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On the geometry of flat surfaces with a single
singularity
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Abstract. If T is a flat torus with boundary and a conical singularity in its
boundary then the isometry type of T is determined by the lengths of five
closed geodesics. As a corollary the isometry type of a flat closed surface
S with a single conical singularity is determined by the lengths of finitely
many closed geodesics provided that S admits a special decomposition.
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1. Introduction: preliminaries

The study of the geometry of flat surfaces with conical singularities is an inter-
esting subject with various open questions [10]. If S is a compact orientable
surface of genus g ≥ 1, it is well known [8] that S can be equipped with
a flat structure with finitely many conical singularities si of angle θ(si), pro-
vided that the angles θ(si), i = 1, .., n satisfy the Euler-type formula explained
below. There is an interesting moduli space of such structures; in fact, there
are several versions of such a moduli space, depending on whether we fix the
singular points on the surface and their types or not.

Generally, it is difficult to find important properties which are valid for all flat
surfaces with conical singularities. Special classes of such surfaces are easier
to handle and such classes include the following: (1) Flat surfaces S with
θ(si) > 2π. Their universal covering ˜S is a Hadamard space i.e. ˜S satisfies
the CAT(0) inequality, a fact that imposes special features on the behavior
of geodesics of S [1]. (2) Translation surfaces [6]. In this case θ(si) = 2kπ,
k ∈ N, and the geometry of these surfaces has many similarities with the
geometry of a flat torus. (3) Flat surfaces whose metric is defined by a quadratic
differential [7]. This class is distinct from the previous one. Every singular flat
metric defines uniquely a conformal structure on S and hence a hyperbolic
structure on S. The space of flat metrics defined by quadratic differentials can
be identified with a vector bundle over the Teichmü ller space of S, a fact that
makes these metrics of particular interest.
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In the present work we consider compact orientable flat surfaces S with a single
conical singularity. Such surfaces are considered for example in [2], where some
properties of their closed geodesics are studied. The main theorems of this
paper are the following.

Theorem 1. Let S be a flat torus of genus one with one boundary component ∂S
and one singularity s ∈ ∂S. The geometry of S is determined by the lengths
of five closed geodesics passing through s. Moreover, the area of T and the
lengths of four simple closed geodesics of T determine two isometry types of
T, see Theorem 13 below.

As a corollary of this theorem we deduce the following.

Theorem 2. Let S be a closed, orientable flat surface of genus g ≥ 3 with one
singularity s. Assume that there are g simple closed geodesics of S such that
each one separates a torus of genus one from S. Then there are 5g + (g − 3)
closed geodesics γi of S, all passing through s, whose lengths determine, up
to isometry, the geometry of S. Furthermore, each γi can be chosen to be
homotopic to a simple closed curve in S.

If g = 2 we assume that there is a simple closed geodesic separating S into two
tori. Then there are nine closed geodesics γi of S, all passing through s, whose
lengths determine, up to isometry, the geometry of S. Furthermore, each γi

is either simple or it is a union of two simple geodesic loops based at s, see
Theorem 16 below.

We give below some basic definitions and results in order to put our problem
in a general context.

The standard flat cone C(v, θ) is defined as the set {(r, t) : 0 ≤ r, t ∈ R/θZ}
equipped with the metric ds2 = dr2 + r2dt2. We say that v (resp. θ) is the
vertex (resp. the angle) of C(v, θ). By cutting C(v, θ) along a half-line starting
from p we get a flat sector, say S(v, θ), of vertex v and of angle θ.

A flat surface S with conical singularities s1, ..., sn is a compact, orientable
surface with or without boundary ∂S which is equipped with a metric d(·, ·)
such that:

• Every point p ∈ Int(S) − {s1, ..., sn} has a neighborhood isometric to a
disc in the Euclidean plane E

2.
• Every point p ∈ ∂S − {s1, ..., sn} has a neighborhood isometric to a

neighborhood of a point on the boundary of the half-plane E2
+ = {(x, y) ∈

E
2 : y ≥ 0}.

