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The first eigenvalue of Laplace-type elliptic
operators induced by conjugate connections

Udo Simon

Abstract. According to Tashiro–Obata, on a Riemannian manifold (M, g)
with its Ricci curvature bounded positively from below, the first eigen-
value of the Laplacian on functions satisfies a simple inequality in terms of
the scalar curvature, and equality characterizes the Riemannian sphere.
We discuss a similar inequality for a certain elliptic operator on a mani-
fold with conjugate connections. As application we characterize hyperel-
lipsoids in Blaschke’s unimodular-affine hypersurface theory.
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1. Introduction

We recall the notion of a conjugate triple (conjugate connections, resp.)
(∇, g,∇∗) from section 4.4 in [8]:

wg(u, v) = g(∇wu, v) + g(u,∇∗
wv);

here (M, g) denotes a semi-Riemannian manifold, u, v, w denote vector fields
and the connections ∇ and ∇∗ are torsion free.
In the following we additionally assume that ∇∗ is Ricci symmetric, that means
its Ricci tensor Ric∗ is symmetric. Again from section 4.4 in [8], for a given
conjugate triple (∇, g,∇∗) with torsion free connections, we have the following
equivalences:

• ∇∗ is Ricci symmetric,
• ∇ is Ricci symmetric,
• ∇∗ admits a parallel volume form ω∗,
• ∇ admits a parallel volume form ω.
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Each parallel volume form is unique modulo a non-zero constant factor.
M. Wiehe stated an extension of the so called Bochner–Lichnerowicz formula
from Riemannian Geometry to the case of conjugate connections (see [10],
Lemma 2.10); for the proof of this he used unpublished calculations of the
present author (see Wiehe’s remark [10], p. 15). As application of this formula
he proved the following analogue of a theorem of Tashiro–Obata (for the the-
orem of Tashiro–Obata see e.g. [1], p. 179).

Theorem. Let (M, g) be a closed Riemannian manifold with dimension n ≥ 2
and let (∇, g,∇∗) be a conjugate triple with torsion free and Ricci symmetric
connections ∇ and ∇∗. Assume that there exists 0 < k ∈ R such that the Ricci
curvature Ric (∇) of ∇ satisfies the inequality

Ric (∇) ≥ (n − 1)k · g.

Then the first eigenvalue λ∗
1 of the operator �∗ := tracegHess∗ satisfies the

inequality

λ∗
1 ≥ nk.

Here Hess∗f denotes the ∇∗-covariant Hessian of f ∈ C∞(M).

In [5], Theorem 8.9, B. Opozda gave a new proof of Wiehe’s Theorem.

In the theorem of Tashiro–Obata the discussion of the equality λ1 = nk leads
to a characterization of the Riemannian sphere S

n(k). It is the aim of the
present paper to investigate the case of equality λ∗

1 = nk in Wiehe’s theorem.
In our paper we use the notations from [8]. For local calculations we adopt
the Einstein summation convention and raise and lower indices with respect
to the Riemannian metric g.

The following Theorem is our main result.

Theorem. Let M be a closed and simply connected n-manifold and (M, g) be
Riemannian with n ≥ 2; further let (∇, g,∇∗) be a conjugate triple with torsion
free connections ∇,∇∗, and assume that ∇∗ is Ricci-symmetric; moreover,
assume that ∇∗ is projectively flat and that

(i) ∃ k > 0 s.t. the Ricci-tensor Ric (∇) of ∇ satisfies the inequality

Ric (∇) ≥ (n − 1)k · g,

(ii) the first eigenvalue λ∗
1 of the operator �∗ satisfies λ∗

1 = nk.

Then we have the following properties for (∇, g,∇∗):

(a) the eigenspace E∗(λ∗
1) of �∗ has the dimension dimE∗(λ∗

1) = n + 1;
(b) let f be a first eigenfunction of the operator �∗, i.e. f ∈ E∗(λ∗

1); then
there exists a positive function � : M → R s.t.
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(b.1) the function f · � : M → R satisfies the PDE-system

Hess∗(f · �) + 1
n−1 · Ric∗ · (f · �) = 0,

and its trace gives a Schrödinger type equation for the operator �∗;
(b.2) the function � defines a new conjugate triple (∇�, g�,∇∗�) as follows:

g and g� are conformally related: g� := 1
� · g;

∇∗ and ∇∗� are projectively related:

∇∗�
u v − ∇∗

uv = −d ln �(u)v − d ln �(v)u.

The (1.3)-curvature tensors R� and R∗� of ∇� and ∇∗�, resp., satisfy
the relation

R�(u, v)w = g�(v, w)u − g�(u,w)v = R∗�(u, v)w;

from this last equation the connection ∇� is also projectively flat;
(b.3) the eigenspaces E∗(λ1 = nk) of �∗ and E∗�(λ�

1 = n) of �∗� coincide;
in particular, λ

∗�
1 = n is the first eigenvalue of �∗� ; moreover, any

first eigenfunction f ∈ E∗� satisfies the PDE-system

Hess∗�f + f · g� = 0.

