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Ordered metric geometry

Rolf Struve

Abstract. Metric geometry in the sense of Hjelmslev and Bachmann stud-
ies metric planes of a very general kind without any assumption about
order, continuity and the existence and uniqueness of joining lines. An
order structure can be defined in an additional step by introducing a
relation of betweenness which satisfies the axioms of order of Hilbert’s
Grundlagen der Geometrie, i.e., one-dimensional axioms which charac-
terize the linear order of collinear points and a single plane order axiom
which was proposed by Pasch. The Pasch axiom however is based on the
assumption that any two points have a unique joining line. This is not
necessarily satisfied by Cayley–Klein geometries (e.g. by Minkowskian
planes) and even in plane absolute geometry the Pasch axiom is not a
necessary condition for an ordering of the associated field of coordinates
(see Sect. 5). The aim of this article is to introduce an order structure
for the widest class of metric planes (without any assumption about the
existence of joining lines, free mobility or some form of a parallel axiom)
and to show that the correspondence between geometrical and algebraical
order structures, which is well-known in affine and projective geometry,
can be extended to plane absolute geometry. The article closes with a
discussion of the role of the Pasch axiom in ordered metric geometry.
An axiomatization of ordered metric planes in a first-order language is
provided in an Appendix.
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1. Introduction

Metric geometry in the sense of Hjelmslev [9,10] and Bachmann [1,2] is inde-
pendent of any assumption about order and continuity. A relation of order is
introduced in the literature in an additional step by means of an undefined
notion of betweenness which satisfies one-dimensional axioms (which charac-
terize the linear order of collinear points) and a single plane order axiom which
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was proposed by Pasch [19] and Hilbert [8] and is commonly referred to as the
Pasch axiom (see Pejas [20] and [21], Bachmann [1], Hessenberg and Diller [7],
Ewald [5]).

However, in the plane absolute geometry (in the sense of Bachmann [1]; we
call the models Bachmann planes) the Pasch axiom holds if and only if the
associated field of coordinates (a) is orderable and (b) induces a convex order
of the plane (i.e., the set of points of the plane is a convex subset of the set
of points of the associated ideal plane; see Pejas [21]). The smallest subplane
of the real Euclidean plane which is a Bachmann plane is a ‘natural’ example
of a metric plane with an orderable field of coordinates which does not satisfy
the Pasch axiom (see Sect. 5).

Moreover, the Pasch axiom is formulated on the basis of Hilbert’s plane ax-
ioms of incidence (the axioms I, 1–3 in [8]) which postulate the existence and
uniqueness of a joining line. These assumptions are satisfied by Bachmann
planes but not necessarily by Cayley–Klein geometries (see H. Struve and R.
Struve [23] and [24]). Galilean, Minkowskian, cominkowskian and coeuclidean
planes, for example, contain points which have more than one resp. no joining
line at all (see Bachmann [2]).

It is the aim of this article

(a) to show how an order relation can be introduced for the widest class of
metric geometries, which do not have to satisfy any additional axioms
such as free mobility or some form of a parallel axiom or assumptions
about the existence of joining lines;

(b) to show that the order of a Bachmann plane corresponds to an order
of the associated field of coordinates (which extends the correspondence
between geometrical and algebraical order structures, which is well-known
in affine and projective geometry,1 to plane absolute geometry);

(c) to discuss the role of the Pasch axiom in ordered metric geometry.

In Sect. 2 we define the axiomatic basis and introduce metric planes2 of a
very general kind where no assumptions are made about order or free mo-
bility and about the existence and uniqueness of joining lines. Plane metric
geometry in this sense is a common generalization of Hjelmslev’s Allgemeine
Kongruenzlehre [10] and the plane absolute geometry of Bachmann [1].

To describe the order structure of a metric plane we follow an idea of Sperner
[22] and call a metric plane orderable if every line is orderable and if every line
admits a partition into sides which is compatible with the linear order of lines
(see Definition 3.9).

Sperner [22]3 defines a partition into sides of a line g as a partition of the set of
points of the plane. We prefer to define a partition into sides of g as a partition

1See Karzel and Kroll [11] and Pambuccian [17].
2These planes are called in [2] non-elliptic Hjelmslev planes.
3cf. Ellers and Karzel [3, Ch. 6] and Karzel et al. [12].
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of the set of translations. This corresponds to the intuitive idea that the half-
planes of g correspond to sets of translations in ‘opposite directions’ (which
contain with two elements their product—if the product is a translation—but
with an element τ �= 1 not the inverse element τ−1).

In the group-theoretical approach of Hjelmslev and Bachmann this way is
preferable since the set T of translations of a metric plane has much more
group-theoretical structure than the set of points: T is a partial group4 (i.e.,
an invariant subset of a group G which contains the identity element of G
and with an element τ the inverse element τ−1) with an algebraical structure
which turns out to be very rich.

In an orderable metric plane the betweenness relation for collinear points sat-
isfies the 1-dimensional universal properties of linear order (see Pambuccian
[16] and [17]) and the order structure is compatible with the incidence and
metric of the underlying plane, i.e., the following additional properties hold:
The relation of betweenness for collinear points A,B,C is independent of the
choice of the joining line of A,B,C; lines which have two common points A
and B are incident with all points which lie between A and B (they have a
common segment); the relation of betweenness is invariant under orthogonal
projections; motions preserve the relation of betweenness.

An orderable metric plane does not necessarily satisfy the Pasch axiom, but
a weak form of the Pasch axiom holds (if A,B,C are points which are not
incident with a line g and if A,B are on different sides of g then A,C or B,C
lie on different sides of g).

In Sect. 4 we discuss the role of the full Pasch axiom in ordered metric geom-
etry. It is shown that in a metric plane the Pasch axiom holds if and only if
two axioms hold, namely the axiom of the existence of a joining line and an
axiom that states that lines a, g have no point of intersection if and only if all
points of a lie on the same side of g.

