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1. Introduction

J. W. Young, the editor of the book [10], wrote in his introduction: There
are fashions in mathematics as well as in clothes,—and in both domains they
have a tendency to repeat themselves. During the last decade, “hyperbolic
plane geometry” aroused much interest and was investigated vigorously by a
considerable number of mathematicians.

Despite the large number of investigations, the number of hyperbolic trigono-
metric formulas that can be collected from them is fairly small, they can be
written on a page of size B5. This observation is very surprising if we compare
it with the fact that already in 1889, a very extensive and elegant treatise of
spherical trigonometry was written by Casey [4]. For this, the reason, proba-
bly, is that the discussion of a problem in hyperbolic geometry is less pleasant
than in spherical one.

On the other hand, in the 19th century the excellent Hungarian mathematician
Cyrill Vörös1 made a big step to solve this problem. He introduced a method
for the measurement of distances and angles in the case that the considered
points or lines, respectively, are not real. Unfortunately, since he published his
works mostly in Hungarian or in Esperanto, his method is not well-known to
the mathematical community.

1 Cyrill Vörös (1868–1948), piarist, teacher.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-014-0252-0&domain=pdf
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To fill this gap, we use the concept of distance extracted from his work and,
translating the standard methods of Euclidean plane geometry into the lan-
guage of the hyperbolic plane, apply it for various configurations. We give a
model independent construction for the famous problem of Malfatti (discussed
in [6]) and give some interesting formulas connected with the geometry of hy-
perbolic triangles (further formulas using in volume calculations can be found
in [7]). By the notion of distance introduced by Vörös, we obtain results in
hyperbolic plane geometry which are not well-known. The length of this paper
is very limited, hence some proofs will be omitted here. The interested reader
can find these proofs in the unpublished source file [8].

1.1. Well-known formulas on hyperbolic trigonometry

The points A,B,C denote the vertices of a triangle. The lengths of the edges
opposite to these vertices are a, b, c, respectively. The angles at A,B,C are
denoted by α, β, γ, respectively. If the triangle has a right angle, it is always
at C. The symbol δ denotes half of the area of the triangle; more precisely, we
have 2δ = π − (α + β + γ).

• Connections between the trigonometric and hyperbolic trigonometric func-
tions:

sinh a =
1
i
sin(ia), cosh a = cos(ia), tanh a =

1
i
tan(ia).

• Law of sines:

sinh a : sinh b : sinh c = sinα : sinβ : sin γ. (1.1)

• Law of cosines:

cosh c = cosh a cosh b − sinh a sinh b cos γ. (1.2)

• Law of cosines on the angles:

cos γ = − cosα cosβ + sinα sinβ cosh c. (1.3)

• The area of the triangle:

T := 2δ = π − (α + β + γ). (1.4)

tan
T

2
=

(
tanh

a1

2
+ tanh

a1

2

)
tanh

ma

2
, (1.5)

where ma is the height of the triangle corresponding to A and a1, a2 are
the signed lengths of the segments into which the foot point of the height
divides the side BC.

• Heron’s formula:

tan
T

4
=

√
tanh

s

2
tanh

s − a

2
tanh

s − b

2
tanh

s − c

2
. (1.6)

• Formulas on Lambert’s quadrangle: The vertices of the quadrangle are
A,B,C,D and the lengths of the edges are AB = a,BC = b, CD = c
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and DA = d, respectively. The only angle which is not a right angle is
BCD� = ϕ. Then, for the sides, we have:

tanh b = tanh d cosh a, tanh c = tanh a cosh d,

and

sinh b = sinh d cosh c, sinh c = sinh a cosh b.

Moreover, for the angles, we have:

cosϕ = tanh b tanh c = sinh a sinh d, sinϕ =
cosh d

cosh b
=

cosh a

cosh c
,

and

tanϕ =
1

tanh a sinh b
=

1
tanh d sinh c

.

2. The distance of points and on the lengths of segments

First we extract the concepts of the distance of real points following the method
of the book of Vörös ([16]). We extend the plane with two types of points, one of
the type of the points at infinity and the other one of the type of ideal points. In
a projective model these are the boundary and external points of a model with
respect to the embedding real projective plane. Two parallel lines determine
a point at infinity, and two ultraparallel lines an ideal point which is the pole
of their common transversal. Now the concept of the line can be extended; a
line is real if it has real points (in this case it also has two points at infinity,
and the other points on it are ideal points being the poles of the real lines
orthogonal to the mentioned one). The extended real line is a closed compact
set with finite length. We also distinguish the line at infinity which contains
precisely one point at infinity and the so-called ideal line which contains only
ideal points. By definition the common lengths of these lines are πki, where
k is a constant of the hyperbolic plane and i is the imaginary unit. In this
paper we assume that k = 1. Two points on a line determine two segments
AB and BA. The sum of the lengths of these segments is AB + BA = πi.
We define the length of a segment as an element of the linearly ordered set
C̄ := R+R · i. Here R = R∪ {±∞} is the linearly ordered set of real numbers
extracted with two new numbers with the “real infinity” ∞ and its additive
inverse −∞. The infinities can be considered as new “numbers” having the
properties that either “there is no real number greater than or equal to ∞”
or “there is no real number less than or equal to −∞”. We also introduce the
following operational rules: ∞ + ∞ = ∞,−∞ + (−∞) = −∞,∞ + (−∞) = 0
and ±∞ + a = ±∞ for real a. It is obvious that R is not a group, the rule of
associativity holds only for such expressions which contain at most two new
objects. In fact, 0 = ∞+ (−∞) = (∞+∞) + (−∞) = ∞+ (∞+ (−∞)) = ∞
is a contradiction. We also require that the equality ±∞ + bi = ±∞ + 0i
holds for every real number b, and for brevity we introduce the respective
notations ∞ := ∞+0i and −∞ := −∞+0i. We extract the usual definition of
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Figure 1 Length of the segments between a real and an ideal point

hyperbolic function based on the complex exponential function by the following
formulas:

cosh(±∞) := ∞, sinh(±∞) := ±∞, and tanh(±∞) := ±1.

