

The first eigenvalue of Laplace-type elliptic operators induced by conjugate connections

Udo Simon

Abstract. According to Tashiro–Obata, on a Riemannian manifold (*M,g*) with its Ricci curvature bounded positively from below, the first eigenvalue of the Laplacian on functions satisfies a simple inequality in terms of the scalar curvature, and equality characterizes the Riemannian sphere. We discuss a similar inequality for a certain elliptic operator on a manifold with conjugate connections. As application we characterize hyperellipsoids in Blaschke's unimodular-affine hypersurface theory.

Mathematics Subject Classification. 53C24, 53C40, 35P15, 53A15.

Keywords. Conjugate connections, Laplace-type operator, first eigenvalue, characterization of hyperellipsoids.

1. Introduction

We recall the notion of *a conjugate triple* (*conjugate connections*, resp.) (∇, q, ∇^*) from section 4.4 in [\[8\]](#page-6-0):

$$
wg(u,v) = g(\nabla_w u, v) + g(u, \nabla_w^* v);
$$

here (M, g) denotes a semi-Riemannian manifold, u, v, w denote vector fields and the connections ∇ and ∇^* are torsion free.

In the following we additionally assume that ∇^* is Ricci symmetric, that means its Ricci tensor Ric^* is symmetric. Again from section 4.4 in [\[8\]](#page-6-0), for a given conjugate triple (∇, g, ∇^*) with torsion free connections, we have the following equivalences:

- ∇^* is Ricci symmetric,
- $\bullet \ \nabla$ is Ricci symmetric.
- ∇^* admits a parallel volume form ω^* ,
- ∇ admits a parallel volume form ω .

Each parallel volume form is unique modulo a non-zero constant factor.

M. Wiehe stated an extension of the so called Bochner–Lichnerowicz formula from Riemannian Geometry to the case of conjugate connections (see [\[10\]](#page-6-1), Lemma 2.10); for the proof of this he used unpublished calculations of the present author (see Wiehe's remark [\[10](#page-6-1)], p. 15). As application of this formula he proved the following analogue of a theorem of Tashiro–Obata (for the theorem of Tashiro–Obata see e.g. [\[1](#page-6-2)], p. 179).

Theorem. Let (M, q) be a closed Riemannian manifold with dimension $n \geq 2$ *and let* (∇, g, ∇^*) *be a conjugate triple with torsion free and Ricci symmetric connections* ∇ *and* ∇^* *. Assume that there exists* $0 \lt k \in \mathbb{R}$ *such that the Ricci curvature* $Ric(\nabla)$ *of* ∇ *satisfies the inequality*

$$
Ric(\nabla) \ge (n-1)k \cdot g.
$$

Then the first eigenvalue λ_1^* of the operator $\Box^* := trace_gHess^*$ satisfies the *inequality*

$$
\lambda_1^* \geq nk.
$$

Here $Hess^*f$ *denotes the* ∇^* -covariant *Hessian of* $f \in C^\infty(M)$.

In [\[5](#page-6-3)], Theorem 8.9, B. Opozda gave a new proof of Wiehe's Theorem.

In the theorem of Tashiro–Obata the discussion of the equality $\lambda_1 = nk$ leads to a characterization of the Riemannian sphere $\mathbb{S}^{n}(k)$. It is the aim of the present paper to investigate the case of equality $\lambda_1^* = nk$ in Wiehe's theorem. In our paper we use the notations from [\[8](#page-6-0)]. For local calculations we adopt the Einstein summation convention and raise and lower indices with respect to the Riemannian metric g.

The following Theorem is our main result.

Theorem. *Let* M *be a closed and simply connected* n*-manifold and* (M,g) *be Riemannian with* $n \geq 2$; *further let* (∇, g, ∇^*) *be a conjugate triple with torsion free connections* ∇, ∇[∗], *and assume that* ∇[∗] *is Ricci-symmetric; moreover, assume that* ∇[∗] *is projectively flat and that*

(i) $∃ k > 0$ *s.t. the Ricci-tensor Ric* (∇) *of* ∇ *satisfies the inequality*

$$
Ric\left(\nabla\right) \ge (n-1)k \cdot g,
$$

(ii) the first eigenvalue λ_1^* of the operator \Box^* satisfies $\lambda_1^* = nk$.

