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The Euler and Grace-Danielsson inequalities
for nested triangles and tetrahedra:
a derivation and generalisation using
quantum information theory

Antony Milne

Abstract. We derive several results in classical Euclidean elementary geom-
etry using the steering ellipsoid formalism from quantum mechanics. This
gives a physically motivated derivation of very non-trivial geometric re-
sults, some of which are entirely new. We consider a sphere of radius r
contained inside another sphere of radius R, with the sphere centres sepa-
rated by distance d. When does there exist a ‘nested’ tetrahedron circum-
scribed about the smaller sphere and inscribed in the larger? We derive
the Grace-Danielsson inequality d2 ≤ (R + r)(R − 3r) as the sole nec-
essary and sufficient condition for the existence of a nested tetrahedron.
Our method also gives the condition d2 ≤ R(R−2r) for the existence of a
nested triangle in the analogous two-dimensional scenario. These results
imply the Euler inequality in two and three dimensions. Furthermore,
we formulate a new inequality that applies to the more general case of
ellipses and ellipsoids.

Mathematics Subject Classification. 51M04 · 51M16 · 51P05 · 81P40.

1. Introduction

Let d be the distance between the circumcentre and incentre of a triangle with
circumradius R and inradius r. Independently, Chapple (in 1746) and Euler
(in 1765) found a classic result of two-dimensional Euclidean geometry that
holds for all triangles: d2 = R(R − 2r) [1]. The analogous scenario in three-
dimensional space involves a tetrahedron, circumsphere and insphere. In 1816,
Gergonne asked whether in three dimensions d could be similarly expressed
as a function of only R and r. Eight years later, Durrande gave the solution
d2 = (R + r)(R − 3r). This was widely accepted for many years but is in fact
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Figure 1 A circle (sphere) E of radius r is contained inside
another circle (sphere) B of radius R. The distance between
the centres of E and B is d. In the examples shown here there
exists a nested triangle (tetrahedron) circumscribed about E
and inscribed in B. a A nested triangle. b A nested tetrahedron

incorrect, and there cannot exist such an equality that holds for all tetrahedra
(see Ref. [2] for a full discussion).

We consider a closely related question. A circle (sphere) E of radius r is con-
tained inside another circle (sphere) B of radius R. Let the distance between
the centres of E and B be d. What are the necessary and sufficient conditions for
the existence of a triangle (tetrahedron) circumscribed about E and inscribed
in B? We shall describe such a triangle (tetrahedron) as nested. Examples of
the two- and three-dimensional scenarios are shown in Fig. 1.

In two dimensions, the sole condition for the existence of a nested triangle is [3]

d2 ≤ R(R − 2r). (1.1)

In three dimensions, Grace (in 1917, see Ref. [4]) and Danielsson (in 1949,
see Ref. [5]) proved that the sole condition for the existence of a nested
tetrahedron is

d2 ≤ (R + r)(R − 3r). (1.2)
We shall call (1.2) the Grace-Danielsson inequality.

Reference [2] notes that the statement of this problem is formulated in terms
of classical Euclidean elementary geometry (CEEG) but Danielsson’s proof is
based on some intricate projective geometry. This poses a challenge to prove
inequality (1.2) using only methods belonging to CEEG. In this article we
prove the Grace-Danielsson inequality without the explicit use of any geome-
try at all; instead we use a tool from quantum mechanics called the steering
ellipsoid [6].

We begin by outlining the theory behind steering ellipsoids. By understand-
ing the separability of two-qubit states in the formalism, we derive a single
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key inequality that applies to both the two- and three-dimensional scenarios
(Theorem 3.1). From this inequality the results (1.1) and (1.2) easily follow
(Corollaries 4.1 and 4.2 respectively). Moreover, our inequality can be used to
give a necessary and sufficient condition for the existence of a nested triangle
(tetrahedron) in the general case that E is an ellipse (ellipsoid). This is the
first time that such a condition has been formulated. We give an example of
how it might be used for ellipsoids in Corollary 4.3.

The n-dimensional Euler inequality gives R ≥ nr for the circumradius and
inradius of an n-dimensional simplex [3]. Since d2 ≥ 0, inequalities (1.1) and
(1.2) imply the Euler inequality for n = 2 and n = 3 respectively. We will
therefore recover these classic results of two- and three-dimensional Euclidean
geometry through a physical argument. There already exist some physically
motivated derivations of geometric results; for example, the generalised parallel
axes theorem can be used to prove properties of triangle centres such as Euler’s
formula d2 = R(R − 2r) [7]. Our derivation is particularly remarkable since it
gives a new generalisation as well as recovering a result that remains unproven
using CEEG.