• Every point p ∈ Int(S) ∩ {s1, ..., sn} has a neighborhood isometric to a
neighborhood of the vertex v of a standard flat cone C(v, θi). The point
si will be called a conical singularity of angle θi.

• Every point p ∈ ∂S ∩ {s1, ..., sn} has a neighborhood isometric to a
neighborhood of the vertex v of the flat sector S(v, θi). The point si will
be also called a conical singularity or a boundary singularity of angle θi.
Note that if θi > π for each si ∈ ∂S, then the boundary ∂S is geodesic.
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For brevity, the surface S will be denoted by f.s.c.s. The angle θi is called the
angle of the (conical) singularity si. The metric d(·, ·) is obviously a length
metric and will be referred to as a flat structure with conical singularities.

Definition 3. A geodesic segment is an isometry h : [t1, t2] → S.

A geodesic arc is a local isometry h : [t1, t2] → S.

If h(t1) = a1, h(t2) = a2 then we denote by [a1, a2] the image of h.

Let I = [0,+∞) or I = (−∞,+∞). A geodesic line (resp. geodesic ray) in S
is a local isometry h : I → S where I = (−∞,+∞) (resp. I = [0,+∞)).

A local geodesic a : [t1, t2] → T such that a(t1) = a(t2) = s will be called a
geodesic loop based at s.

A periodic geodesic line is called a closed geodesic of S.

As every locally compact, complete length space is geodesic (see Th. 1.10 in
[3]) we immediately have that S is a geodesic space i.e. every two points of S
can be joined by a geodesic segment.

The following Gauss–Bonnet formula is well known (see [4], p. 113).

Proposition 4. Let S be a f.s.c.s. with conical singularities si, i = 1, .., n. Let
θi = θ(si) be the angle of si. Let g be the genus of S and let b be the number
of boundary components of S. Then we have

∑

si∈Int(S)

(2π − θi) +
∑

sj∈∂S

(π − θi) = (4 − 4g − 2b)π. (1)

Now, let S be a compact orientable surface S with boundary and let θi ∈
(0,+∞) − {2π}, 1 ≤ i ≤ m and θj ∈ (0,+∞) − {π}, m + 1 ≤ j ≤ n. A well
known result [8,9] asserts that if the above formula (1) is satisfied then there
exist a flat structure with conical singularities si, i = 1, .., n on S, such that:

(1) si is of angle θi;
(2) si ∈ Int(S) for 1 ≤ i ≤ m and sj ∈ ∂S for m + 1 ≤ j ≤ n.

In the special case that S is a torus with a single singularity s ∈ ∂S we deduce
that the angle θ(s) at s must be equal to 3π. If S is closed surface of genus g
then θ(s) = 4gπ − 2π.

Definition 5. Let a1, a2 be two closed, piecewise differentiable curves of S.
We will say that a1, a2 have a trivial intersection point p if there is a closed
neighborhood D of p in S homeomorphic to a closed 2-disc such that:

• ai ∩ D = ci, i = 1, 2, where ci is a simple arc with ∂ci ⊂ ∂D;
• c1 ∩ c2 = {p};
• each ci can be isotoped in D, keeping its endpoints fixed, to an arc c′

i with
c′
1 ∩ c′

2 = ∅.

Similarly, if a is closed, piecewise differentiable curve, we define the notion of
trivial self-intersection point of a.
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In the following proposition we denote by θ(si) the angle of a conical singularity
si ∈ S.

Proposition 6. Let S be a f.s.c.s. and let θ(si) be the angle of a conical singu-
larity si ∈ S. We assume that if si ∈ Int(S) then θ(si) > 2π and if si ∈ ∂S
then θ(si) > π. Then we have,

(i) In the homotopy class of each loop c based at a point x, there is a unique
geodesic loop c0 based at x. Furthermore, if c is a simple loop then c0 can
only have (finitely many) trivial self-intersection points which coincide
with conical singularities of S.