Then we have the following properties for (∇, g, ∇^*) :

- (a) the eigenspace $E^*(\lambda_1^*)$ of \Box^* has the dimension $\dim E^*(\lambda_1^*) = n + 1$;
- (b) *let* f *be a first eigenfunction of the operator* \Box^* , *i.e.* $f \in E^*(\lambda_1^*)$; then *there exists a positive function* $\rho : M \to \mathbb{R}$ *s.t.*

(b.1) *the function* $f \cdot \rho : M \to \mathbb{R}$ *satisfies the PDE-system*

$$
Hess^{*}(f \cdot \varrho) + \frac{1}{n-1} \cdot Ric^{*} \cdot (f \cdot \varrho) = 0,
$$

and its trace gives a Schrödinger type equation for the operator \Box^* ; (b.2) *the function* ϱ defines a new conjugate triple $(\nabla^{\sharp}, g^{\sharp}, \nabla^{*\sharp})$ as follows:

g and g^{\sharp} are conformally related: $g^{\sharp} := \frac{1}{\varrho} \cdot g$;
 ∇^* and ∇^*^{\sharp} are presentively related.

∇[∗] *and* ∇∗- *are projectively related:*

$$
\nabla_u^{*\sharp} v - \nabla_u^* v = -d \ln \varrho(u) v - d \ln \varrho(v) u.
$$

The (1.3)-curvature tensors R^{\sharp} and $R^{*\sharp}$ of ∇^{\sharp} and $\nabla^{*\sharp}$, resp., satisfy *the relation*

$$
R^{\sharp}(u,v)w = g^{\sharp}(v,w)u - g^{\sharp}(u,w)v = R^{*\sharp}(u,v)w;
$$

from this last equation the connection ∇^{\sharp} *is also projectively flat;*

(b.3) *the eigenspaces* $E^*(\lambda_1 = nk)$ *of* \Box^* *and* $E^{*}(\lambda_1^{\sharp} = n)$ *of* \Box^* *coincide*; *in particular,* $\lambda_1^{\dagger \dagger} = n$ *is the first eigenvalue of* $\Box^{\dagger \dagger}$ *; moreover, any* f *first eigenfunction* $f \in E^{* \sharp}$ *satisfies the PDE-system*

$$
Hess^{*\sharp}f + f \cdot g^{\sharp} = 0.
$$

Finally, the connection ∇^{\sharp} *defines an operator* $\Box^{\sharp} := trace_{g^{\sharp}}Hess^{\sharp}$. *This operator has the same first eigenvalue* $\lambda_1^{\mu} = n = \lambda_1^{*\mu}$, and the *corresponding eigenspaces coincide:* $E^{\sharp} = E^{*\sharp}$.

Proof of the Theorem Step 1 Following Theorem 2.11 and Remark 2.12 in [\[10\]](#page-6-1), pp. 16–17, the equality $\lambda_1^* = nk$ implies:

$$
Ric(grad_gf, grad_gf) = (n-1) \cdot k \cdot ||grad_gf||_g^2
$$

and

$$
Hess^*f + kfg = 0
$$

for every first eigenfunction of the operator \Box^* .

- Step 2 The given assumptions, namely that (∇, g, ∇^*) is a conjugate triple with torsion free and Ricci-symmetric connections ∇, ∇^* and projectively flat ∇^* , imply that there exists a hypersurface immersion $x : M \to \mathbb{R}^{n+1}$ s.t. $x(M)$ is a hyperovaloid with a relative normalization (Y, y) , where Y denotes a conormal field and y a relative normal, and where the given conjugate triple coincides with data induced from this relative normalization (see section 4.11 in $[8]$ $[8]$), namely:
	- **–** ∇ is the induced connection,
	- **–** g is the relative metric,
	- **–** ∇[∗] is the conormal connection.

If necessary we translate $x(M)$ s.t. the origin of \mathbb{R}^{n+1} lies inside the hyperovaloid, thus, for an appropriate orientation of the normalization, the support function $\rho := - \langle Y, x \rangle$ satisfies $\rho > 0$. We fix a determinant form over the vector space \mathbb{R}^{n+1} ; for another choice of a determinant form there would appear a constant non-zero factor in the calculations below.