Finally, we note that this work has led to renewed interest in the n-dimensional
scenario, with Egan conjecturing d2 ≤ (R + (n − 2)r)(R − nr) to be necessary
and sufficient for the existence of a nested simplex [8]. Although sufficiency of
this condition has been proven, there is not yet a proof of its necessity.

2. Quantum steering ellipsoids

We begin by briefly describing the steering ellipsoid formalism and its signifi-
cance within the broad field of quantum information theory.

Quantum information theory studies how quantum mechanics can be exploited
to process information in ways that cannot be achieved using classical physics
[9]. The basic unit is a qubit, the quantum mechanical analogue of a classical
bit of data. A central concept in quantum information is the phenomenon
of entanglement. This describes a form of non-classical correlation between
physically separated systems and has for a long time been a major curiosity in
the foundations of physics. More recently, entanglement has been recognised as
a powerful resource for many quantum information processing tasks, including
quantum computing.

Any quantum system is associated with a complex Hilbert space H (a complete
vector space equipped with an inner product). The state of the quantum system
is described by a linear operator ρ acting on H. By definition, ρ must be unit
trace and positive semi-definite (ρ ≥ 0). A single qubit corresponds to H = C

2;
the associated state ρ is given by a 2 × 2 Hermitian matrix. We can express
this as ρ = 1

2 (1 + r · σ) in the Pauli basis (1,σ), where

1 =
(

1 0
0 1

)
, σ =

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
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and r is a real three-dimensional Bloch vector. The constraint ρ ≥ 0 is equiv-
alent to the condition |r| ≤ 1. Thus any single qubit state can be represented
by a Bloch vector inside the unit sphere (Bloch sphere), which we denote
B̃.

Two qubits are fundamentally important for studying quantum correlations as
they form the simplest system that can exhibit entanglement. A two-qubit sys-
tem has a state ρ acting on H = C

2⊗C
2, where ⊗ is the tensor product. In this

case ρ corresponds to a 4×4 Hermitian matrix that can be described using 15
real parameters. The steering ellipsoid formalism was developed as a method
for representing any such two-qubit state using a set of three-dimensional ob-
jects that can be easily visualised [6].

For our purposes it suffices to focus on a restricted set of so-called canonical
two-qubit states. If we expand in the product Pauli basis (1,σ)⊗ (1,σ), these
are given by

ρ =
1
4

⎛
⎝1 ⊗ 1 + d · σ ⊗ 1 +

3∑
i,j=1

Sijσi ⊗ σj

⎞
⎠. (2.1)

Say that Alice and Bob each hold a single qubit and are jointly described
by this state. The Bloch vector representing Alice’s qubit is d and the Bloch
vector representing Bob’s qubit is 0. However, the two Bloch vectors alone
do not fully describe ρ: there is also a real 3 × 3 matrix S that describes
correlations between Alice and Bob.

The effect of these correlations is manifest when Bob performs a quantum mea-
surement on his qubit. Bob’s measurement is described by a set of n operators
{Ei} satisfying Ei ≥ 0 and

∑n
i=1 Ei = 1 [9]. We write Ei = M†

i Mi; on ob-
taining measurement outcome Ei, the two-qubit state ρ is collapsed according
to ρ → (1 ⊗ Mi)ρ(1 ⊗ M†

i )/ tr(ρ(1 ⊗ Ei)). When this measurement-induced
collapse occurs, the Bloch vector representing Alice’s qubit is changed. By
choosing which measurement to perform, Bob can thus steer Alice. Given all
possible measurements by Bob, the set of Bloch vectors to which Alice can be
steered forms an ellipsoid inside the Bloch sphere B̃ [6]. This is Alice’s steering
ellipsoid, which we denote E .

