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The first eigenvalue of Laplace-type elliptic
operators induced by conjugate connections

Udo Simon

Abstract. According to Tashiro-Obata, on a Riemannian manifold (M, g)
with its Ricci curvature bounded positively from below, the first eigen-
value of the Laplacian on functions satisfies a simple inequality in terms of
the scalar curvature, and equality characterizes the Riemannian sphere.
We discuss a similar inequality for a certain elliptic operator on a mani-
fold with conjugate connections. As application we characterize hyperel-
lipsoids in Blaschke’s unimodular-affine hypersurface theory.
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1. Introduction

We recall the notion of a conjugate triple (conjugate connections, resp.)
(V,g,V*) from section 4.4 in [8]:

wg(u,v) = g(Vyu,v) + g(u, Vy,v);

here (M, g) denotes a semi-Riemannian manifold, u, v, w denote vector fields
and the connections V and V* are torsion free.

In the following we additionally assume that V* is Ricci symmetric, that means
its Ricci tensor Ric* is symmetric. Again from section 4.4 in [8], for a given
conjugate triple (V, g, V*) with torsion free connections, we have the following
equivalences:

e V* is Ricci symmetric,

e V is Ricci symmetric,

e V* admits a parallel volume form w*,
e V admits a parallel volume form w.
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Each parallel volume form is unique modulo a non-zero constant factor.

M. Wiehe stated an extension of the so called Bochner—Lichnerowicz formula
from Riemannian Geometry to the case of conjugate connections (see [10],
Lemma 2.10); for the proof of this he used unpublished calculations of the
present author (see Wiehe’s remark [10], p. 15). As application of this formula
he proved the following analogue of a theorem of Tashiro-Obata (for the the-
orem of Tashiro-Obata see e.g. [1], p. 179).

Theorem. Let (M, g) be a closed Riemannian manifold with dimension n > 2
and let (V,g,V*) be a conjugate triple with torsion free and Ricci symmetric
connections V. and V*. Assume that there exists 0 < k € R such that the Ricci
curvature Ric (V) of V satisfies the inequality

Ric(V) > (n—1)k-g.

Then the first eigenvalue A7 of the operator 10* := trace,Hess"™ satisfies the
inequality

AT > nk.

Here Hess* f denotes the V*-covariant Hessian of f € C>°(M).
In [5], Theorem 8.9, B. Opozda gave a new proof of Wiehe’s Theorem.

In the theorem of Tashiro—Obata the discussion of the equality A; = nk leads
to a characterization of the Riemannian sphere S™(k). It is the aim of the
present paper to investigate the case of equality A} = nk in Wiehe’s theorem.
In our paper we use the notations from [8]. For local calculations we adopt
the Einstein summation convention and raise and lower indices with respect
to the Riemannian metric g.

The following Theorem is our main result.

Theorem. Let M be a closed and simply connected n-manifold and (M, g) be
Riemannian with n > 2; further let (V, g, V*) be a conjugate triple with torsion
free connections V,V*, and assume that V* is Ricci-symmetric; moreover,
assume that V* is projectively flat and that

(i) 3k > 0 s.t. the Ricci-tensor Ric(V) of V satisfies the inequality
Ric(V) = (n = 1)k g,
(i) the first eigenvalue A} of the operator O satisfies \f = nk.
Then we have the following properties for (V,g,V™*):
(a) the eigenspace E*(N\}) of O* has the dimension dimE*(A\}) =n+1;

(b) let f be a first eigenfunction of the operator 0%, i.e. f € E*(A}); then
there exists a positive function o : M — R s.t.
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(b.1) the function f-o: M — R satisfies the PDE-system
Hess™(f - 0) + 715 - Ric* - (f - 0) =0,
and its trace gives a Schréodinger type equation for the operator 0% ;
(b.2) the function o defines a new conjugate triple (V¥, g%, V*#) as follows:
g and g* are conformally related: ¢* := % - g5
V* and V** are projectively related:

Vity — Viv = —dIn o(u)v — d1n p(v)u.

The (1.3)-curvature tensors R* and R** of V¥ and V*¥, resp., satisfy
the relation

Rﬁ (ua U)w = gﬂ (Uv ’LU)’LL - gti (u7 UJ)U = R*ﬁ(ua U)IU;
from this last equation the connection V* is also projectively flat;
(b.3) the eigenspaces E*(A\; = nk) of O and E*u()\ﬁ =n) of Ot coincide;
in particular, Alﬁ =n is the first eigenvalue of 0% ; moreover, any
first eigenfunction f € E*¥ satisfies the PDE-system

Hess*™*f+ f-¢* =0.
Finally, the connection V* defines an operator (F := tracegnHessﬁ.

