= ∅. Moreover, if K is a family of B-convex, closed sets whose three

member subfamilies are intersecting, and K contains a compact member, then⋂
K �= ∅.

As a final application, the motivating result of the investigations is revisited.
To formulate its extension to Beckenbach setting, we need the next concept of
generalized convexity [3].

Definition. Let B be a Beckenbach family on an interval I. A function h : I → R

is said to be convex with respect to B, if ϕ(t) ≥ h(t) holds on [x1, x2] for
all elements x1 < x2 of I, where ϕ ∈ B is determined by the interpolation
properties ϕ(x1) = h(x1) and ϕ(x2) = h(x2).

A generalization of the Baron–Matkowski–Nikodem Theorem [2] now reads as
follows. Its proof is based on Theorem 2 and can be found in [5,6] for linear
Beckenbach families; in [4,22] for the general case.

Corollary 4. Assume B is a Beckenbach family over a real interval I and
f, g : I → R are given functions. There exists a B-convex function h separating
f and g if and only if, for all elements x0 ≤ x1 ≤ x2 of I, we have the inequality
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f(x1) ≤ ϕ(x1), where ϕ ∈ B is defined by the properties ϕ(x0) = g(x0) and
ϕ(x2) = g(x2).
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