The centre of E is given by d. Since B̃ is centred at the origin, the distance
between the centres of E and B̃ is d = |d|. The eigenvalues of the real 3 × 3
symmetric matrix Q = SST correspond to the squared lengths of the ellipsoid
semiaxes; the eigenvectors of Q give the orientation of these axes. That E is
contained inside B̃ is necessary but not sufficient to meet the constraint ρ ≥ 0.
Note also that E could be a degenerate ellipsoid (i.e. an ellipse, line or point),
corresponding to Q being rank deficient.
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3. Formulation of an inequality for the existence of a nested
tetrahedron

Steering ellipsoids give a new geometric perspective on two-qubit entanglement
in the form of the nested tetrahedron condition [6]. Any two-qubit state ρ that
is not entangled is described as separable and may be decomposed into m ≤ 4
terms as ρ =

∑m
i=1 piαi ⊗ βi, where αi, βi are single qubit states and {pi} is a

probability distribution [10]. This leads to the result that ρ is separable if and
only if there exists a tetrahedron circumscribed about E and inscribed in B̃.
For the case that E is an ellipse, Poncelet’s porism can be used to show that if
there exists a tetrahedron nested between E and B̃ then there must also exist
a triangle nested between E and B̃ [11].

Independently of the nested tetrahedron condition we can also formulate an
algebraic condition for separability. Define ρΓ = (1 ⊗ T)(ρ), where T is the
usual matrix transposition map. For a two-qubit state we write ρ =

(
A B
C D

)
,

where A,B,C and D are 2 × 2 matrices; then ρΓ =
(

AT BT

CT DT

)
. Using the

Peres-Horodecki criterion [12,13], Ref. [6] shows that the condition det ρΓ ≥ 0
is necessary and sufficient for separability.1 For a canonical state of the form
(2.1), this determinant can easily be evaluated in terms of Q and d [6]. A
canonical state ρ is seen to be separable if and only if

d4 − 2ũd2 + q̃ ≥ 0, (3.1)

where ũ = 1− tr Q+2d̂TQd̂ and q̃ = 1−2 tr Q−8
√

det Q+2 tr(Q2)− (tr Q)2,
with unit vector d̂ = d/d.

We thus have two equivalent necessary and sufficient conditions for the sepa-
rability of ρ: the nested tetrahedron condition and inequality (3.1). It is not
at all obvious how either one of these conditions could be found directly from
the other. Crucially, however, we now have an algebraic formulation for the
existence of a nested tetrahedron. Converting the unit sphere B̃ to a sphere B
of radius R, we arrive at the key inequality that will be used to derive all our
results in two and three dimensions.

Theorem 3.1. Let E be an ellipsoid, described by matrix Q, contained inside
a sphere B of radius R. The eigenvalues of Q give the squared lengths of the
semiaxes of E; the eigenvectors give the orientation of the axes. The centre of
E relative to the centre of B is d. The sole necessary and sufficient condition
for the existence of a tetrahedron circumscribed about E and inscribed in B is

d4 − 2ud2 + q ≥ 0,

1For example, take ρ1 = 1
4

(
1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

)
and ρ2 = 1

2

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)
—as required, these are unit trace

and positive semi-definite. We find ρΓ
1 = 1

4

(
1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

)
and ρΓ

2 = 1
2

(
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

)
. Computing the

signs of det ρΓ
1 and det ρΓ

2 then immediately identifies ρ1 as separable and ρ2 as entangled.



460 A. Milne J. Geom.

where u = R2 − tr Q+2d̂TQd̂ and q = R4 −2R2 tr Q−8R
√

det Q+2 tr(Q2)−
(tr Q)2, with unit vector d̂ = d/d. For a degenerate E, the tetrahedron can
always be taken to be a triangle.

Proof. Inequality (3.1) is necessary and sufficient for the existence of a tetrahe-
dron circumscribed about E and inscribed in B̃. The result then immediately
follows from scaling the quantities ũ and q̃ to u and q respectively. �
Note that only the term involving d̂TQd̂ depends on the orientation of d
rather than just its magnitude d. This skew term describes how the axes of an
ellipsoid are oriented relative to the centre vector d.

4. Derivation of the Grace-Danielsson inequality

Theorem 3.1 is all that will be needed to derive inequality (1.1) for the two-
dimensional scenario and the corresponding three-dimensional Grace-Danielsson
inequality (1.2). We will also look at an example of how Theorem 3.1 can be
used to find new results for ellipses and ellipsoids.

Corollary 4.1. Let E be a circle of radius r contained inside a circle B of radius
R. The distance between the centres of E and B is d. The sole necessary and
sufficient condition for the existence of a triangle circumscribed about E and
inscribed in B is

d2 ≤ R(R − 2r),

giving the result (1.1).