We also assume that ∞ · ∞ = (−∞) · (−∞) = ∞,∞ · (−∞) = −∞ and
α · (±∞) = ±∞.

Assuming that the trigonometric formulas of hyperbolic triangles are also valid
with ideal vertices the definition of the mentioned lengths of the complemen-
tary segments of a line are given. For instance, consider a triangle with two
real vertices (B and C) and an ideal one (A), respectively. The lengths of the
segments between C and A are b and b′, the lengths of the segments between
B and A are c and c′ and the lengths of that segment between C and B which
contains only real points is a, respectively. Let the right angle be at the vertex
C and denote by β the other real angle at B (See in Fig. 1).

With respect to this triangle we have tanh b = sinh a · tanβ, and since A is an
ideal point, the parallel angle corresponding to the distance BC = a less than
or equal to β. Hence tanβ > 1/ sinh a implying that tanh b > 1. Hence b is a
complex number. If the polar of A is EF , then it is the common perpendicular
of the lines AC and AB. The quadrangle CFEB has three right angles. Denote
by b1 the length of that segment CF which contains real points only. Then
we get tanβ = 1

tanh b1 sinh a , meaning that sinh a tanβ = 1
tanh b1

= tanh b.

Similarly we have that tanh b′ = sinh a · tan(π − β) = − sinh a · tanβ implying
that | tanh b′| > 1, hence b′ is complex. Now we have that tanh b′ = − 1

tanh b1
.

Using the formulas between the trigonometric and hyperbolic trigonometric
functions we get that 1

i tan ib = i
tan ib1

, implying that tan ib = − tan
(

π
2 − ib1

)
,

so b = − 2n−1
2 πi+ b1. Analogously we get also that b′ = − 2m+1

2 πi− b1. Here n
and m are arbitrary integers. On the other hand, if b1 = 0 then AC = CA, and
so b = b′ meaning that 2n − 1 = 2m + 1. For the half length of the complete
line we can choose an odd multiplier of the number πi/2. The most simple
choosing is when we assume that n = 0 and m = −1. Thus the lengths of
the segments AC and CA can be defined as b = b1 + π

2 and b′ = −b1 + π
2 ,

respectively.



Vol. 106 (2015) Hyperbolic plane geometry revisited 345

Table 1 Distances on the real line

B
R In Id

R AB = d
BA = −d + πi

AB = ∞
BA = −∞

AB = d + π
2 i

BA = −d + π
2 i

A In
AB = ∞

BA = −∞
AB = ∞

BA = −∞
Id

AB = d + πi
BA = −d

We now define all of the possible lengths of a segment on the basis of the type
of the line that contains them.

2.1. The points A and B are on a real line.

We can distinguish six subcases. The definitions of the respective cases can be
found in Table 1. We abbreviate the words real, infinite and ideal by symbols
R, In and Id, respectively. d means a real (positive) distance of the corre-
sponding usual real elements which are a real point or the real polar line of an
ideal point, respectively. Every box in the table contains two numbers which
are the lengths of the two segments determined by the two points. For exam-
ple, the distance of a real and an ideal point is a complex number. Its real part
is the distance of the real point to the polar of the ideal point with a sign. This
sign is positive in the case when the polar line intersects the segment between
the real and ideal points, and is negative otherwise. The imaginary part of the
length is (π/2)i, implying that the sum of the lengths of two complementary
segments of this projective line has total length πi. Consider now a point at
infinity. This point can also be considered as the limit of real points or limit
of ideal points of this line. By definition the distance from a point at infinity
of a real line to any other real or infinite point of this line is ±∞ according to
that it contains or not ideal points. If, for instance, A is an infinite point and
B is a real one, then the segment AB contains only real points has length ∞.
It is clear that with respect to the segments on a real line the length-function
is continuous.

2.2. The points A and B are on a line at infinity.

We can check that the length of a segment for which either A or B is an infinite
point is indeterminable. To see this, let the real point C be a vertex of a right-
angled triangle whose other vertices A and B are on a line at infinity with
infinite point B. Then we get that cosh c = cosh a ·cosh b for the corresponding
sides of this triangle. But from the result of the previous subsection

cosh a = cosh∞ = ∞ and cosh b = cosh
(
0 +

π

2
i
)
= cos

(
−π

2

)
= 0,
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Table 2 Distances on the line at infinity

B
In Id

A In
AB = 0
BA = πi

AB = π
2 i

BA = π
2 i

Id
AB = 0
BA = πi

showing that their product is undeterminable. On the other hand, if we con-
sider the polar of the ideal point A we get a real line through B. The length of
a segment connecting the (ideal) point A and one of the points of its polar is
(π/2)i. This means that we can define the length of a segment between A and
B also as this common value. Now if we also want to preserve the additivity
property of the lengths of segments on a line at infinity, then we must give the
pair of values 0, πi for the lengths of segment with ideal ends. Table 2 collects
these definitions.