In Sect. 5 we extend the relationship between ordered geometrical structures
and ordered algebraical structures to plane absolute geometry and show that
the ordering of a Bachmann plane corresponds to an ordering of the associated
field of coordinates.

We prove that the ideal plane of an ordered Bachmann plane is an ordered
affine plane and this implies—as is well-known—that the field of coordinates
is orderable. Our proof method provides a substitute for the consideration of
germs of orderings (see Hessenberg and Diller [7, §61]) and for the construction
of a singular pseudo-metric of a metric plane (see Kunze [13]).

We close Sect. 5 by an example of a Pasch-free orderable Bachmann plane and
by further examples of Cayley–Klein geometries which are orderable if and
only if their field of coordinates is orderable.

4This term was coined by Birkhoff [15, p. 18].



554 R. Struve J. Geom.

In an Appendix we axiomatize ordered metric planes in a first-order language.
By this we do not claim that our axiom system is simple or preferable to
its competitors, but simply that the theory can be expressed in a first-order
language. For reasons of simplicity we consider planes with the property that
any pair of distinct points has a unique joining line (Bachmann planes).

The article generalizes the results of [25]—where singular5 metric planes were
considered—to include the non-singular case (all definitions and theorems hold
for singular and non-singular planes). We refer to proofs in [25] whenever
possible, i.e., if no modifications are necessary since the assumption that the
underlying metric plane is singular is not used.

2. Metric geometry

Hjelmslev [9,10], Bachmann [1] et. al. showed that metric geometry can be
formulated in the group of motions and that the calculus of reflections allows
it to axiomatize and to coordinatize the classical Euclidean and non-Euclidean
geometries over fields of characteristic �= 2.

We follow this approach and choose as starting point of our investigations
the group-theoretic axiom system of Bachmann [2] for plane metric geometry
which is a common generalization of Hjelmslev’s Allgemeine Kongruenzlehre
[10] and the plane absolute geometry treated in Bachmann [1]. No assumptions
are made about order or free mobility and about the existence and uniqueness
of joining lines.

Basic assumption Let G be a group which is generated by an invariant set S
of involutory elements.

Notation The elements of S will be denoted by lower case latin letters. The
set of involutory elements of S2 will be denoted by P and their elements by
upper case letters A,B, . . . The ‘stroke relation’ α | β is an abbreviation for
the statement that α, β and αβ are involutory elements. The statement α | δ
and β | δ is abbreviated by α, β | δ.

Axiom A1. For A, b there exists c with A, b | c.

Axiom A2. If A, b | c, d then c = d.

Axiom A3. If a, b, c | e then abc ∈ S.

Axiom A4. If a, b, c | E then abc ∈ S.

Axiom X. There exist a, b with a | b.

The axiom system is satisfied by the group G of motions of Euclidean, hyper-
bolic, Galilean or Minkowskian planes and of other classical geometries (see
[1] and [2]), with the set S of line-reflections and the set P of point-reflections

5A metric plane is called singular if the translations form a group (or equivalently if in any
quadrilateral with three right angles the fourth angle is a right one).
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and the stroke relation which describes the orthogonality of lines (if restricted
to S × S) and the incidence of points and lines (if restricted to S × P resp.
P × S).

We do not consider elliptic planes (see [2, §1.7]) since in this special case an
order relation on a set of collinear points is a cyclic order and not a linear one
(cp. Pambuccian [17, section 2.5]).

According to Axiom A1 and Axiom A2 there is a unique perpendicular from
a point to a line and according to Axiom A3 and Axiom A4 the theorem of
three reflections holds: If three lines have a common point or a common per-
pendicular, then the product of the reflections in these lines is a line reflection.

We call the geometrical structure described by this axiom system a metric
plane. In a metric plane there are points, lines, motions and relations such
as incidence, orthogonality etc. defined which satisfy the axioms given above.
In the group-theoretical terminology a pair (G,S) which satisfies the basic
assumption and the axioms A1, A2, A3, A4 and X is called a (non-elliptic)
Hjelmslev group.

A metric plane can contain points with more than one joining line. A quadruple
(A,B, c, d) with A,B | c, d and A �= B and c �= d is called a double incidence.
The metric plane is called a Bachmann plane if the axioms A1 and A2 are
replaced by the existence and uniqueness of a joining line (For A,B with A �= B
there exists a unique element c with A,B | c) and if there exist three lines a, b, c
in a general position (There exist a, b, c such that a |b and neither a |c nor b |c
nor ab |c). The pair (G,S) is called a (non-elliptic) Bachmann group.

A product Ab with A ∈ P and b ∈ S is called a glide reflection. If A, b are not
incident then Ab has a unique fixed line (the perpendicular from A to b) which
is called the axis of the glide reflection. Every product abc with a, b, c ∈ S is a
glide reflection (see Bachmann [2, §3.2]).

The products AB with A,B ∈ P are called translations. According to Axiom
A3, the set Tg = {AB : A,B | g} of translations along a line g forms an abelian
group. If the set T = {AB : A,B ∈ P} of all translations contains with two
translations their product then (T, ·) is a group and (G,S) is called singular.

In the general case the product of two translations need not to be a translation
and (T, ·) is a substructure of G with a partially defined binary associative
operation (the restriction of the group operation of G to T × T ). The set T is
an invariant subset of G which contains the identity element 1 of G and with
a translation AB the inverse element BA.

Birkhoff introduced the concept of a partial algebra (to study subsets of uni-
versal algebras rather than subalgebras) and coined the term of a partial group
[15, p. 18].

Definition 2.1. Let T be a subset of a group G which contains the identity
element 1 of G and with an element α the inverse element α−1. Then (T, ∗) with
the restriction ∗ of the group operation of G to T ×T is called a partial group.
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In this article a partial group T always denotes the partial group of translations
of a Hjelmslev group (G,S). The next definition generalizes a notion of the
theory of ordered groups (see Blyth [4] or Fuchs [6]).