Proof. E may be described by Q = diag(r2, r2, 0). The degenerate case of
Theorem 3.1 gives a condition for the existence of a triangle circumscribed
about E and inscribed in a sphere of radius R. Setting d = (d1, d2, 0) ensures
that E and d are coplanar, so that Theorem 3.1 equivalently gives a condi-
tion for the existence of a triangle circumscribed about E and inscribed in
a circle of radius R. The skew term d̂TQd̂ = r2 does not depend on the
orientation of d within its plane. Evaluating u and q gives u = R2 and
q = R4 − 4R2r2. Theorem 3.1 then tells us that a nested triangle exists if
and only if d4 − 2ud2 + q = (d2 − R2)2 − 4R2r2 ≥ 0, from which the result
follows. �
The physical significance of this result in terms of steering ellipsoids inside
the Bloch sphere is considered in detail in Ref. [14]. Briefly, the ‘no pancake
theorem’ states that the equatorial plane of the Bloch sphere is not a valid
steering ellipsoid as it does not achieve ρ ≥ 0; by setting R = 1, Corollary
4.1 extends this result to identify the largest circular E that is a valid steering
ellipsoid for a given d.

Corollary 4.2. Let E be a sphere of radius r contained inside a sphere B of
radius R. The distance between the centres of E and B is d. The sole necessary
and sufficient condition for the existence of a tetrahedron circumscribed about
E and inscribed in B is
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d2 ≤ (R + r)(R − 3r),
giving the Grace-Danielsson result (1.2).

Proof. E may be described by Q = diag(r2, r2, r2). The skew term d̂TQd̂ = r2

does not depend on the orientation of d. Evaluating u and q gives u = R2 − r2

and q = R4 − 6R2r2 − 8Rr3 − 3r4. Theorem 3.1 then tells us that a nested
tetrahedron exists if and only if d4 − 2ud2 + q = (d − R − r)(d + R + r)(d2 −
(R + r)(R − 3r)) ≥ 0, from which the result follows. �
Again, there is a physical interpretation of this result in quantum informa-
tion theory [14]. By identifying the largest spherical E that corresponds to a
separable state ρ, the entangled-separable state boundary can be found for a
special class of ρ known as inept states [15].

Finally, we consider results for an ellipsoid E . Note that Theorem 3.1 concerns
any ellipse or ellipsoid inside a sphere—in particular, this includes ellipsoids
that are oriented with no semiaxis collinear with d. Such ellipsoids have an
awkward skew term d̂TQd̂, which causes significant difficulties when attempt-
ing to formulate algebraic conditions for when E is contained inside a sphere
[16]. Remarkably, Theorem 3.1 works in full generality to give conditions for
the existence of a nested tetrahedron for an ellipsoid with any skew. The de-
generate case can be used to give conditions for the existence of a nested
triangle for any ellipse inside a circle or sphere. We believe this to be the first
formulation of necessary and sufficient conditions for these general scenarios.

As an example of how Theorem 3.1 can be used for ellipsoids, we give a result
for a specially oriented class of ellipsoid.

Corollary 4.3. Let E be an ellipsoid with semiaxes s1, s2, s3 contained inside a
sphere B of radius R. The distance between the centres of E and B is d, and
E has its s1 axis collinear with d. The sole necessary and sufficient condition
for the existence of a tetrahedron circumscribed about E and inscribed in B is

d2 ≤ (R − s1)2 − (s2 + s3)2.

Proof. E may be described by Q = diag(s2
1, s

2
2, s

2
3) and d = (d, 0, 0). Evaluating

u and q gives u = R2+s2
1−s2

2−s2
3 and q = R4−2R2(s2

1+s2
2+s2

3)−8Rs1s2s3+
s4
1 + s4

2 + s4
3 − 2s2

1s
2
2 − 2s2

2s
2
3 − 2s2

3s
2
1. Theorem 3.1 then tells us that a nested

tetrahedron exists if and only if d4 − 2ud2 + q = (d2 − R2 − s2
1 + s2

2 + s2
3)

2 −
(2Rs1 + 2s2s3)2 ≥ 0, from which the result follows. �
Note that by setting s1 = s2 = s3 = r Corollary 4.3 reproduces the result for
spheres given in Corollary 4.2.

5. Conclusions

Using the quantum steering ellipsoid formalism and an understanding of the
separability of two-qubit states, we have given a necessary and sufficient con-
dition for the existence of a tetrahedron circumscribed about an ellipsoid and



462 A. Milne J. Geom.

inscribed in a sphere. This condition can be used to immediately derive a num-
ber of results in two- and three-dimensional Euclidean geometry, most notably
the Grace-Danielsson inequality for a nested tetrahedron. As well as providing
an entirely new formulation for the general case of an ellipsoid, our results are
of interest for the novelty of their derivations.
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