2.3. The points A and B are on an ideal line

This situation contains only one case: A,B and AB are ideal elements, respec-
tively. We need first the measure of the angle of two real ultraparallel lines.
(See α in Fig. 1). Then clearly cosα = cosh a · sinβ > 1, and so α is imaginary.
From Lambert’s quadrangle BCEF we get

cosh a sinβ = cosh p,

thus cosh p = cosα and so α = 2nπ ± pi. Now an elementary analysis of the
figure shows that the continuity property requires the choice n = 0. If we also
assume that we choose the negative sign, then the measure is α = −pi = p/i,
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Figure 2 The cases of the ideal segment and angles
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Table 3 Angles of lines

a
R In Id

R
M

R In Id
ϕ

π − ϕ
0
π

p
i

π − p
i

M
In Id
π
2
π
2

∞
−∞

M
Id

π
2 + a1

i
π
2 − a1

i

b In

M
Id
∞

−∞

M
Id
∞

−∞

Id

M
Id
p
i

π − p
i

where p is the length of that segment of the common perpendicular whose
points are real.

Consider now an ideal line and its two ideal points A and B, respectively.
The polars of these points intersect each other in a real point B1. Consider a
further real point C of the line BB1 and denote by A1 the intersection point
of the polar of A and the real line AC (see Fig. 2).

Observe that A1B1 is perpendicular to AC; thus we have tanh b1 = tanh a1 ·
cos γ. On the other hand, a = ±a1 + (πi)/2 and b = ±b1 + (πi)/2 implying
that tanh b = tanh a · cos γ. Hence the angle between the real line CB and the
ideal line AB can be considered to π/2, too. Now from the triangle ABC we
get that

cosh c =
cosh b

cosh a
=

±i sinh b1
±i sinh a1

=
sinh b1
sinh a1

= sin
(π

2
− ϕ

)
= cosϕ,

where ϕ is the angle of the two polars. From this we get c = 2nπ ± ϕ/i =
2nπ ∓ ϕi. We choose n = 0 since at this time ϕ = 0 implies c = 0 and the
positive sign because the length of the line is πi.

The length of an ideal segment on an ideal line is the angle of their polars
multiplied by the imaginary unit i.

2.4. Angles of lines

Similarly as in the previous paragraph we can deduce the angle between ar-
bitrary kinds of lines (see Table 3). In Table 3, a and b are the given lines,
M = a ∩ b is their intersection point, m is the polar of M and A and B are
the poles of a and b, respectively. The numbers p and a1 represent real dis-
tances, as can be seen on Fig. 2, respectively. The general connection between
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the angles and distances is the following: Every distance of a pair of points
is the measure of the angle of their polars multiplied by i. The domain of the
angle can be chosen in such a way, that we are going through the segment by
a moving point and look at the domain which is described by the moving polar
of this point.

2.5. The extracted hyperbolic theorem of sines

With the above definition of the length of a segment the known formulas of
hyperbolic trigonometry can be extracted to the formulas of general objects
with real, infinite or ideal vertices. For example, we can prove the hyperbolic
theorem of sines for right-angled triangles. It says that sinh a = sinh c · sinα.

We prove first those cases when all sides of the triangle lie on real lines,
respectively. We assume that the right angle is at C and that it is a real point
because of our definition.

• If A is an infinite point B and C are real ones then sinh c · sinα = ∞·0 is
indeterminable and we can consider that the equality is true. The relation
sinh b · sinβ = ∞ · sinβ = ∞ is also true by our agreement. If A,B are
at infinity then α = β = 0 and the equality holds, too.

• In the case when B,C are real points and A is an ideal point, let the
polar of A be pA. Then by definition sinh c = sinh(dB + (iπ/2)) =
cosh(dB) sinh(iπ/2) = i cosh(dB) where dB is the distance of B and pa;
sinα = sin(d/i) = i(1/i) sin(−id) = −i sinh(d) where d is the length of
the segment between the lines of the sides AC and BC. If pA intersects
AC and BC in the points D and E, respectively, then BCDE is a quad-
rangle with three right angles and with the sides a, x, d and dB (see the
left figure in Fig. 3). This implies that sinh c sinα = cosh(dB) sinh(d) =
sinh a, as we stated.

• If C is a real point, A is at infinity, and B is an ideal point, then α = 0
and the right-hand side sinh c · sinα is undeterminable. If we consider
sinh c · sinβ = ∞ sinβ it is infinite by our agreement, and the statement
is true, again.

• Very interesting is the last case when C is a real point, A and B are
ideal points, respectively, and the line AB is a real line (see the right-
hand side picture in Fig. 3). Then sinh a = i cosh g, sinh c = sinh(−e) and
sinα = −i sinh d, thus sinh c sinα = i sinh e sinh d and the theorem holds
if and only if in the real pentagon CDEFG with five right angles it holds
that sinh e sinh d = cosh g. But we have:

Statement 2.1 [8]. Denote by a, b, c, d, e the edge lengths of the successive sides
of a pentagon with five right angles on the hyperbolic plane. Then we have:

cosh d = sinh a sinh b, sinh c =
cosh a√

sinh2 a sinh2 b − 1

sinh e =
cosh b√

sinh2 a sinh2 b − 1
.
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Figure 3 Hyperbolic theorem of sines with non-real vertices

Second we assume that the hypotenuse AB lies on a non-real line. Now if it
is at infinity and at least one vertex is an infinite point then the statement is
evidently true. Assume that A,B and its line are ideal elements, respectively.
Then the length c is equal to (π/2)i, the angle α is equal to (π/2) + d/i,
where d is the distance between C, and the polar of B and the length of a is
equal to d + (π/2)i, respectively. The equality sinh(π/2)i · sin((π/2) + d/i) =
(1/i) sin(−(π/2)) cos(d/i) = −(1/i) cosh d = i cosh d = sinh(d+ (π/2)i) proves
the statement in this case, too.