Finally, the connection ∇� defines an operator �� := traceg�Hess�.
This operator has the same first eigenvalue λ�

1 = n = λ∗�
1 , and the

corresponding eigenspaces coincide: E� = E∗�.

Proof of the Theorem Step 1 Following Theorem 2.11 and Remark 2.12
in [10], pp. 16–17, the equality λ∗

1 = nk implies:

Ric(gradgf, gradgf) = (n − 1) · k · ||gradgf ||2g
and

Hess∗f + kfg = 0

for every first eigenfunction of the operator �∗.

Step 2 The given assumptions, namely that (∇, g,∇∗) is a conjugate triple
with torsion free and Ricci-symmetric connections ∇,∇∗ and pro-
jectively flat ∇∗, imply that there exists a hypersurface immersion
x : M → R

n+1 s.t. x(M) is a hyperovaloid with a relative normaliza-
tion (Y, y), where Y denotes a conormal field and y a relative normal,
and where the given conjugate triple coincides with data induced from
this relative normalization (see section 4.11 in [8]), namely:
– ∇ is the induced connection,
– g is the relative metric,
– ∇∗ is the conormal connection.
If necessary we translate x(M) s.t. the origin of Rn+1 lies inside the
hyperovaloid, thus, for an appropriate orientation of the normaliza-
tion, the support function � := − < Y, x > satisfies � > 0. We fix a
determinant form over the vector space R

n+1; for another choice of a
determinant form there would appear a constant non-zero factor in the
calculations below.
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Step 3 Let f be a first eigenfunction of the operator �∗. Define the vector
valued mapping a : M → R

n+1 by

a := −gir∂if ∂rx + kf · x.

Denote the Levi-Civita connection of g by ∇(g). Then

∇(g)ia = P k
i ∂kx

where the operator P satisfies

P k
i = ∇(g)if

k − Ckr
i ∇(g)rf + kf · δk

i = ∇∗
i f

k + kf · δk
i ;

the components Ckr
i come from the cubic form tensor C of the relative

hypersurface (x, Y, y), see section 4.4.3 in [8]. As f is a first eigenfunc-
tion of �∗, we have trace P = 0.

Step 4 Following an idea of Blaschke (p. 215 in [2]), below we derive an integral
formula for the elementary symmetric functions Pk of P . We use the
determinant tensor ε of Ricci. While we set Po := 1, for k = 1, . . . , n
the functions Pk are defined as follows:

n!Pk := εi1i2...ikik+1...inεj1j2...jkik+1...in
P j1

i1
. . . P jk

ik
.

Define the vector field Ω in terms of local coordinates:

Ωi := εii2...in det(x, a, ai2 , xi3 , . . . , xin
).

Then its divergence in terms of ∇(g) reads:

∇(g)iΩi = εii2...in (det (xi, a, ai2 , xi3 , . . . , xin
) + det (x, ai, ai2 , xi3 , . . . , xin

))

= εii2...in · (−kfP s
i2 det(x, xi, xs, xi3 , . . . , xin

))

+ εii2...in · P p
i P s

i2 det (x, xp, xs, xi3 , . . . , xin
)

= εii2...in
(−kfP s

i2 · εisi3...in
+ P p

i P s
i2 · εpsi3...in

) · < Y, x >

= n!· < Y, x > P2.

In the foregoing calculation we obey the skew-symmetry of the ε-
tensor, the symmetry of second covariant derivatives, the higher
dimensional cross product construction for the conormal

εi1i2...in
· Y = [xi1 , . . . , xin

]

and the relation P1 = 0. Thus we arrive at the integral formula
∫

� · P2 ω(g) = 0,

where ω(g) denotes the Riemannian volume form.
Step 5 We recall that the support function � is nowhere zero on M ; moreover,

the equation P1 = 0 implies P2 ≤ 0. Thus the integral formula gives
P2 = 0 and we finally get P = 0. From Step 3 we get a = const and

−kf · � = < Y, a >.
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Step 6 According to Satz 3.1 and its proof in [6] any function of the type
< Y, a > satisfies the system (b.1) in the assertion of our Theorem.
As a ∈ R

n+1 is arbitrary, the space of such functions has dimension
(n + 1). From the positivity of � then also the eigenspace E∗(λ∗

1) has
the same dimension; see [3].

Step 7 We rewrite the equation in Step 5:

f =< Y �, a� >

where Y � := 1
� ·Y and a� := − 1

k ·a ∈ R
n+1. One easily verifies that the

conormal field Y � defines another relative hypersurface geometry on
x(M), namely the so called centroaffine geometry (see sections 3.4.3
and 6.6.4.iii in [9] and section 6.3 in [8]). From 6.3.3 in [8] the as-
serted relations on the curvature tensors in (b.2) of our Theorem follow.
Finally one verifies the system Hess∗�f + f · g� = 0; this proves (b.3)
above.