Definition 2.2. A subset C of the partial group T of translations is called a
cone of T if the following properties hold:

(1) If α, β ∈ C and αβ ∈ T then αβ ∈ C.
(2) If α ∈ C and α �= 1 then α−1 /∈ C.
(3) 1 ∈ C.

If the set T of translations is a group then any two translations commute and
a cone of T is the positive cone of a partial ordering of the abelian group T .

If C+ and C− are cones of a partial group T with C+ ∩ C− = {1} and
C+ ∪ C− = T , then we say that T = C+ ∪ C− is a partition into cones. If X
is a subset of a group G then we shall use the notation X−1 = {α−1 : α ∈ X}.

Lemma 2.3. If T = C+ ∪ C− is a partition into cones of a partial group T
then C+ and C− are inverse cones, i.e., C+ = (C−)−1.

Proof. If T = C+ ∪ C− is a partition into cones then {α−1 : α ∈ C+} ⊆ C−

and {α−1 : α ∈ C−} ⊆ C+ (since C+ and C− contain no invertible elements
�= 1) and hence C+ = (C−)−1. �

3. Ordered metric planes

In H. Struve and R. Struve [25] it is shown that the order structure of a singular
metric plane corresponds to an order structure of the group of translations of
the plane. We generalize this approach to include metric planes which are
non-singular.

We follow the lines of argumentation of [25]. Most theorems of this section
are proved for the singular case in [25, Section 3]. We refer to proofs in [25]
whenever possible, i.e., if no modifications are necessary since the assumption
that the underlying metric plane is singular is not used.

For the reader’s convenience we reproduce the following definitions.

Definition 3.1. A line g of a metric plane is called orderable if the group Tg of
translations along g can be linearly ordered, i.e. if Tg admits a partition into
cones.

Let g be an orderable line and Tg = T+
g ∪ T−

g the associated partition into
cones of the group of translations along g.

Definition 3.2. Let O be a point of an orderable line g. The set of points
L+

g = {A : OA ∈ T+
g and A �= O} and L−

g = {A : OA ∈ T−
g and A �= O} are

called the halflines of g with origin O.
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Definition 3.3. If A,B,C are points of g then B lies between A and C if
AB,BC ∈ T+

g or AB,BC ∈ T−
g . If B lies between A and C we write (A.B.C)g

or just (A.B.C) if it is obvious which line g is considered.

Since 1 ∈ T+
g and 1 ∈ T−

g the points A,B,C are not supposed to be distinct.
If A = B or B = C then (A.B.C)g. We refer to the variant that A,B,C are
assumed to be distinct points as strict betweenness (cp. Pambuccian [17]).

A partition Tg = T+
g ∪ T−

g induces two dual binary order relations on g which
can be defined for points A,B of g by A ≤ B if and only if AB ∈ T+

g and
A ≥ B if and only if AB ∈ T−

g .

Given three distinct points on g one and only one of them lies between the
other two and the 1-dimensional universal properties of linear order hold (see
[25, Section 3.2]).

Remark on a betweenness relation for points without a joining line. Defini-
tion 3.3 can be generalized. We call a set P of points (linearly) orderable if
the associated set {AB : A,B ∈ P} of translations generates a group T of
translations which is linearly orderable (i.e., T admits a partition into cones
T 1 and T 2). If T ∩ S2 = {1} then points A,B,C with AB,BC ∈ T have no
joining line (see [2, Lemma 3.9]) but a betweenness relation can be defined by
(A.B.C) if and only if AB,BC ∈ T 1 or AB,BC ∈ T 2. For an example we
refer to an ideal line x of a Minkowskian plane (see [25, Section 4]) which has
the property that the set of translations along x forms an abelian group Tx

with Tx ∩ S2 = {1}.

In an ordered metric plane the halfplanes of a line g correspond to sets of
translations in ‘opposite directions’ which contain with two elements their
product (if the product is a translation) but with an element τ �= 1 not the
inverse element τ−1 (i.e., the sets of translations are cones).

Definition 3.4. A line g admits a partition into sides if there exist cones C+
g

and C−
g of the partial group T of translations of the metric plane such that

T = Tg ∪ C+
g ∪ C−

g and C+
g ∩ C−

g = Tg ∩ C+
g = Tg ∩ C−

g = {1}.

It is easily seen that C+
g and C−

g are inverse cones, i.e., C+
g = (C−

g )−1

Theorem 3.5. Let T = Tg ∪ C+
g ∪ C−

g be a partition into sides of a line g and
O,Q two different points of g and A �= O,Q. Then OA ∈ C+

g if and only if
QA ∈ C+

g and OA ∈ C−
g if and only if QA ∈ C−

g .

Proof. See H. Struve and R. Struve [25, Theorem 3.12]. �
Theorem 3.5 allows the definition of the sides of a line g.

Definition 3.6. Let g be a line which admits a partition T = Tg ∪ C+
g ∪ C−

g

into sides.

(a) The set of points H+
g = {A : OA ∈ C+

g and O | g and A �= O} and
H−

g = {A : OA ∈ C−
g and O |g and A �= O} are called the sides of g (or

the halfplanes determined by g).
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(b) The closed halfplanes are the sets of points H̄+
g = H+

g ∪ Pg and H̄−
g =

H−
g ∪ Pg (if Pg denotes the set of points of g).

(c) If A,B ∈ H+
g or A,B ∈ H−

g we say that A,B lie on the same side of g
which we denote by g � A,B.

According to the next theorem the reflection in a line g and the reflection in
a point of g interchange the sides of g.

Theorem 3.7. Let T = Tg ∪ C+
g ∪ C−

g be a partition into sides of a line g and
O |g and h |O, g. Then the following holds:

(a) Let τ = OA and τ �= 1. If τ ∈ C+
g and τ ′ ∈ Tg then ττ ′ ∈ C+

g .
(b) If OA ∈ C+

g then (OA)O ∈ C−
g and (OA)g ∈ C−

g and (OA)h ∈ C+
g .