3. Power, inversion and centres of similitude

It is not clear who investigated first the concept of inversion with respect to
hyperbolic geometry. A synthetic approach can be found in [12] using reflec-
tions in Bachmann’s metric plane. For our purpose it is more convenient to
use an analytic approach in which the concepts of centres of similitude and
axis of similitude can be defined. We mention that the spherical approach of
these concepts can be found in Chapter VI and Chapter VII in [4].

In the hyperbolic case, using the extracted concepts of lengths of segments,
this approach can be reproduced.

Lemma 3.1 [8]. The product tanh(PA)/2 · tanh(PB)/2 is constant if P is a
fixed (but arbitrary) point (real, at infinity or ideal), P,A,B are collinear and
A,B are on a cycle of the hyperbolic plane (meaning that in the fixed projective
model of the real projective plane it has a proper part).
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On the basis of Lemma 3.1. we can define the power of a point with respect
to a given cycle.

Definition 3.2. The power of a point P with respect to a given cycle is the
value

c := tanh
1
2
PA · tanh 1

2
PB,

where the points A,B are on the cycle, such that the line AB passes through
the point P . With respect to Lemma 1 this point could be a real, infinite or
ideal one. The axis of power of two cycles is the locus of points having the
same powers with respect to the cycles.

The power of a point can be positive, negative or complex (For example, in
the case when A,B are real points we have the following possibilities: it is
positive if P is a real point and it is in the exterior of the cycle; it is negative
if P is real and it is in the interior of the cycle; it is infinite if P is a point at
infinity; or complex if P is an ideal point). We can also introduce the concept
of similarity center of cycles.

Definition 3.3. The centres of similitude of two cycles with non-overlapping
interiors are the common points of their pairs of tangents touching directly or
inversely (i.e., they do not separate, or separate the circles), respectively. The
first point is the external center of similitude, the second one is the internal
center of similitude.

For intersecting cycles separating tangent lines do not exist, but the internal
center of similitude is defined as on the sphere, but replacing sin by sinh. More
precisely we have

Lemma 3.4 [8]. Two points S, S′ which divide the segments OO′ and O′O,
joining the centers of the two cycles in the hyperbolic ratio of the hyperbolic
sines of the radii r, r′ are the centers of similitude of the cycles. By formula,
if sinhOS : sinhSO′ = sinhO′S′ : sinhS′O = sinh r : sinh r′ then the points
S, S′ are the centers of similitude of the given cycles.

We also have the following

Lemma 3.5 [8]. If the secant through a centre of similitude S meets the cycles
in the corresponding points M,M ′ then tanh 1

2SM and tanh 1
2SM ′ are in a

given ratio.

We now discuss the cases for the possible centers of similitude. We have six
possibilities.

1. The two cycles are circles. To get the centers of similitude we have to
solve an equation in x. Here d means the distance of the centers of the
circles, r ≤ R denotes the respective radii, and x is the distance of the
center of similitude to the center of the circle with radius r.sinh(d ± x) :
sinhx = sinhR : sinh r from which we get that cothx = sinhR∓cosh d sinh r

sinh r sinh d
or, equivalently,
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ex =

√
cothx + 1
cothx − 1

=

√
(sinhR)/(sinh r) ∓ e∓d

(sinhR)/(sinh r) ∓ e±d
.

The two centers corresponding to the two cases of possible signs. If we

assume that ex =
√

(sinhR)/(sinh r)−e−d

(sinhR)/(sinh r)−ed , then the center is an ideal point,
point at infinity or a real point according to the cases sinhR/ sinh r <
ed, sinhR/ sinh r = ed, or sinhR/ sinh r > ed, respectively. The corre-
sponding center is the external center of similitude. In the other case we

have ex =
√

(sinhR)/(sinh r)+ed

(sinhR)/(sinh r)+e−d , and the corresponding center is always
a real point. This is the internal center of similitude.

2. One of the cycles is a circle and the other one is a paracycle. The line
joining their centers (which we call axis of symmetry) is a real line, but
the respective ratio is zero or infinite. To determine the centres we have
to decide the common tangents and their points of intersections, respec-
tively. The external centre is a real, infinite or ideal point, and the internal
centre is a real point.

3. One of the cycles is a circle and the other one is a hypercycle. The axis
of symmetry is a real line such that the ratio of the hyperbolic sines of
the radii is complex. The external center is a real, infinite or ideal point,
the internal one is always a real point. Each of them can be determined
as in the case of two circles.

4. Each of them is a paracycle. The axis of symmetry is a real line and the
internal centre is a real point. The external centre is an ideal point.

5. One of them is a paracycle and the other one is a hypercycle. The axis
of symmetry (in the Poincaré model, with the hypercycle replaced by
the circular line containing it, and the axis containing the two apparent
centers) is a real line. The internal centre is a real point. The external
centre is a real, infinite or ideal point.

6. Both of them are hypercycles. The axis of symmetry (in the Poincaré
model, with the hypercycle replaced by the circular line containing it,
and the axis containing the two apparent centers) can be a real line, ideal
line or a line at infinity. For the internal centre we have three possibilities
as above as well as for the external centre.

We can use the concepts of “axis of similitude”, “inverse and homothetic pair
of points”, “homothetic to and inverse of a curve γ with respect to a fixed
point S” (which “can be real point, a point at infinity, or an ideal point,
respectively”) as in the case of the sphere. More precisely we have:

Lemma 3.6 [8]. The six centers of similitude of three cycles taken in pairs lie
three by three on four lines, called axes of similitude of the cycles.