2. Observations for conjugate connections

• Let (∇, g,∇∗) be a conjugate triple with torsion free connections ∇,∇∗;
moreover assume that ∇∗ is Ricci-symmetric and that the symmetric
(1, 2)-difference tensor K := ∇∗ − ∇ is trace free (so called apolarity). If
both Ricci tensors Ric and Ric∗ satisfy the same inequality

Ric ≥ (n − 1)k · g and Ric∗ ≥ (n − 1)k · g

for some constant k ∈ R then the Ricci tensor Ric (g) of the Levi-Civita
connection ∇(g) satisfies the same inequality Ric (g) ≥ (n − 1)k · g.

Proof. Calculate the following relation for the Ricci tensors in local terms
(cf. formula 4.4.10.f on p. 60 in [8]):

2R(g)ij = Rij + R∗
ij + 2KirsK

rs
j .

The symmetric tensor field with components KirsK
rs
j is semi-positive def-

inite, thus the inequalities for Ric and Ric∗ imply the asserted inequality
for Ric (g).

• In the foregoing assume that (M, g) is complete Riemannian and that
k > 0; then both inequalities Ric ≥ (n − 1)k · g and Ric∗ ≥ (n − 1)k · g
together imply

Ric (g) ≥ (n − 1)k · g,

and now Myers’ theorem [4] implies that (M, g) is compact. Following
results of Lichnerowicz–Obata (see pp. 179–180 in [1]) the inequality
Ric (g) ≥ (n − 1)k · g implies an inequality for the first eigenvalue of
the Laplacian:
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λ1(Δ) ≥ n k;

here equality holds if and only if the manifold (M, g) is isometrically
diffeomorphic to a sphere.

• We call a conjugate triple a Blaschke structure if the difference tensor K
satisfies an apolarity condition:

Kj
ij = 0.

In this special case the elliptic operators � and �∗ coincide with the
Laplacian Δg on functions.

3. Observations for Blaschke hypersurfaces

Consider a connected, oriented C∞−manifold of dimension n ≥ 2 and an
affine immersion x : M → R

n+1 into the affine space R
n+1 equipped with

a unimodular structure; assume that x is locally strongly convex and that
the induced structure is equiaffine (see section 6.2 in [8]), that means x is
equipped with an appropriately oriented affine normal y s.t. the Blaschke
metric g is positive definite; x together with the normalization y is called a
Blaschke hypersurface with conjugate triple (∇, g,∇∗), where ∇ is the induced
connection and ∇∗ the conormal connection; the triple satisfies an apolarity
condition. If the affine shape operator S is positive definite then the symmetric
Weingarten form S� with S�(u, v) := g(Su, v) can be interpreted as affine
spherical metric of the affine spherical indicatrix (or affine Gauß map, resp.)
y : M → R

n+1; see section 4.6 in [8].
S� and Ric∗ satisfy the relation Ric∗ = (n − 1)S�, moreover we have

(n − 1)Ric + Ric∗ = nH · g,

where nH := trace S is the affine mean curvature, and the Ricci tensor Ric (g)
of the Blaschke metric g satisfies

Ric (g)ij = KirsK
rs
j + n−2

2 S�
ij + n

2 · Hgij .

The foregoing facts admit the following observations:

1. If the spherical metric S� is bounded below, namely S� ≥ k · g for some
k ∈ R, then Ric∗ ≥ (n − 1)kg and also Ric ≥ (n − 1)kg, and thus finally
also Ric (g) ≥ (n − 1)kg. Thus all three Ricci curvatures Ric, Ric∗ and
Ric(g) satisfy the same inequality.

2. If n ≥ 2, S� ≥ 0 and H ≥ 2(n−1)
n · k then Ric (g) ≥ (n − 1)kg.

3. If n = 2 and H ≥ k then Ric (g) ≥ kg, that means the Gauß curvature
is bounded below by k.

Remark. The assumption that Ric (g) is bounded below plays a role in the
maximum principle of Omori–Yau; for applications in Blaschke’s affine hyper-
surface theory see e.g. [7].
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The foregoing statements can be applied to metrically complete (so called
affine complete) Blaschke hypersurfaces. We consider the case k > 0. We give
an example:

Theorem. Let x : M → R
n+1 be a locally strongly convex Blaschke hypersurface

s.t.

(i) the Blaschke metric is complete,
(ii) ∃ 0 < k ∈ R s.t. Ric∗ ≥ (n − 1) · kg,
(iii) ∃ f ∈ C∞ s.t. �∗f + nkf = 0.

Then x(M) is a hyperellipsoid.

Proof. It follows from (ii) above that the Weingarten form satisfies S� ≥ kg,
and thus the affine mean curvature H ≥ k. Now from the observations above
we also know that Ric (g) ≥ (n − 1)kg and therefore M is compact. As a con-
sequence of the apolarity condition, on a Blaschke hypersurface the operators
Δ and �∗ coincide. Thus from the assumption (iii) the Laplacian has its first
eigenvalue λ1 = nk. Then Obata’s result (see [1], p. 180) implies that (M, g)
is isometrically diffeomorphic to the canonical Euclidean sphere, that means
x(M) must be a hyperellipsoid.
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