(ii) In the free homotopy class of each closed curve c of S there is a closed
geodesic c0. Furthermore, if c is simple then c0 can only have trivial self-
intersection points which coincide with conical singularities of S.

(iii) Every two disjoint simple closed geodesics of S which are freely homotopic
bound a Euclidean cylinder in S.

Remark that our hypothesis about the angles θ(si) implies that S satisfies
locally the CAT(0) inequality. The proof of 6 follows from Proposition 1.2.4
and 1.2.6 of [5] and from the fact that if c is a simple loop (resp. simple closed
curve) then the geodesic loop c0 in the homotopy class of c (resp. the closed
geodesic in the free homotopy class of c) cannot intersect itself transversely.

2. The geometry of a flat torus with a boundary component
and a single singularity on the boundary

Let T be a flat torus with one boundary component, say c, and one conical
singularity s ∈ c. The goal of this section is to relate the geometry of T with
the lengths of finitely many closed geodesics passing through s.

In the following, we will use the following notation. We denote by R =
(X1, ...,Xn) a flat surface such that:

(1) it is homeomorphic to a closed 2-disc;
(2) it does not have conical singularities in its interior;
(3) it has boundary singularities at Xi, i = 1, .., n.

A flat surface R which satisfies (1)–(3) will be called a flat n-gon and Xi will
be called vertices of R.

The flat n-gon R will be referred as a Euclidean n-gon if it can be isometrically
embedded in E

2.

If the diagonals XiXj and XiXk of R are contained in R, then we denote by
�R(Xi;Xj ,Xk) the angle in R formed by XiXj and XiXk at Xi. The angle at
the vertex Xi of R formed by the sides XiXi−1 and XiXi+1 will be denoted
either by ̂Xi or by �R(Xi;Xi−1,Xi+1).

We have the following lemmata.
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Lemma 7. Let P be a flat n-gon with n ≤ 5. We assume that each angle of P
is smaller than 2π. Then P is isometric to a Euclidean pentagon.

Proof. If n = 3 or n = 4 we may verify from formula (1) that each angle
of P is smaller than 2π. If n = 3, it is easy to see that P isometric to a
Euclidean triangle. If P has four vertices, say s1, s2, s3, s4, then there is a
geodesic segment, say [s1, s3] ⊂ P, such that [s1, s3] ∩ P = {s1, s3}. Cutting P
along [s1, s3] we obtain two Euclidean triangles and thus we may see that P
is isometric to a Euclidean quadrilateral. Assume now that P has five vertices
si, i = 1, . . . , 5. We may also prove that there is a geodesic segment, say
[s1, s3] ⊂ P, such that [s1, s3] ∩ P = {s1, s3}. So, [s1, s3] separates P into a
Euclidean triangle R and a Euclidean quadrilateral Q. Now, it is not hard
to prove that even if Q is not convex, gluing R with Q along [s1, s3] we
take a Euclidean pentagon. Indeed, if the gluing surface is not a pentagon
isometrically embedded in E

2 then one of the angles of si should be greater or
equal to 2π, a contradiction.

Finally, Fig. 1 shows that Lemma 7 is not valid if the number of vertices is
greater than 5. �
Lemma 8. Let S be a f.s.c.s. which is homeomorphic to S1 × [0, 1]. Assume
that S has three boundary singularities si, i = 1, 2, 3 such that s1 belongs to one
boundary component of S and s2, s3 belong to the other boundary component.
Then there is a geodesic arc, say [s1, s2] ⊂ S, such that [s1, s2] ∩ ∂S = {s1, s2}
and if we cut and open S along [s1, s2] we take a Euclidean polygon.