From Lemma 3.5 it follows immediately that if two pairs of intersection points
of a line through S with the cycles are N,N ′ and M,M ′ then tanh 1

2SM ·
tanh 1

2SN ′ is independent from the choice of the line. Thus, given a fixed
point S (which is the center of the cycle at which we would like to invert)
and any curve γ, on the hyperbolic plane, if on the halfline joining S (the
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endpoint of the halfline) with any point M of γ a point N ′ is taken, such that
tanh SM

2 · tanh SN ′
2 is constant, the locus of N ′ is called the inverse of γ. We

also use the name cycle of inversion for the locus of the points whose squared
distance from S is tanh SM

2 · tanh SN ′
2 . Among the projective elements of the

pole and its polar either one of them is always real or both of them are at
infinity. Thus, in a construction the common point of two lines is well-defined,
and in every situation it can be joined with another point; for example, if
both of them are ideal points they can be given by their polars (which are
constructible real lines) and the required line is the polar of the intersection
point of these two real lines. Thus the lengths in the definition of the inverse
can be constructed. This implies that the inverse of a point can be constructed
on the hyperbolic plane, too.

Remark 3.7. Finally we remark that all of the concepts and results of inversion
with respect to a sphere of the Euclidean space can be defined also in the
hyperbolic space, where the “basic sphere” could be a hypersphere, parasphere
or sphere, respectively. We can use also the concept of ideal elements and
the concept of elements at infinity, if it is necessary. It can be proved (using
Poincaré’s ball-model) that every hyperbolic plane of the hyperbolic space can
be inverted to a sphere by such a general inversion. This map sends the cycles
of the plane to circles of the sphere.

4. Applications

In this section we give applications, some of them having analogous on the
sphere, and others being completely new ones.

4.1. Steiner’s construction on Malfatti’s construction problem

Malfatti (see [11]) raised and solved the following problem: construct three
circles into a triangle so that each of them touches the two others from outside
and, moreover, touches also two sides of the triangle.

The first nice moment was Steiner’s construction. He gave an elegant method
(without proof) to construct the given circles. He also extended the problem
and his construction to the case of three given circles instead of the sides of
a triangle (see in [13,14]). Cayley referred to this problem in [2] as Steiner’s
extension of Malfatti’s problem. We note that Cayley investigated and solved
a further generalization in [2], which he also called Steiner’s extension of Mal-
fatti’s problem. His problem is to determine three conic sections so that each
of them touches the two others, and also touches two of three more given conic
sections. Since the case of circles on the sphere is a generalization of the case of
circles of the plane (as it can be seen easily by stereographic projection), Cay-
ley indirectly proved Steiner’s second construction. We also have to mention
Hart’s nice geometric proof for Steiner’s construction which was published in
[9] (It can be found in various textbooks, e.g. [3] and also on the web).
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In the paper [6] we presented a possible form of Steiner’s construction which
meet the original problem in the best way. We note (see the discussion in the
proof) that our theorem has a more general form giving all possible solutions
of the problem. However, for simplicity we restrict ourself to the most plau-
sible case, when the cycles touch each other from outside. In [6] we used the
fact that cycles are represented by circles in the conformal model of Poincaré.
The Euclidean constructions of circles of this model gives hyperbolic construc-
tions on cycles in the hyperbolic plane. To do these constructions manually
we have to use special rulers and calipers to draw the distinct types of cycles.
For brevity, we think of a fixed conformal model of the embedding Euclidean
plane and preserve the name of the known Euclidean concepts with respect to
the corresponding concept of the hyperbolic plane, too. We now interprete this
proof without using models. We use Gergonne’s construction (see the Euclid-
ean version in [5], and the hyperbolic one in [6] or [8]) which solves the problem
Construct a circle (cycle) touching three given circles (cycles) of the plane.

Theorem 4.1 [6]. Steiner’s construction can be done also in the hyperbolic
plane. More precisely, for three given non-overlapping cycles there can be con-
structed three other cycles, each of them touching the two other ones from
outside and also touching two of the three given cycles from outside.

Proof. Denote by ci the given cycles (see Fig. 4). Now the steps of Steiner’s
construction are the following.

1. Construct the cycle of inversion ci,j , for the given cycles ci and cj , where
the center of inversion is the external centre of similitude of them (i.e.,
the center of ci,j is the center of the above inversion, and ci, cj are images
of each other with respect to inversion at cij . Observe that cij separates
ci and cj).

2. Construct the cycle kj touching two cycles ci,j , cj,k and the given cycle
cj , in such a way that kj , cj touch from outside, and kij , cij (or cjk) touch
in such a way that kj lies on that side of cij (or cik) on which side of
them cj lies.

3. Construct the cycle li,j touching ki and kj through the point Pk = kk∩ck.
4. Construct Malfatti’s cycle mj as the common touching cycle of the four

cycles li,j , lj,k, ci, ck.

The first step is the hyperbolic interpretation of the analogous well-known
Euclidean construction of circles.

To the second step we follow Gergonne’s construction (see in [8]). The third
step is a special case of the second one (A given cycle is a point now). Obviously
the general construction can be done in this case, too.

The fourth step is again the second one choosing three arbitrary cycles from
the four ones, since the quadrangles determined by the cycles have incircles.