Proof. (a) Let OA ∈ C+
g with A �= O and OQ ∈ Tg with O,Q |g. Then OAO =

AO = (OA)−1 ∈ C−
g (since C+

g and C−
g are inverse cones) and QAO ∈ C−

g

(according to Theorem 3.5). Hence OA · OQ = AOQ = (QAO)−1 ∈ C+
g (since

C+
g and C−

g are inverse cones).

(b) See H. Struve and R. Struve [25, Theorem 3.13, (b)]. �
The next theorem summarizes some properties of the relation g � A,B.

Theorem 3.8. Let g be a line which admits a partition into sides. Then the
following holds:

(a) If g � A,B then A,B are not incident with g.
(b) The relation � is an equivalence relation on the set of points which are

not incident with g.
(c) If A,B are points of a line h which has a common perpendicular with g

and if h �= g then g � A,B.

Proof. (a) and (b) are immediate consequences of Definition 3.6.

(c) Let g and h be two distinct lines with a common perpendicular e and
E |e, h and O |e, g and OE ∈ C+

g . It is sufficient to show that A |h with A �= E

implies g � A,E, i.e., OA ∈ C+
g .

We consider the cases EA ∈ Tg and EA ∈ C+
g and EA ∈ C−

g . If EA ∈ Tg then
OA = OE · EA ∈ C+

g according to Theorem 3.7, (a) and hence g � A,E.

If EA ∈ C+
g then OA = OE · EA ∈ C+

g (since a cone contains with two
elements their product) and hence g � A,E.

If EA ∈ C−
g then AE ∈ C+

g and OE · AE = OAE ∈ C+
g and (OAE)e ∈ C+

g

(according to Theorem 3.7, (b)). Hence (OAE)e = Oe · AEe = O · Ah = OA ∈
C+

g which proves g � A,E. �
A line g splits the set of points, which are not incident with g, into two disjoint
classes (the halfplanes determined by g). Hence the following weak form of the
Pasch axiom holds:
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(�) Weak Pasch axiom Let A,B,C be points which are not incident with a
line g which admits a partition into sides. If A,B are on different sides
of g then A,C or B,C lie on different sides of g.

We call the partition into sides of a line g and the linear order of a line a
compatible if a closed halfplane of g which contains one point of a halfline L+

a

contains all points of L+
a . This is according to Definition 3.2 and Definition 3.6

equivalent with the following condition:

(*) If T+
a ∩ C+

g �= {1} then T+
a ∩ C−

g = {1}, i.e., T+
a ⊆ C+

g ∪ Tg.

Please note that (*) is equivalent with the contraposition: If T+
a ∩ C−

g �= {1}
then T+

a ∩ C+
g = {1}, i.e., T+

a ⊆ C−
g ∪ Tg. Since T+

a and T−
a resp. C+

g and
C−

g are inverse cones T+
a ∩ C+

g �= {1} implies T−
a ∩ C−

g �= {1} and hence
T+

a ⊆ C+
g ∪ Tg implies T−

a ⊆ C−
g ∪ Tg.

Definition 3.9. A metric plane is called orderable if the following conditions
hold:

(1) Every line is orderable.
(2) Every line admits a partition into sides.
(3) For any two lines a and g, the linear order of a is compatible with the

partition into sides of g.

We now show that the order structure of a metric plane is compatible with the
incidence structure and start with the theorem that the relation of betweenness
for collinear points A,B,C is independent of the choice of the joining line of
A,B,C. This justifies the notation (A.B.C) if B lies between A and C.

Theorem 3.10. If A,B,C |g, h and (A.B.C)g then (A.B.C)h.

Proof. See H. Struve and R. Struve [25, Theorem 3.15]. �
Lines which have two common points A and B are incident with all points
which lie between A and B, i.e., they have a common segment.

Theorem 3.11. Let A,B,C |g and (A.B.C). If A,C |h then B |h.

Proof. See H. Struve and R. Struve [25, Theorem 3.16]. �
The next two theorems describe the relationship between the betweenness
relation and the partition into sides of lines of the metric plane.

Theorem 3.12. Let A,B,C be collinear points and AB,BC /∈ Tg. Then (A.B.C)
if and only if AB,BC ∈ C+

g or AB,BC ∈ C−
g .

Proof. See H. Struve and R. Struve [25, Theorem 3.17]. �
Theorem 3.13. Let A,B,C be three distinct points of a line a and g | B and
g � A,C. Then (A.B.C) holds if and only if A, C lie on different sides of g.

Proof. See H. Struve and R. Struve [25, Theorem 3.18]. �
A consequence of the last theorem is that the betweenness relation for collinear
points can as well be introduced by the relation ‘g � A,B’.
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If A,B,C are three different points of g then B lies between A and C if and
only if A,C do not lie on the same side of any line through B.

Next, we show that the relation of betweenness is compatible with the metric
of the plane.

Theorem 3.14. The relation of betweenness is invariant under orthogonal pro-
jections.

Proof. See H. Struve and R. Struve [25, Theorem 3.19]. �
Conversely the following theorem holds:

Theorem 3.15. Let A,B,C be three distinct points of a line g and A′, B′, C ′ the
feet of perpendiculars from A,B,C to a line h. If A′, B′, C ′ are three distinct
points with (A′.B′.C ′) then (A.B.C).

Proof. See H. Struve and R. Struve [25, Theorem 3.20]. �
A line a of a metric plane may have several common points with lines b, c with
b | c (see Bachmann [2, § 5.6]). In this case a is called a winding line. This
phenomenon cannot occur if the metric plane is orderable.

Theorem 3.16. There are no winding lines.

Proof. See H. Struve and R. Struve [25, Theorem 3.21]. �
Theorem 3.16 is used as an additional axiom—called the ’grid-axiom’—by
Hjelmslev [10, 3. Mitt. 11] and Bachmann [2, § 11.6]. In [2] the relationship
between this axiom and the existence of rotations is studied. We now prove
that the grid-axiom is equivalent to a statement about translations. This equiv-
alence is essential for the generalization of the singular case to the non-singular
one.