Figure 1 A flat, non-Euclidean hexagon
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Figure 2 The annulus S decomposed in Euclidean polygons

Proof. Let us denote by θ(si) the angle of the conical singularity si. From the
Gauss–Bonnet formula (1) we have θ(s1) + θ(s2) + θ(s3) = 3π. Assume first
that all angles θ(si) are smaller than 2π. Then it is easy to see that there is a
geodesic arc [s1, s2] in S such that [s1, s2] ∩ ∂S = {s1, s2}. If we cut and open
S along [s1, s2] we take a surface which satisfies all the hypotheses of Lemma
7 and thus it is isometric to a Euclidean polygon with at most five vertices.

Now, let θ(s1) ≥ 2π, see Fig. 2. Then there are geodesic arcs [s1, s2] and
[s1, s3] in S such that [s1, s2] ∩ ∂S = {s1, s2} and [s1, s3] ∩ ∂S = {s1, s3}. We
cut S along [s1, s2] and [s1, s3] and we obtain two surfaces: a surface S1 with
three boundary singularities s′′

1 , s′′
2 , s′

3 and a surface S2 with four boundary
singularities s′

1, s′′′
1 , s′′

3 , s′
2, see Fig. 2. In the surface S2 we have θ(s′

2) < π,
θ(s′′

3) < π but some of the angles θ(s′
1), θ(s′′′

1 ) (at most one of them) can be
≥ 2π. Without loss of generality assume that θ(s′

1) < π. Now, S1 is a Euclidean
triangle and S2 is a Euclidean quadrilateral. Since θ(s′

2) < π and θ(s′
1) < π,

if we glue S1 and S2 by identifying [s′
1, s

′
2] and [s′′

1 , s′′
2 ] we take a Euclidean

polygon (at most pentagon).

Let now θ(s2) ≥ 2π (the case θ(s3) ≥ 2π is treated similarly). Then, we
consider a geodesic arc [s1, s2] in S which has the property [s1, s2] ∩ ∂S =
{s1, s2}, actually any such arc in S has this property. By cutting S along
[s1, s2] we take a surface S1 with five conical singularities s′

1, s′′
1 , s′′

2 , s3, s′
2 in

the boundary, see Fig. 3a. If the angles at these points are smaller than 2π
then by Lemma 7 S1 is a Euclidean pentagon. If not, we have either θ(s′

2) ≥ 2π
or θ(s′′

2) ≥ 2π. Without loss of generality assume that θ(s′′
2) ≥ 2π. Then at

the other vertices the angles are smaller than π. This implies that the geodesic
segment [s′′

2 , s′
1] of S1 has the property [s′′

2 , s′
1] ∩ ∂S1 = {s′′

2 , s′
1}, see Fig. 3a.

We cut S1 along [s′′
2 , s′

1] and we take two new surfaces S2 and S3, see Fig.
3b. Assume that S3 is the surface which contains s3 in its boundary as a
boundary singularity. S3 has s′

2 as a vertex and let us denote by s′
12, s′′

22 the
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(a) (b)

Figure 3 The annulus S decomposed in Euclidean polygons

other vertices of S3. Also S2 has s′′
1 as a vertex and let us denote by s′

11, s′′
21 the

other vertices of S2. In our notation we assume that s′′
21, s′′

22 correspond to the
vertex s′′

2 of S1, while s′
11, s′

12 correspond to the vertex s′
1 of S1. Remark that

S2 is a Euclidean triangle and S3 is a Euclidean quadrilateral. Additionally in
S3, either θ(s′

2) < π or θ(s′′
22) < π.

If θ(s′
2) < π (resp. θ(s′′

22) < π) and given that θ(s′
12) < π, we glue S2 to S3 by

identifying [s′
2, s

′
12] with [s′′

21, s
′′
1 ] (resp. [s′′

22, s
′
12] with [s′′

21, s
′
11]) and we obtain

a Euclidean pentagon. �
Lemma 9. There is a pair of simple geodesic loops, say a, b, passing through s
such that a intersects b transversely and if we cut and open T along a and b
we take a Euclidean pentagon.