Finally we have to prove that this construction gives the Malfatti cycles. As
we saw, the Malfatti cycles exist (see Theorem 1 in [6]). We also know that
in an embedding hyperbolic space the examined plane can be inverted to a
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sphere. The trigonometry of the sphere is absolute implying that the possi-
bility of a construction which can be checked by trigonometric calculations,
is independent of the fact that the embedding space is a hyperbolic space or
a Euclidean one. Of course, the Steiner construction is just such a construc-
tion, the touching position of circles on the sphere can be checked by spherical
trigonometry. So we may assume that the examined sphere is a sphere of the
Euclidean space and we can apply Cayley’s analytical methods (see in [2]) by
which he proved that Steiner’s construction works on a surface of second order.
Hence the above construction produces the required touches. �

4.2. Applications for triangle centers

There are many interesting statements on triangle centers. In this section we
mention some of them, concentrating only on the centroid, circumcenters and
incenters, respectively.

The notation of this subsection follows the previous part of this paper: the
vertices of the triangle are A,B,C, the corresponding angles are α, β, γ and
the lengths of the sides opposite to the vertices are a, b, c, respectively. We
also use the notion 2s = a + b + c for the perimeter of the triangle. Let
denote R, r, rA, rB , rC the radius of the circumscribed cycle, the radius of the
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inscribed cycle (shortly incycle), and the radii of the escribed cycles opposite
to the vertices A,B,C, respectively. We do not assume that the points A,B,C
are real and the distances are positive numbers. In most cases the formulas are
valid for ideal elements and elements at infinity and when the distances are
complex numbers, respectively. Before examining hyperbolic triangle centers,
we collect some further important formulas on hyperbolic triangles. We can
consider them in our extracted manner.

4.2.1. Staudtian and angular Staudtian of a hyperbolic triangle. The concept
of Staudtian of a hyperbolic triangle is somehow similar (but definitely distinct)
to the concept of the Euclidean area. In spherical trigonometry the twice of
this very important quantity was called by Staudt the sine of the trihedral
angle O − ABC, and later Neuberg suggested the names (first) “Staudtian”
and the “Norm of the sides”, respectively. We prefer in this paper the name
“Staudtian”to honour the great geometer Staudt. Let

n = n(ABC) :=
√
sinh s sinh(s − a) sinh(s − b) sinh(s − c).

Then we have

sin
α

2
sin

β

2
sin

γ

2
=

n2

sinh s sinh a sinh b sinh c
. (4.1)

This observation leads to the following formulas of the Staudtian:

sinα =
2n

sinh b sinh c
, sinβ =

2n
sinh a sinh c

, sin γ =
2n

sinh a sinh b
. (4.2)

From the first equality of (4.2) we get that

n =
1
2
sinα sinh b sinh c =

1
2
sinhhC sinh c, (4.3)

where hC is the height of the triangle corresponding to the vertex C. As a
consequence of this concept we can give homogeneous coordinates of the points
of the plane with respect to a basic triangle as follows:

Definition 4.2. Let ABC be a non-degenerate reference triangle of the hyper-
bolic plane. If X is an arbitrary point we define its coordinates by the ratio
of the Staudtian X := (nA(X) : nB(X) : nC(X)) where nA(X), nB(X) and
nC(X) means the Staudtian of the triangle XBC,XCA and XAB, respec-
tively. This triple of coordinates, called triangular coordinates, presents the
point X with respect to the triangle ABC.

Consider finally the ratio of section (BXAC) where XA is the foot of the
transversal AX on the line BC. If n(BXAA), n(CXAA) mean the Staudtian
of the triangles BXAA,CXAA, respectively, then, using (4.3), we have
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(BXAC) =
sinhBXA

sinhXAC
=

1
2 sinhhC sinhBXA

1
2 sinhhC sinhXAC

=
n(BXAA)
n(CXAA)

=
1
2 sinh c sinhAXA sin(BAXA)�
1
2 sinh b sinhAXA sin(CAXA)�

=
sinh c sinhAX sin(BAXA)�
sinh b sinhAX sin(CAXA)�

=
nC(X)
nB(X)

,

proving that

(BXAC) =
nC(X)
nB(X)

, (CXBA) =
nA(X)
nC(X)

, (AXCB) =
nB(X)
nA(X)

. (4.4)

The angular Staudtian of the triangle defined by the equality

N = N(ABC) :=
√
sin δ sin(δ + α) sin(δ + β) sin(δ + γ)

is the “dual” of the concept of Staudtian and thus we have similar formulas
for it. From the law of cosines for the angles we have cos γ = − cosα cosβ +
sinα sinβ cosh c and adding to this the addition formula of the cosine function
we get that

sinα sinβ(cosh c − 1) = cos γ + cos(α + β) = 2 cos
α + β + γ

2
cos

α + β − γ

2
.

From this we obtain that

sinh
c

2
=

√
sin δ sin (δ + γ)

sinα sinβ
. (4.5)

Analogously we get that

cosh
c

2
=

√
sin (δ + β) sin (δ + α)

sinα sinβ
. (4.6)

From these equations it follows that

cosh
a

2
cosh

b

2
cosh

c

2
=

N2

sinα sinβ sin γ sin δ
. (4.7)

Finally we also have that

sinh a =
2N

sinβ sin γ
, sinh b =

2N
sinα sin γ

, sinh c =
2N

sinα sinβ
, (4.8)

and from the first equality of (4.8) we get that

N =
1
2
sinh a sinβ sin γ =

1
2
sinhhC sin γ. (4.9)

The connection between the two Staudtians is given by the formula

2n2 = N sinh a sinh b sinh c. (4.10)

Dividing the first equality of (4.2) by the analogous one in (4.8) we get that
sinα
sinh a = n

N
sinβ
sinh b

sin γ
sinh c implying the equality

N

n
=

sinα

sinh a
. (4.11)
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4.2.2. On the centroid (or median point) of a triangle. We denote the medians
of the triangle by AMA, BMB and CMC , respectively. The feet of the medians
are MA,MB and MC . The existence of their common point M follows from the
Menelaos theorem ([15]). For instance if AB,BC and AC are real lines and the
points A,B and C are ideal points then we have that AMC = MCB = d = a/2
implies that MC is the middle point of the real segment lying on the line AB
between the intersection points of the polars of A and B with AB, respectively
(see Fig. 5).