Theorem 3.17. Let (G,S) be a Hjelmslev group. Then the following properties
are equivalent:

(a) There are no winding lines.
(b) If a, b, g are lines with a |b then Ta ∩ Tg = {1} or Tb ∩ Tg = {1}.

Proof. (b) ⇒ (a). We show the contraposition. Let g be a line which has several
common points with lines a, b with a | b. If A,B,O are distinct points with
O = ab and A |a and B |b and A,B,O |g then AO ∈ Ta ∩Tg and OB ∈ Tb ∩Tg

which proves Ta ∩ Tg �= {1} and Tb ∩ Tg �= {1}.

(a) ⇒ (b). We show the contraposition. Let a, b be lines with a |b and O = ab.
Suppose g is a line such that Ta ∩Tg �= {1} and Tb ∩Tg �= {1}. Then there exist
points U, V,X, Y with U �= V and X �= Y and UV ∈ Ta∩Tg and XY ∈ Tb∩Tg.
Hence aUV = a and bXY = b. According to Bachmann [2, § 10.1, (3)] there
exist points A′, B′, C ′,D′ with A′, B′ | a and A′B′ = UV and C ′,D′ | b and
C ′D′ = XY .

Let A = A′B′O and B = OC ′D′ (Axiom A3 of a Hjelmslev group implies
that A,B are points of a resp. b). Then it is A′B′ = AO and C ′D′ = OB. Let
c, d, e be the lines through A,B resp. O which are perpendicular to g.
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Since g is a fixed line of the translations AO and OB there exist joining lines
a′ |O,A and b′ |O,B with Aa′, Oa′, Ob′, Bb′ |g, i.e., Aa′ = c and Bb′ = d and
Oa′ = e and Ob′ = e (according to Bachmann [2, § 10.1, (6)]). Hence Oa′ = Ob′

and a′ = b′ and A,B,O |a′. This shows that a′ is a winding line. �
We note that the proof of Theorem 3.17 does not depend in any way on the
orderability of the Hjelmslev group.

Theorem 3.18. Motions preserve the relation of betweenness.

Proof. Let A,B,C be three different points of a line g with (A.B.C). Since the
group G is generated by the set S of line reflections, it is sufficient to prove
that (Ah.Bh.Ch) holds for every h ∈ S. Let a, b resp. c be the perpendiculars
from A,B,C to h.

Since c | h it is Tg ∩ Tc = {1} or Tg ∩ Th = {1} (according to the Theo-
rems 3.16 and 3.17). If AB,BC /∈ Tc (case 1) we can assume AB,BC ∈ C+

c

(see Theorem 3.12). Hence AhBh, BhCh ∈ C+
c and (Ah.Bh.Ch) (according to

the Theorems 3.7, (b) and 3.12).

If AB,BC /∈ Th (case 2) we can assume AB,BC ∈ C+
h (see Theorem 3.12).

Hence AhBh, BhCh ∈ C−
h and (Ah.Bh.Ch) (according to the Theorems 3.7,

(b) and 3.12). �

3.1. Metric planes without double incidences

In this section we consider orderable metric planes which contain no points
which have more than one joining line.

Let g and h be lines which admit partitions into sides T = Tg ∪ C+
g ∪ C−

g and
T = Th ∪C+

h ∪C−
h . The partition into sides of g induces a partition into cones

Ta = (Ta ∩ C+
g ) ∪ (Ta ∩ C−

g ) of the group of translations along a line a with
a �= g and hence a linear order of the group Ta.

We call the partitions into sides of g and of h compatible, if the following
condition holds:

(†) Let σ, τ be translations along a. If σ, τ ∈ C+
g and σ ∈ C+

h then τ ∈ C+
h .

According to (†) the partitions into sides of g and h induce the same linear
order on any line a which is distinct from g and h. If the metric plane has no
points with more than one joining line then condition (†) is equivalent with
(*) of Sect. 3. Hence the following theorem holds.

Theorem 3.19. A metric plane without double incidences is orderable if and
only if

(1) Every line admits a partition into sides.
(2) The partition into sides of any two lines g and h are compatible, i.e. they

induce the same linear order on any line a with a �= g, h.

The relation g � A,B has the following further properties (i) and (ii) if there
are no points with more than one joining line. For a proof we can refer to [25].



562 R. Struve J. Geom.

(i) Let A,B,C | k and B �= C and A | a and B | b and C | c and b, c �= k.
Then a � B,C if and only if either b � A,C or c � A,B.

(ii) If A,B,C | k and A,B �= C and g, h | C and A,B � g, h then g � A,B if
and only if h � A,B.

The properties (i) and (ii) were used as axioms in Karzel et al. [12, § 13]. The
statement (ii) is the so-called Geradenrelation (see Sperner [22, § 3]).

We close this section with a theorem which is well known in orderable affine
planes (a projection along lines through a point O preserves the betweenness
relation on ‘parallel’ lines, i.e., on lines which have a common perpendicular
through O).

Theorem 3.20. Let g and g′ be lines with a common perpendicular k and O a
point on k which is not incident with g and g′. If D,E, F are points of g and
D′, E′, F ′ points of g′ and d, e, f lines through O with d | D,D′ and e | E,E′

and f |F, F ′ then are equivalent (D.E.F ) and (D′.E′.F ′).

Proof. Let D,E, F,D′, E′, F ′, O and d, e, f, g, g′, k be lines with the properties
of the theorem and h the line with h |O, k. Then h � D,E, F and h � D′, E′, F ′

according to Theorem 3.8, (c). Since the reflection in O interchanges the sides
of h (according to Theorem 3.7, (b)) and preserves the betweenness relation,
we can assume that all points D,E, F,D′, E′, F ′ lie on the same side of h and
that (O,D,D′) and (O,E,E′) and (O,F, F ′) hold.