This operator has the same first eigenvalue M=n= /\Iu, and the
corresponding eigenspaces coincide: Ef = E*E.

Proof of the Theorem Step 1 Following Theorem 2.11 and Remark 2.12
in [10], pp. 16-17, the equality A} = nk implies:

Ric(grady f, grady f) = (n —1) - k - [|grad, f||
and
Hess"f+kfg=0

for every first eigenfunction of the operator [I*.

Step 2 The given assumptions, namely that (V,g, V*) is a conjugate triple
with torsion free and Ricci-symmetric connections V,V* and pro-
jectively flat V*, imply that there exists a hypersurface immersion
x: M — R"! st 2(M) is a hyperovaloid with a relative normaliza-
tion (Y, y), where Y denotes a conormal field and y a relative normal,
and where the given conjugate triple coincides with data induced from
this relative normalization (see section 4.11 in [8]), namely:

— V is the induced connection,

— ¢ is the relative metric,

— V* is the conormal connection.

If necessary we translate z(M) s.t. the origin of R"*! lies inside the
hyperovaloid, thus, for an appropriate orientation of the normaliza-
tion, the support function ¢ := — < Y,z > satisfies p > 0. We fix a
determinant form over the vector space R™t!; for another choice of a
determinant form there would appear a constant non-zero factor in the
calculations below.
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Step 3 Let f be a first eigenfunction of the operator [J*. Define the vector
valued mapping a : M — R"T! by

a:=—g"0;fOpx+kf - x.
Denote the Levi-Civita connection of g by V(g). Then
V(g)ia = PFojx
where the operator P satisfies
PF =V (g)if* = CI"N(g)nf +kf 0] = Vi f* + kf -85

the components C*" come from the cubic form tensor C of the relative
hypersurface (z,Y,y), see section 4.4.3 in [8]. As f is a first eigenfunc-
tion of [1*, we have trace P = 0.

Step 4 Following an idea of Blaschke (p. 215 in [2]), below we derive an integral
formula for the elementary symmetric functions Py of P. We use the
determinant tensor e of Ricci. While we set P, := 1, for k =1,...,n
the functions P;, are defined as follows:

| PR S - PO 7% TSNS Y P J1 Jk
n!Py:=¢ "Ej1jardninsrin iy oo P

A
Define the vector field € in terms of local coordinates:
Q= g2 det(z, a, iy, iy, - - - T4, )-
Then its divergence in terms of V(g) reads:
V()i = "2 (det (x4, @, aiy, Tiy, - - -, i, ) + det (@, a5, iy, Tig, - - - 24,))
= ghi2ein . (=kfP;, det(z,xi, x5, T4y, ..., 24,))
+ ghizein, PfP{Z det (x, xp, Ts, Tig, . .., Ti,)
=" (—kfPy - €isig..in + PYPY - €psigoin) - < Y, 1 >
=nl- <Y,z > Ps.

In the foregoing calculation we obey the skew-symmetry of the e-
tensor, the symmetry of second covariant derivatives, the higher
dimensional cross product construction for the conormal

Eivig..in Y = [Z‘il,. cey xin]

and the relation P; = 0. Thus we arrive at the integral formula

[ePauia =0

where w(g) denotes the Riemannian volume form.

Step 5 We recall that the support function g is nowhere zero on M; moreover,
the equation P; = 0 implies Py < 0. Thus the integral formula gives
Py = 0 and we finally get P = 0. From Step 3 we get a = const and

—kf-0 =<Y,a>.
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Step 6 According to Satz 3.1 and its proof in [6] any function of the type
< Y,a > satisfies the system (b.1) in the assertion of our Theorem.
As a € R""! is arbitrary, the space of such functions has dimension
(n + 1). From the positivity of ¢ then also the eigenspace E*(A}) has
the same dimension; see [3].

Step 7 We rewrite the equation in Step 5:

f=<Y*%d >

where Y := %~Y and af := —% -a € R™!. One easily verifies that the

conormal field Y? defines another relative hypersurface geometry on
(M), namely the so called centroaffine geometry (see sections 3.4.3
and 6.6.4.iii in [9] and section 6.3 in [8]). From 6.3.3 in [8] the as-
serted relations on the curvature tensors in (b.2) of our Theorem follow.
Finally one verifies the system Hess* f + f - g* = 0; this proves (b.3)
above.