Proof. Let γ be a simple closed curve in T which is not freely homotopic to c and
let γ0 be the closed geodesic in the homotopy class of γ. By taking a parallel
translation of γ0, if it is necessary, we may assume that γ0 passes through
s. From 6, γ0 can only have trivial self-intersection points at s. Therefore γ0
consists of simple geodesic loops based at s. Pick one of them and label it as
a.

Considering the geodesic loop a we cut and open T along a. Then we take a
cylinder C which satisfies all hypothesis of Lemma 8. Therefore there exists a
geodesic arc [s1, s2] in C as in Lemma 8. Obviously this arc defines a geodesic
loop b in T which with a define the required loops. �
Lemma 10. Let Q = (A,B,C,D) be a Euclidean quadrilateral. Then Q is
uniquely determined from the lengths of its sides, its area and the fact that
�Q(A;D,B) + �Q(C;D,B) is greater or not than π.
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Figure 4 A Euclidean quadrilateral

Proof. Let a, b, c, d be the lengths of sides AB, BC, CD, DA respectively and
let x = �Q(A;D,B), y = �Q(B;A,C), z = �Q(C;D,B), w = �Q(D;A,C),
see Fig. 4. We set φ = (x + z)/2, s = (a + b + c + d)/2 and let E be the area
of Q. Then we have the Bretschneider’s formula:

E2 = (s − a)(s − b)(s − c)(s − d) − abcd cos2 φ (2)

Actually this formula is valid for convex quadrilateral but it is not difficult to
show that it is true for any quadrilateral.

Now E is a function of φ, i.e. E = E(φ) and 2E(φ)E′(φ) = abcd sin(2φ). Since
0 < 2φ < 2π, the function E(φ) is increasing when 0 < φ ≤ π/2 and decreasing
when π/2 ≤ φ < π. Therefore for a given value of E, there are at most two
angles φ1, φ2 such that E = E(φ1) = E(φ2). On the other hand, it is either
x + z ≤ π or x + z > π. So it suffices to show that Q is uniquely determined
from the lengths of its sides, its area and from φ with 2φ = x + z ≤ π. To
prove this, we have

a2 + d2 − 2ad cos x = b2 + c2 − 2bc cos z.

This formula follows from the fact that since x + z ≤ π the diagonal BD is
lying inside Q.

We set

F (x, φ)=a2+d2−2ad cos x−(b2+c2−2bc cos(2φ−x)), 0 < x < π, 0 < φ ≤ π/2.

So, we have F (x, φ) = 0 and
∂F

∂x
= 2ad sin x + 2bc sin(2φ − x) = 2ad sin x + 2bc sin(2φ − x).

Therefore it is ∂F/∂x > 0, which implies that x = x(φ) is a function of φ.
Now, from the formula (2), for a given value of area E, cos2 φ is determined.



Vol. 106 (2015) On the geometry of flat surfaces with a single singularity 263

Figure 5 A Euclidean quadrilateral with ̂B + ̂D < π and
|CB| = |AD|

Since 0 < φ ≤ π/2 the angle φ is determined and also x is determined as a
function of φ. Therefore Q is determined. �
Lemma 11. Let Q = (A,D,B,C) be a quadrilateral such that |CB| = |DA|
and ̂B + ̂D < π. Then |AC| < |BD|. If furthermore, ̂D < ̂B then ̂A + ̂D > π.

Proof. In order to prove |AC| < |BD| we assume first that ̂D < ̂B (if ̂B < ̂D
we work similarly). Then if we consider the parallelogram P′ = (A′, C,B,D)
the vertex A belongs in the interior of P′, see Fig. 5. Therefore, |DA|+ |AC| <
|DA′| + |A′C| = |BC| + |BD| and hence |AC| < |BD|.
Now, since ̂D < ̂B, there exists A′′ in the interior of CB such that AA′′ is
parallel to DB. Hence ̂A + ̂D > π. �
Now, we have the following basic proposition.