Let T = Te ∪ C+
e ∪ C−

e be the partition into sides of e. Since (D.E.F ) we can
assume ED ∈ C+

e and EF ∈ C−
e . For the proof of (D′.E′.F ′) it is sufficient to

show E′D′ ∈ C+
e and E′F ′ ∈ C−

e .

The points D′, E′, F ′ of g′ lie on the same side of g (since k is a common
perpendicular of g and g′). If T = Tg ∪ C+

g ∪ C−
g is the partition into sides of

g then we can assume DD′, EE′, FF ′ ∈ C+
g .

(O,D,D′) and D | g imply that O and D′ lie on different sides of g, i.e.,
DO,EO,FO ∈ C−

g and hence OD,OE,OF ∈ C+
g and OD′, OE′, OF ′ ∈ C+

g

(since OD′ = OD · DD′).

Since ED ∈ C+
e and E,O | e it is OD ∈ C+

e and since the partitions into
sides of e and g are compatible it is OD,DD′, OD′ ∈ C+

e according to (†). By
Theorem 3.5 the statement OD′ ∈ C+

e implies E′D′ ∈ C+
e .

An analogical argument shows E′F ′ ∈ C−
e . This proves the theorem. �

4. The Pasch axiom in ordered metric geometry

The Pasch axiom was formulated by Hilbert [8] under the assumption that
any two distinct points are incident with a unique line. This assumption does
not necessarily hold in metric planes. Hence we have to formulate the Pasch
axiom in a more detailed way (which is equivalent with Hilbert’s formulation
if any two points have a unique joining line).
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Pasch axiom Let A,B,C be three non-collinear points and g a line which is
not incident with A,B or C. If g is incident with a point X on a joining line
of A,B, which lies between A and B, then g is incident either with a point Y
on a joining line of B,C which lies between B and C or with a point Z on a
joining line of A,C which lies between A and C.

We want to characterize the ordered metric planes which satisfy the Pasch
axiom. Since the weak Pasch axiom (see Sect. 3) holds in every ordered metric
plane we ask—in other words—for the missing link between the weak and the
full Pasch axiom. To answer this question we introduce the following axioms.

Axiom A1*. For A,B there exists c with A,B | c.

Definition 4.1. We say that a line a lies on a side of a line g (which we denote
by g � a) if all points of a lie on the same side of g.

Axiom L. Lines a, g have no point of intersection if and only if a � g.

According to Axiom A1* any two points have a joining line. According to
Axiom L two points A and B lie on different sides of a line g if and only if A
and B have a joining line which intersects g.

Theorem 4.2. The Pasch axiom holds in an orderable metric plane if and only
if Axiom A1* and Axiom L hold.

Proof. See H. Struve and R. Struve [25, Theorem 5.3]. �
The Pasch axiom implies the existence but not the uniqueness of a joining
line (the real Galilean plane contains points with more than one joining line
and the order of the field of real numbers induces an order of the metric plane
which satisfies the Pasch axiom; see [25, Section 4]).

5. Coordinatization of ordered metric planes

In the preceding section we defined the concept of an ordered metric plane.
We now show that the order of the geometrical structure corresponds to an
order of the associated algebraic structure (the field of coordinates).

Bachmann planes. Let (G,S) be a (non-elliptic) Bachmann plane, i.e., a metric
plane with the property that any two points have a unique joining line.

According to the main theorem of [1, Sections 6 and 11] a Bachmann plane
can be extended to a pappian projective plane (the projective ideal plane) by
introducing ideal points and ideal lines. The ideal points are the pencils of lines
S(ab) = {c : abc ∈ S} with a �= b. The set of lines through a point E is called
a proper pencil (or a proper ideal point). The proper pencils correspond in a
one-to-one way to the points of the Bachmann plane.

Let O be a fixed point. Ideal lines are defined by means of contractions with
center O (see [1, p. 307]). A contraction is a mapping from S into S which is
induced by the product of two semi-rotations χuv and χvu about O (with lines
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u, v |O and u � v) which map a line a on the axis of the glide reflections auv
resp. avu.

For contractions the following holds (see [1, §6,2]):

(†) A contraction maps a proper pencil into a proper pencil.
(‡) For any improper pencil which is not a pencil of perpendiculars of a

line through O there exists a contraction with center O which takes the
improper pencil into a proper one.

Ideal lines are sets of ideal points. A set of pencils that can be transformed by
a contraction with center O into the set of pencils which have a common line
g is called an ideal line. An ideal line whose pencils have a common line a is a
proper (ideal) line.

The set of pencils of perpendiculars for a line through O is called the line at
infinity of the projective ideal plane. We denote the affine specialization with
respect to this line at infinity by A. A non-elliptic Bachmann plane can be
represented as a subplane of A which contains with every point all lines of A
which are incident with this point.

A contraction with center O of the Bachmann plane induces a dilatation with
center O of A, i.e., a collineation with fixed point O which maps every line of
A onto a parallel line (see Bachmann [1, p. 307] and [3, p. 79]). We denote the
group of dilatations of A which is generated by the set of contractions with
center O of the Bachmann plane by D(O). The group D(O) is a subgroup of
the full group of dilatations of A with center O. According to (†) and (‡) any
finite set of collinear points of A can be mapped by an element of D(O) onto
a set of collinear points of the Bachmann plane.

We now show that the ideal affine plane of an orderable Bachmann plane is
orderable and this implies—as is well-known—that the field of coordinates is
orderable.

We start with an extension of the notion of beetweenness of an ordered Bach-
mann plane to the affine ideal plane A and define that a point B of A lies
between points A and C of A (which we denote by [A.B.C]) if A,B,C are
collinear and if there exists a dilatation of D(O) which maps A,B,C into
points A′, B′, C ′ of the Bachmann plane with (A′.B′.C ′).