The fact that the centroid exists implies new real hyperbolic statements, e.g.:
Consider a real hexagon with six right angles. Then the lines containing the
middle points of a side and being perpendicular to the opposite sides of the
hexagon are concurrent.

Theorem 4.3 [8]. We have the following formulas connected with the centroid:

nA(M) = nB(M) = nC(M), (4.12)
sinhAM

sinhMMA
= 2 cosh

a

2
, (4.13)

sinhAMA

sinhMMA
=

sinhBMB

sinhMMB
=

sinhCMC

sinhMMC
=

n

nA(M)
, (4.14)

sinh d′
M =

sinh d′
A + sinh d′

B + sinh d′
C√

1 + 2(1 + cosh a + cosh b + cosh c)
, (4.15)

where d′
A, d′

B , d′
C , d′

M mean the signed distances of the points A,B,C,M to a
line y, respectively. Finally we have

coshY M =
coshY A + coshY B + coshY C

n
nA(M)

. (4.16)

where Y is a point of the plane. (4.15) and (4.16) are called the “center-of-
gravity” property of M and the “minimality property” of M , respectively.

Remark 4.4. Using the first order approximation of the hyperbolic functions
by their Taylor polynomial of order 1, we get from this formula the following
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one: d′
M = d′

A+d′
B+d′

C

3 which associates the centroid with the physical concept
of center of gravity and shows that the center of gravity of three equal weights
at the vertices of a triangle is at M .

Remark 4.5. The minimality property of M for Y = M says that coshMA +
coshMB + coshMC =

√
1 + 2(1 + cosh a + cosh b + cosh c). This implies

coshY A+ coshY B + coshY C = (coshMA+ coshMB + coshMC) coshY M .
From the second-order approximation of coshx we get that

3 +
1
2

(
Y A2 + Y B2+Y C2

)
=

(
3 +

1
2

(
MA2 + MB2+MC2

))(
1 +

1
2
Y M2

)
.

From this (take into consideration only such terms whose order is less than or
equal to 2) we get an Euclidean identity characterizing the centroid: Y A2 +
Y B2 + Y C2 = MA2 + MB2 + MC2 + 3Y M2. As a further consequence we
can see immediately that the value coshY A + coshY B + coshY C is minimal
if and only if Y is the centroid.

4.2.3. On the center of the circumscribed cycle. Denote by O the center of
the circumscribed cycle of the triangle ABC. In the extracted plane O always
exists and could be a real point, point at infinity or ideal point, respectively.
Since we have two possibilities to choose the segments AB,BC and AC on their
respective lines, we also have four possibilities to get a circumscribed cycle.
One of them corresponds to the segments with real lengths and the others
can be gotten if we choose one segment with real length and two segments
with complex lengths, respectively. If A,B,C are real points the first cycle
could be a circle, a paracycle or a hypercycle, but the other three are always
hypercycles, respectively. For example, let a′ = a = BC be a real length, and
b′ = −b+πi, c′ = −c+πi be complex lengths, respectively. Then we denote by
OA the corresponding (ideal) center and by RA the corresponding (complex)
radius. We also note that the latter three hypercycles have geometric meaning.
These are those hypercycles whose fundamental lines contain a pair from the
midpoints of the edge-segments and contain that vertex of the triangle which
is the meeting point of the corresponding edges.

Theorem 4.6. The following formulas are valid on the circumradii:

tanhR =
sin δ

N
, tanhRA =

sin(δ + α)
N

, (4.17)

tanhR =
2 sinh a

2 sinh
b
2 sinh

c
2

n
, tanhRA =

2 sinh a
2 cosh

b
2 cosh

c
2

n
.

(4.18)
nA(0) : nB(O) = cos(δ + α) sinh a : cos(δ + β) sinh b (4.19)

Remark 4.7. The first order Taylor polynomial of the hyperbolic functions of
distances leads to a correspondence between the hyperbolic Staudtians and the
Euclidean area T yealding also further Euclidean formulas. More precisely, we
have n = T and N = T sinα

a = Ta
2Ra = T

2R . Hence we give the following formula:
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sinα sinβ sin γ = 2N2

n = 2T 2

4R2T = T
2R2 or, equivalently, the known Euclidean

dependence of these quantities: T = 2R2 sinα sinβ sin γ.

Remark 4.8. Use the minimality property of M for the point Y = O. Then we
have

√
1 + 2(1 + cosh a + cosh b + cosh c) coshOM = coshOA + coshOB +

coshOC = 3 coshR. Approximating this we get the equation 3
(
1 + R2

2

)
=

√
9 + a2 + b2 + c2

(
1 + OM2

2

)
= 3

√
1 + a2+b2+c2

9

(
1 + OM2

2

)
. The functions

on the right hand side we approximate of order two. If we multiply these
polynomials and hold only those terms which order at most 2 we can deduce
the equation 1+R2

2 = 1+ a2+b2+c2

2·9 +OM2

2 , and hence we deduced the Euclidean
formula OM2 = R2 − a2+b2+c2

9 .