Step 3 Let f be a first eigenfunction of the operator \Box^* . Define the vector valued mapping $a: M \to \mathbb{R}^{n+1}$ by

$$
a := -g^{ir}\partial_i f \, \partial_r x + k f \cdot x.
$$

Denote the Levi-Civita connection of g by $\nabla(g)$. Then

$$
\nabla(g)_i a = P_i^k \partial_k x
$$

where the operator P satisfies

$$
P_i^k = \nabla(g)_i f^k - C_i^{kr} \nabla(g)_r f + kf \cdot \delta_i^k = \nabla_i^* f^k + kf \cdot \delta_i^k;
$$

the components C_i^{kr} come from the cubic form tensor C of the relative
hypersurface (x, Y, y) see section 4.4.3 in [8]. As f is a first eigenfunchypersurface (x, Y, y) , see section 4.4.3 in [\[8](#page-6-0)]. As f is a first eigenfunction of \Box^* , we have trace $P = 0$.

Step 4 Following an idea of Blaschke (p. 215 in [\[2\]](#page-6-4)), below we derive an integral formula for the elementary symmetric functions \mathcal{P}_k of P. We use the determinant tensor ε of Ricci. While we set $\mathcal{P}_o := 1$, for $k = 1, \ldots, n$ the functions \mathcal{P}_k are defined as follows:

$$
n! \mathcal{P}_k := \varepsilon^{i_1 i_2 \dots i_k i_{k+1} \dots i_n} \varepsilon_{j_1 j_2 \dots j_k i_{k+1} \dots i_n} P_{i_1}^{j_1} \dots P_{i_k}^{j_k}.
$$

Define the vector field Ω in terms of local coordinates:

$$
\Omega^i := \varepsilon^{i i_2 \dots i_n} \det(x, a, a_{i_2}, x_{i_3}, \dots, x_{i_n}).
$$

Then its divergence in terms of $\nabla(g)$ reads:

$$
\nabla(g)_i \Omega^i = \varepsilon^{ii_2...i_n} \left(\det(x_i, a, a_{i_2}, x_{i_3}, \dots, x_{i_n}) + \det(x, a_i, a_{i_2}, x_{i_3}, \dots, x_{i_n}) \right)
$$

\n
$$
= \varepsilon^{ii_2...i_n} \cdot \left(-kf P_{i_2}^s \det(x, x_i, x_s, x_{i_3}, \dots, x_{i_n}) \right)
$$

\n
$$
+ \varepsilon^{ii_2...i_n} \cdot P_i^p P_{i_2}^s \det(x, x_p, x_s, x_{i_3}, \dots, x_{i_n})
$$

\n
$$
= \varepsilon^{ii_2...i_n} \left(-kf P_{i_2}^s \cdot \varepsilon_{i s i_3...i_n} + P_i^p P_{i_2}^s \cdot \varepsilon_{i s i_3...i_n} \right) \cdot \langle Y, x \rangle
$$

\n
$$
= n! \cdot \langle Y, x \rangle P_2.
$$

In the foregoing calculation we obey the skew-symmetry of the ε tensor, the symmetry of second covariant derivatives, the higher dimensional cross product construction for the conormal

$$
\varepsilon_{i_1i_2...i_n} \cdot Y = [x_{i_1}, \dots, x_{i_n}]
$$

and the relation $\mathcal{P}_1 = 0$. Thus we arrive at the integral formula

$$
\int \varrho \cdot \mathcal{P}_2 \,\omega(g) = 0,
$$

where $\omega(q)$ denotes the Riemannian volume form.

Step 5 We recall that the support function ρ is nowhere zero on M; moreover, the equation $\mathcal{P}_1 = 0$ implies $\mathcal{P}_2 \leq 0$. Thus the integral formula gives $\mathcal{P}_2 = 0$ and we finally get $P = 0$. From Step 3 we get $a = const$ and

$$
-kf \cdot \varrho \ = \ .
$$

- Step 6 According to Satz 3.1 and its proof in [\[6\]](#page-6-5) any function of the type $\langle Y, a \rangle$ satisfies the system (b.1) in the assertion of our Theorem. As $a \in \mathbb{R}^{n+1}$ is arbitrary, the space of such functions has dimension $(n + 1)$. From the positivity of ϱ then also the eigenspace $E^*(\lambda_1^*)$ has the same dimension; see [\[3\]](#page-6-6).
- Step 7 We rewrite the equation in Step 5:

$$
f=
$$

where $Y^{\sharp} := \frac{1}{e} \cdot Y$ and $a^{\sharp} := -\frac{1}{k} \cdot a \in \mathbb{R}^{n+1}$. One easily verifies that the conormal field Y^{\sharp} defines another relative hypersurface geometry on $x(M)$, namely the so called *centroaffine geometry* (see sections 3.4.3) and 6.6.4.iii in $[9]$ $[9]$ and section 6.3 in $[8]$ $[8]$). From 6.3.3 in $[8]$ the asserted relations on the curvature tensors in (b.2) of our Theorem follow. Finally one verifies the system $Hess^{*\sharp} f + f \cdot g^{\sharp} = 0$; this proves (b.3) above.

2. Observations for conjugate connections

• Let (∇, q, ∇^*) be a conjugate triple with torsion free connections ∇, ∇^* ; moreover assume that ∇^* is Ricci-symmetric and that the symmetric (1, 2)-difference tensor $K := \nabla^* - \nabla$ is trace free (so called *apolarity*). If both Ricci tensors Ric and Ric^* satisfy the same inequality

$$
Ric \ge (n-1)k \cdot g \quad \text{and} \quad Ric^* \ge (n-1)k \cdot g
$$

for some constant $k \in \mathbb{R}$ then the Ricci tensor $Ric(g)$ of the Levi-Civita connection $\nabla(q)$ satisfies the same inequality $Ric(q) \geq (n-1)k \cdot q$.

Proof. Calculate the following relation for the Ricci tensors in local terms (cf. formula 4.4.10.f on p. 60 in $[8]$):

$$
2R(g)_{ij} = R_{ij} + R_{ij}^* + 2K_{irs}K_j^{rs}.
$$

The symmetric tensor field with components $K_{irs}K_j^{rs}$ is semi-positive def-
inite thus the inequalities for Ric and Ric^* imply the asserted inequality inite, thus the inequalities for Ric and Ric^* imply the asserted inequality for $Ric(q)$.

• In the foregoing assume that (M,g) is complete Riemannian and that $k > 0$; then both inequalities $Ric \ge (n-1)k \cdot g$ and $Ric^* \ge (n-1)k \cdot g$ together imply

$$
Ric(g) \ge (n-1)k \cdot g,
$$

and now Myers' theorem [\[4\]](#page-6-8) implies that (M, q) is compact. Following results of Lichnerowicz–Obata (see pp. 179–180 in [\[1](#page-6-2)]) the inequality $Ric(g) \geq (n-1)k \cdot g$ implies an inequality for the first eigenvalue of the Laplacian:

$$
\lambda_1(\Delta) \geq n \; k;
$$

here equality holds if and only if the manifold (M, g) is isometrically diffeomorphic to a sphere.

• We call a conjugate triple a *Blaschke structure* if the difference tensor K satisfies an apolarity condition:

$$
K_{ij}^j=0.
$$

In this special case the elliptic operators \Box and \Box^* coincide with the Laplacian Δ_q on functions.

3. Observations for Blaschke hypersurfaces

Consider a connected, oriented C^{∞} -manifold of dimension $n > 2$ and an affine immersion $x : M \to \mathbb{R}^{n+1}$ into the affine space \mathbb{R}^{n+1} equipped with a unimodular structure; assume that x is locally strongly convex and that the induced structure is *equiaffine* (see section 6.2 in $[8]$), that means x is equipped with an appropriately oriented *affine normal* y s.t. the Blaschke metric q is positive definite; x together with the normalization y is called a *Blaschke hypersurface* with conjugate triple (∇, g, ∇^*) , where ∇ is the *induced connection* and ∇[∗] the *conormal connection*; the triple satisfies an apolarity condition. If the *affine shape operator* S is positive definite then the symmetric *Weingarten form* S^{\flat} with $S^{\flat}(u, v) := g(Su, v)$ can be interpreted as *affine spherical metric* of the *affine spherical indicatrix* (or *affine Gauß map*, resp.) $y: M \to \mathbb{R}^{n+1}$; see section 4.6 in [\[8\]](#page-6-0).