We show that this definition does not depend on the choice of the dilata-
tion of D(O): Let A,B,C be points of A and δ, κ ∈ D(O) dilatations which
map A,B,C onto collinear points Aδ,Bδ,Cδ resp. Aκ,Bκ,Cκ of an orderable
Bachmann plane. The points Aδ,Bδ,Cδ are mapped by the dilatation δ−1κ
of A onto the points Aκ,Bκ resp. Cκ. Hence (Aδ.Bδ.Cδ) is equivalent with
(Aκ.Bκ.Cκ) (according to Theorem 3.20). This shows that the betweenness
relation on A is well defined.

Since dilatations κ and κ−1 of A with center O are collineations of A there
are equivalent [A.B.C] and [Aκ.Bκ.Cκ] and (Aκ.Bκ.Cκ) (if Aκ,Bκ and Cκ
are points of the Bachmann plane).
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Next, we extend the notion of sidedness of an orderable Bachmann plane and
say that two distinct points A,B of A, which are not incident with a line g
of A, are on the same side of g (which we denote by g � A,B) if g and the
joining line h of A and B are parallel lines or if g and h have a common point
Q with [Q.A.B] or [Q.B.A]. If A,B are not on the same side of g (which is
equivalent with [A.Q.B]) we say that A,B are on different sides of g.

Since dilatations κ and κ−1 of A with center O are collineations and pre-
serve the betweenness relation the statements g � A,B and gκ � Aκ,Bκ and
gκ � Aκ,Bκ (if Aκ and Bκ are points of the Bachmann plane) are equivalent.

Hence the properties of the relation g � A,B of an ordered Bachmann plane
which we proved in Sect. 3 (i.e., Theorem 3.8, (a), (b), the weak Pasch axiom
and the properties (i) and (ii) in Sect. 3.1) are also satisfied by the points,
lines and the relation g � A,B of the affine plane A. This shows that the
field of coordinates of A is orderable (see Sperner [22] and Ellers and Karzel
[3, Chapter 6] or Karzel et al. [12]).

Remark. Our proof method provides a substitute for the consideration of germs
of orderings (see Hessenberg and Diller [7, §61]) and for the construction of a
singular pseudo-metric of a Bachmann plane (see Kunze [13]). For an alter-
native introduction of an order relation in hyperbolic geometry based on the
calculus of reflections see R. Struve [26].

We close this section with a remark on how the partition into sides of a line g
of a Bachmann plane can be obtained if the associated field K of coordinates
is orderable. An order of K induces in a well-known way a linear order on the
group Tg of translations along a line g of the Bachmann plane. It remains to
show how a partition T = Tg ∪ C+

g ∪ C−
g of the partial group T of translations

with cones C+
g and C−

g of T can be obtained (see Definition 3.4).

Let O be a point on g and h = Og and Tg = T+
g ∪ T−

g and Th = T+
h ∪ T−

h

the associated partition into cones of the groups Tg and Th of translations
along g resp. h. Let A,B be points with AB /∈ Tg. We denote the feet of the
perpendiculars from A and B to g resp. to h by C and D resp. by E and F .
We can assume OC ∈ T+

g and OE ∈ T+
h .

The cone C+
g can be defined as the set of translations AB with the property

OE,EF ∈ T+
h if E �= F and CD ∈ T+

g if E = F . If C−
g is the set of translations

AB with the property OE ∈ T+
h and EF ∈ T−

h if E �= F and CD ∈ T−
g if

E = F then T = Tg ∪ C+
g ∪ C−

g .

Pasch-free ordered Bachmann planes. In this section we give an example of
an ordered Euclidean plane (i.e. the axioms of an orderable Bachmann plane
hold and the field of coordinates is orderable) with the property that the Pasch
axiom is not satisfied.

In an orderable Bachmann plane the Pasch axiom holds if and only if the asso-
ciated field of coordinates is orderable and the set of points of the Bachmann
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plane is a convex subset of the set of points of the associated affine ideal plane
(see Pejas [21]).

Let E(Q, 1) be the Euclidean plane over the field Q of rational numbers with
the orthogonality constant k = 1. Points can be represented by pairs (x, y) of
elements of Q and lines by triples [u, v, w] with u �= 0 or v �= 0 (proportional
triples represent the same line). A point (x, y) and a line [u, v, w] are incident
if ux+vy +w = 0. Lines [u, v, w] and [u′, v′, w′] are orthogonal if vv′ +uu′ = 0
(see Bachmann [1]).

We consider the smallest subplane M of E(Q, 1) which is a singular Bachmann
plane and which contains the points (0, 0) and (1, 0). The points of M have as
coordinates rational numbers which satisfy additional number-theoretic con-
ditions which imply that M does not contain the point (13 , 0) (see Bachmann
[1, §19,2]). Hence the set of points of M is not a convex subset of the set of
points of the associated affine ideal plane which shows that the axiom of Pasch
does not hold.

M is the smallest subplane of the Euclidean plane over the field of real numbers
which is a Bachmann plane (see [1, §19,2]).

Metric planes with more than one or no joining line at all. Minkowskian and
Galilean planes over fields of characteristic �= 2 and Euclidean planes over
commutative local rings (which are not fields) are metric planes which contain
points with more than one or no joining line at all. According to H. Struve and
R. Struve [25] these metric planes are orderable if and only if the associated
field of coordinates is orderable.

Appendix

In the preceding sections we showed that in a metric plane the calculus of
reflections allows the introduction of the notions of betweenness and order.

In this appendix we axiomatize ordered metric planes in a first-order language.
By this we do not claim that our axiom system is simple or preferable to
its competitors, but simply that the theory can be expressed in a first-order
language.

For reasons of simplicity we consider planes with the property that any pair
of distinct points has a unique joining line (Bachmann planes). The basis for
our axiomatization is the axiom system for Wolff planes given in Pambuccian
and R. Struve [18, Section 4].

The axiom system can be expressed with two sorts of individual variables
(elements a, b, c, . . . of a set S and elements U, V,W, . . . of a set C), a binary
operation 
 on S and a relation ϑ on S × C.