Corollary 4.9. Applying (4.18) to a triangle with four ideal circumcenters,
we get a formula which determines the common distance of three points of
a hypercycle from the basic line of it. In fact, if d means the searched distance,

then 2 sinh a
2 sinh b

2 sinh c
2

n = tanhR = tanh
(
d + επ

2 i
)
=

sinh(d+ε π
2 i)

cosh(d+ε π
2 i) = εi cosh d

εi sinh d =

coth d, and we get:

tanh d =
n

2 sinh a
2 sinh

b
2 sinh

c
2

. (4.20)

For the Euclidean analogue of this equation we can use the first order Taylor
polynomial of the hyperbolic function. Our formula yields to the following 1

R =
d = 4T

abc implying a well-known connection among the sides, the circumradius
and the area of a triangle.

4.2.4. On the center of the inscribed and escribed cycles. We are aware of
the fact that the bisectors of the interior angles of a hyperbolic triangle are
concurrent at a point I, called the incenter, which is equidistant from the sides
of the triangle. The radius of the incircle or inscribed circle, whose center is
at the incenter and touches the sides, shall be designated by r. Similarly the
bisector of any interior angle and those of the exterior angles at the other
vertices, are concurrent at a point outside the triangle; these three points are
called excenters, and the corresponding tangent cycles excycles or escribed
cycles. The excenter lying on AI is denoted by IA, and the radius of the
escribed cycle with center at IA is rA. We denote by XA,XB ,XC the points
of the interior bisectors meets BC,AC,AB, respectively. Similarly YA, YB and
YC denote the intersection points of the exterior bisectors at A,B and C with
BC,AC and AB, respectively. We note that the excenters and the points
of intersection of the sides with the bisectors of the corresponding exterior
angles could be points at infinity or could also be ideal points. Let ZA, ZB

and ZC denote the touching points of the incircle with the lines BC,AC and
AB, respectively and the touching points of the excycles with center IA, IB

and IC are given by the triples {VA,A, VB,A, VC,A}, {VA,B , VB,B , VC,B} and
{VA,C , VB,C , VC,C}, respectively (see in Fig. 6).
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Theorem 4.10 [8]. For the radii r, rA, rB or rC we have the following formulas:

tanh r =
n

sinh s
, tanh rA =

n

sinh(s − a)
, (4.21)

tanh r =
N

2 cos α
2 cos β

2 cos γ
2

, (4.22)

coth r =
sin(δ + α) + sin(δ + β) + sin(δ + γ) + sin δ

2N
, (4.23)

coth rA =
− sin(δ + α) + sin(δ + β) + sin(δ + γ) − sin δ

2N
, (4.24)

tanhR + tanhRA = coth rB + coth rC ,

tanhRB + tanhRC = coth r + coth rA,

tanhR + coth r =
1
2
(tanhR + tanhRA + tanhRB + tanhRC) , (4.25)

nA(I) : nB(I) : nC(I) = sinh a : sinh b : sinh c, (4.26)
nA(IA) : nB(IA) : nC(IA) = − sinh a : sinh b : sinh c. (4.27)

The following theorem describes relations between the distance of the incenter
and circumcenter, the radii r,R and the side-lengths a, b, c.

Theorem 4.11 [8]. Let O and I be the center of the circumscribed and inscribed
circles, respectively. Then we have

coshOI = 2 cosh
a

2
cosh

b

2
cosh

c

2
cosh r coshR + cosh

a + b + c

2
cosh(R − r).

(4.28)
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Remark 4.12. The second order approximation of (4.28) leads to the equality
1 + OI2

2 = 2
(
1 + r2

2

)(
1 + R2

2

) (
1 + a2

8

) (
1 + b2

8

) (
1 + c2

8

)
−

(
1 + (a+b+c)2

8

)
(
1 + (R−r)2

2

)
. From this we get that OI2 = R2+r2+ a2+b2+c2

4 − ab+bc+ca
2 +2Rr.

But for Euclidean triangles we have (see [1]) a2 + b2 + c2 = 2s2 − 2(4R + r)r
and ab + bc + ca = s2 + (4R + r)r. The equality above leads to the Euler’s
formula: OI2 = R2 − 2rR.
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[8] G.Horváth, Á.: Addendum to the paper “Hyperbolic plane geometry re-
visited”. doi:10.13140/2.1.2138.8483 or http://www.math.bme.hu/∼ghorvath/
hyperbolicproofs

[9] Hart, A.S.: Geometric investigations of Steiner’s construction for Malfatti’s
problem. Q. J. Pure Appl. Math. 1, 219–221 (1857)

[10] Johnson, R.A.: Advanced Euclidean Geometry, An Elementary Treatise on the
Geometry of the Triangle and the Circle. Dover Publications, Inc. New York
(The first edition published by Houghton Mifflin Company in 1929) (1960)

[11] Malfatti, G.: Memoria sopra un problema sterotomico. Memorie di Matematica
e di Fisica della Società Italiana delle Scienze. 10, 235–244 (1803)

[12] Molnár, E.: Inversion auf der Idealebene der Bachmannschen metrischen Ebene.
Acta Math. Acad. Sci. Hung. 37/4, 451–470 (1981)

[13] Steiner’s gesammelte Werke (herausgegeben von K. Weierstrass), Berlin (1881)

[14] Steiner, J.: Einige geometrische Betrachtungen. Journal für die reine und ange-
wandte Mathematik 1/2, 161–184 (1826), 1/3, 252–288 (1826)

[15] Szász, P.: Introduction to Bolyai–Lobacsevski’s geometry. Akadémiai Kiadó, Bu-
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