2. Observations for conjugate connections

e Let (V,g,V*) be a conjugate triple with torsion free connections V, V*;
moreover assume that V* is Ricci-symmetric and that the symmetric
(1, 2)-difference tensor K := V* — V is trace free (so called apolarity). If
both Ricci tensors Ric and Ric* satisfy the same inequality

Ric>(n—1)k-g and Ric*>(n—1k-g

for some constant k& € R then the Ricci tensor Ric(g) of the Levi-Civita
connection V(g) satisfies the same inequality Ric(g) > (n — 1)k - g.

Proof. Calculate the following relation for the Ricci tensors in local terms
(cf. formula 4.4.10.f on p. 60 in [8)]):

QR(g)ij =Ri; + R:j + 2Ki7"sK;S~

The symmetric tensor field with components K WSK}”S is semi-positive def-
inite, thus the inequalities for Ric and Ric* imply the asserted inequality
for Ric(g).

e In the foregoing assume that (M, g) is complete Riemannian and that
k > 0; then both inequalities Ric > (n — 1)k - g and Ric* > (n— 1)k - g
together imply

Ric(g) > (n—1)k - g,

and now Myers’ theorem [4] implies that (M, g) is compact. Following
results of Lichnerowicz—Obata (see pp. 179-180 in [1]) the inequality
Ric(g) > (n — 1)k - g implies an inequality for the first eigenvalue of
the Laplacian:
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AM(A) = n k;

here equality holds if and only if the manifold (M,g) is isometrically
diffeomorphic to a sphere.

e We call a conjugate triple a Blaschke structure if the difference tensor K
satisfies an apolarity condition:

J
K;; =0.

In this special case the elliptic operators [J and [J* coincide with the
Laplacian A, on functions.

3. Observations for Blaschke hypersurfaces

Consider a connected, oriented C° —manifold of dimension n > 2 and an
affine immersion = : M — R"! into the affine space R"*! equipped with
a unimodular structure; assume that x is locally strongly convex and that
the induced structure is equiaffine (see section 6.2 in [8]), that means z is
equipped with an appropriately oriented affine normal y s.t. the Blaschke
metric g is positive definite; x together with the normalization y is called a
Blaschke hypersurface with conjugate triple (V, g, V*), where V is the induced
connection and V* the conormal connection; the triple satisfies an apolarity
condition. If the affine shape operator S is positive definite then the symmetric
Weingarten form S° with S°(u,v) := g(Su,v) can be interpreted as affine
spherical metric of the affine spherical indicatriz (or affine Gauff map, resp.)
y: M — R"1; see section 4.6 in [8].

S° and Ric* satisfy the relation Ric* = (n — 1)S°, moreover we have

(n — 1)Ric + Ric* =nH - g,

where nH := trace S is the affine mean curvature, and the Ricci tensor Ric (g)
of the Blaschke metric g satisfies

RiC (9)11 = KiTSK;S + nT_QSZ + % . Hglj
The foregoing facts admit the following observations:

1. If the spherical metric S” is bounded below, namely S* > k - ¢ for some
k € R, then Ric* > (n — 1)kg and also Ric > (n — 1)kg, and thus finally
also Ric(g) > (n — 1)kg. Thus all three Ricci curvatures Ric, Ric* and
Ric(g) satisfy the same inequahty

2. Ifn>2 8 >0and H> 22U .k then Ric(g) > (n— 1)kg.

3. If n =2 and H > k then ch( ) > kg, that means the Gauf} curvature
is bounded below by k.

Remark. The assumption that Ric(g) is bounded below plays a role in the
maximum principle of Omori—Yau; for applications in Blaschke’s affine hyper-
surface theory see e.g. [7].
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The foregoing statements can be applied to metrically complete (so called
affine complete) Blaschke hypersurfaces. We consider the case k > 0. We give
an example:

Theorem. Letx : M — R be a locally strongly convex Blaschke hypersurface
s.t.

(i) the Blaschke metric is complete,
(i) 3 0<keR s.t. Ric* > (n—1)- kg,
(iii) 3 feC>® st. O f +nkf=0.

Then x(M) is a hyperellipsoid.

Proof. Tt follows from (ii) above that the Weingarten form satisfies S° > kg,
and thus the affine mean curvature H > k. Now from the observations above
we also know that Ric(g) > (n — 1)kg and therefore M is compact. As a con-
sequence of the apolarity condition, on a Blaschke hypersurface the operators
A and [O0* coincide. Thus from the assumption (iii) the Laplacian has its first
eigenvalue A\; = nk. Then Obata’s result (see [1], p. 180) implies that (M, g)
is isometrically diffeomorphic to the canonical Euclidean sphere, that means
(M) must be a hyperellipsoid.
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