The elements of S are to be interpreted as ‘lines’ and the elements of C as
‘cones of the partial group of translations’ and the operation 
(a, b) as ‘the
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reflection of line b in line a’ and the relation ϑ as ‘a relation which assigns to
each line an associated cone of the partial group of translations’.

To improve the readability of the axioms, we introduce the following abbrevi-
ations:

a1 . . . an = 1 ⇔ (∀x)
(a1, . . . 
(an, x) . . . ) = x

g1 . . . gn = h1 . . . hm ⇔ (∀x)
(g1, . . . 
(gn, x) . . .) = 
(h1, . . . 
(hm, x) . . .)

a |b ⇔ a �= b ∧ (ab)2 = 1

J(abc) ⇔ abc �= 1 ∧ (abc)2 = 1

pq |a ⇔ p |q ∧ J(pqa)

We think of the pair (p, q) with p |q as a ‘point’, namely the intersection point
of p and q. If p |q then pq |a may be read as ‘the point pq lies on a’.

We present the axioms in informal language (their formalization being straight-
forward) and define two sets P and T (which correspond in a first-order lan-
guage to unary predicates) with an intended interpretation as the set of points
resp. translations of the Bachmann plane (cp. Sect. 2).

(1) pq ∈ P ⇔ p |q; the elements of P are denoted by A,B, . . .
(2) ab ∈ T ⇔ (∃e) a, b | e; the elements of T are denoted by σ, τ, . . .

If τ ∈ T and τ = ab then we denote the element ba ∈ T by τ−1 and the
element τ−1gτ by gτ .

The axioms are:

Axiom H1. a2 = 1

Axiom H2. 
(a, b) = aba

Axiom H3. For A,B there exists c with A,B | c.

Axiom H4. If A,B |c, d then A = B or c = d.

Axiom H5. If a, b, c |E then there exists d with abc = d.

Axiom H6. If a, b, c |e then there exists d with abc = d.

Axiom H7. There exist g, h, j with g |h and neither j |h nor j |g nor gh |j.
Axiom H8. U ⊆ T

Axiom H9. 1 ∈ U

Axiom H10. If α, β ∈ U and α · β ∈ T then α · β ∈ U .

Axiom H11. If α, β ∈ U and α · β = 1 then α = β = 1.

Axiom H12. For U ∈C there exists a∈S with ϑ(a, U).

Axiom H13. If a∈S then there are U, V ∈C with U �=V and ϑ(a, U), ϑ(a, V ).

Axiom H14. If ϑ(a, U), ϑ(a, V ) and ϑ(a,W ) then U =V or U =W or V =W .

Axiom H15. If τ ∈T\{1} and ϑ(a, U) then either τ ∈U or τ−1∈U or aτ =a.
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AxiomH16. If ϑ(a, U) and ϑ(b, V ) and g �= a, b and σ, τ ∈ U with gσ = gτ = g
then σ, τ ∈ V or σ, τ /∈ V .

Axiom H1, corresponding to the fundamental assumption (or Grundannahme)
of [1], states that reflections in lines are involutions. Axiom H2 states that,
for all line-reflections a and b, aba is a line-reflection as well, namely 
(a, b).
The axioms H3–H7 correspond to the axioms for Bachmann planes given in
[1, §3,2]. Axiom H3, corresponding to Axiom 1 of [1], states that any two points
have a joining line. Axiom H4, corresponding to Axiom 2 of [1], states that
the joining line of two distinct points is unique. Axiom H5, corresponding to
Axiom 3 of [1], states that the composition of three reflections in lines with a
common point is a reflection in a line. Axiom H6, corresponding to Axiom 4
of [1], states that the composition of three reflections in lines with a common
perpendicular is a reflection in a line. Axiom H7, corresponding to Axiom D
of [1], states that there exist three lines in a general position.

Axiom H8 states that the elements of an element of C are translations. Axiom
H9 states that an element of C contains at least the trivial translation (the
identity). Axiom H10 states that elements of C contain with two elements their
product (if the product is a translation). Axiom H11 states that elements of
C do not contain a (non-trivial) translation and the inverse one. Axiom H12
states that each element of C is associated to a line. Axiom H13 states that to
any line there are associated at least two distinct elements of C. Axiom H14
states that to any line there are associated at most two elements of C. Axiom
H15 states that an element of C, which is associated to a line a, contains
one element of every pair (τ, τ−1) of translations which do not have a as a
fixed line. Axiom H16 states that if two elements U and V of C which are
associated to lines a and b contain a translation with a fixed line g �= a, b then
every translation with fixed line g which is an element of U is an element of
V , and conversely.

Theorem 5.1. The axioms H1–H16 axiomatize ordered Bachmann planes.

Proof. Let A be the theory axiomatized by H1-H16. Let M =< S,C, 
, ϑ >
be a model of A. For each g ∈ S, we can define a bijective map σg : S → S
by σg(h) = 
(g, h). Let G denote the subgroup of Sym(S) generated by the
σg. If S := {σg : g ∈ S} then (G,S) is a group with a distinguished set S
of generators, satisfying the fundamental assumption and the axioms H3–H7
which correspond to the axioms for Bachmann planes given in [1, §3,2].

In a Bachmann plane a translation can be represented as the product of re-
flections in lines a and b which have a common perpendicular. The set T of
translations forms a partial group. According to the Axioms H8–H11 the ele-
ments of C are cones of T . According to the axioms H12–H15 the relation ϑ
describes the partition into sides of lines, i.e., they ensure that to a line a there
exist two elements U and V of C with ϑ(a, U) and ϑ(a, V ) and T = Ta ∪U ∪V
and Ta ∩ U = Ta ∩ V = U ∩ V = {1}. By Axiom H16 the partition into sides
of any two lines a and b are compatible, i.e. they induce the same linear order
on any line g with g �= a, b.
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This shows that the Bachmann plane is orderable (according to Theorem 3.19)
and that the axiom system characterizes orderable Bachmann planes. �
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