 S^{\flat} and Ric^* satisfy the relation $Ric^* = (n-1)S^{\flat}$, moreover we have

$$
(n-1)Ric + Ric^* = nH \cdot g,
$$

where $nH := trace S$ is the *affine mean curvature*, and the Ricci tensor $Ric(g)$ of the Blaschke metric g satisfies

$$
Ric(g)_{ij} = K_{irs}K_j^{rs} + \frac{n-2}{2}S_{ij}^b + \frac{n}{2} \cdot Hg_{ij}.
$$

The foregoing facts admit the following observations:

- 1. If the spherical metric S^{\flat} is bounded below, namely $S^{\flat} > k \cdot q$ for some $k \in \mathbb{R}$, then $Ric^* \ge (n-1)kg$ and also $Ric \ge (n-1)kg$, and thus finally also $Ric(g) \ge (n-1)kg$. Thus all three Ricci curvatures Ric, Ric^* and $Ric(g)$ satisfy the same inequality.
- 2. If $n \geq 2$, $S^{\flat} \geq 0$ and $H \geq \frac{2(n-1)}{n} \cdot k$ then $Ric(g) \geq (n-1)kg$.
3. If $n-2$ and $H > k$ then $Ric(g) > ka$ that means the Gaud
- 3. If $n = 2$ and $H \geq k$ then $Ric(q) \geq kq$, that means the Gauß curvature is bounded below by k.

Remark. The assumption that $Ric(q)$ is bounded below plays a role in the maximum principle of Omori–Yau; for applications in Blaschke's affine hypersurface theory see e.g. [\[7](#page-6-9)].

The foregoing statements can be applied to metrically complete (so called *affine complete*) Blaschke hypersurfaces. We consider the case $k > 0$. We give an example:

Theorem. Let $x : M \to \mathbb{R}^{n+1}$ be a locally strongly convex Blaschke hypersurface *s.t.*

(i) *the Blaschke metric is complete,*

- (ii) \exists 0 < k $\in \mathbb{R}$ *s.t.* $Ric^* \geq (n-1) \cdot kg$,
- $(iii) \exists f \in C^{\infty} \ s.t. \; \Box^* f + nkf = 0.$

Then x(M) *is a hyperellipsoid.*

Proof. It follows from (ii) above that the Weingarten form satisfies $S^{\flat} \geq kg$, and thus the affine mean curvature $H \geq k$. Now from the observations above we also know that $Ric(q) \geq (n-1)kq$ and therefore M is compact. As a consequence of the apolarity condition, on a Blaschke hypersurface the operators Δ and \Box^* coincide. Thus from the assumption (iii) the Laplacian has its first eigenvalue $\lambda_1 = nk$. Then Obata's result (see [\[1](#page-6-2)], p. 180) implies that (M, g) is isometrically diffeomorphic to the canonical Euclidean sphere, that means $x(M)$ must be a hyperellipsoid.

Acknowledgment

I thank B. Opozda for discussions on the topic.

References

- [1] Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété Riemannienne, Springer Lecture Notes, vol. 194 (1971)
- [2] Blaschke, W.: Vorlesungen ¨uber Differentialgeometrie. II. Affine Differentialgeometrie. Springer, Berlin (1923)
- [3] Gardner, R.B., Kriele, M., Simon, U.: Generalized spherical functions on projectively flat manifolds. Results Math. **27**, 41–50 (1995)
- [4] Myers, S.B.: Riemannian manifolds in the large. Duke Math. J. **1**, 39–49 (1935)
- [5] Opozda, B.: Bochner's Technique for Statistical Manifolds. JU Krakow (2013, manuscript)
- [6] Schneider, R.: Zur affinen Differentialgeometrie im Großen, I. Math. Z. **101**, 375–406 (1967)
- [7] Sheng, L., Li, A.M., Simon, U.: Complete Blaschke hypersurfaces with negative affine mean curvature. Ann. Glob. Anal. Geom. (2014, to appear)
- [8] Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the Affine Hypersurface Theory, Lecture Notes, Science University Tokyo (1991)
- [9] Simon, U.: Affine Hypersurface Theory Revisited: Gauge Invariant Structures (English version), Russian Mathematics (Izv. vuz) vol. 48, pp. 48–73 (2004)
- [10] Wiehe, M.: Deformations in Affine Hypersurface Theory. Doctoral Thesis, FB Mathematik TU Berlin (1998)

Udo Simon Institut Mathematik, MA 8-3, TU Berlin Straße 17. Juni 136 10623 Berlin, Germany e-mail: simon@math.tu-berlin.de

Received: September 9, 2014.