Proposition 12. Let a, b be two simple geodesic loops which satisfy the assump-
tions of Lemma 9. Then there are simple closed geodesics a0 and b0 in T , freely
homotopic to a, b respectively, such that a0 ∩ b0 = {s}.

Proof. Let x, y, z be the angles at s, formed by the geodesic loops a and b, as
they are shown in Fig. 6i. Cutting and opening T along a, b we take a pentagon
P = (A,D,B,C,E) see Fig. 6ii. It is �P(A;D,E) = x, �P(D;A,B) = y,
�P(B;C,D) = z. We distinguish the following cases:

(I) there is some angle φ ∈ {x, y, z} such that φ ≥ π.

In this case we distinguish the following subcases:

(I1) y ≥ π;
(I2) y < π, x ≥ π, z ≥ π;
(I3) y < π, x ≥ π, z < π (similarly, y < π, z ≥ π, x < π).
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(i) (ii)

Figure 6 Two simple closed geodesics containing the conical singularity

(II) each angle x, y, z is smaller than π.

In this case we distinguish the subcases:

(II1) P is convex;
(II2) P is non-convex, y + x ≥ π and y + z < π (similarly, P is non-convex,

y + z ≥ π and y + x < π);
(II3) P is non-convex, y + x < π and y + z < π;
(II4) P is non-convex, y + x ≥ π and y + z ≥ π.

We will examine each subcase separately and we will prove the existence of
geodesics a0, b0.

(I1) : Obviously a and b are geodesics of T. Hence, we set a0 = a and b0 = b.
(I2) : Also a and b are geodesics of T. Hence we set again a0 = a and b0 = b.
(I3) : Obviously a is a geodesic of T and we set a0 = a. Now, if y + z ≥ π

then b is a geodesic of T and hence we set b0 = b. If y + z < π then
we consider the diagonal AC which is always lying inside P, see Fig. 7.
Let Q = (A,D,B,C) and n = �Q(C;A,B), m = �Q(A;C,D). Since
y + z < π we have m + n ≥ π. Therefore AC is a geodesic of T which is
additionally freely homotopic to b. So we set b0 = AC.

We come now to the case (II).

(II1) : Set, u = �P(A;B,E), u′ = �P(A;B,D), t = �P(B;A,C), t′ =
�P(B;A,D), r = �P(E;A,B), w = �P(B;A,E), see Fig. 8i.

We remark that t > u′ or u > t′. Indeed, if t ≤ u′ and u ≤ t′ then we will take
a contradiction by showing that:

|AD| + |DB| > |AE| + |EC| + |CB| ⇐⇒ a + b > b + |EC| + a (3)

For it, we remark AB ⊂ P since P is convex. So we consider a parallelogram
P′ = (A,D,B,D′) such that: �P′(A;B,D′) = �P′(B;A,D) = �P(B;A,D),
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Figure 7 A pentagon with y + z < π

(i) (ii)

Figure 8 Existence of simple closed geodesics containing the
conical singularity in the case of a convex pentagon

�P′(B;A,D′) = � P′(A;B,D) = �P(A;B,D). Therefore (AE ∪ EC ∪ CB) ⊂
(A,B,D′) which implies 3, see Fig. 8ii.

• If t > u′ and u ≥ t′ then y +x ≥ π and y + z > π. Therefore the geodesic
loops a and b are both geodesics of T. So we set a0 = a and b0 = b.

• If t > u′ and u < t′ then y + z > π and so b is a geodesic but a is
not a geodesic. In this case we consider the diagonal EB which is freely
homotopic to a. In order EB to be a geodesic of T it must be r+w+t′ ≥ π.
From the triangle (E,A,B) we have r + u + w = π and since u < t′ we
deduce that r + w + t′ > π. Therefore we set b0 = b and a0 = EB.

• If t ≤ u′ and u > t′ we work similarly.

Therefore the proposition is proven in the case (II1).

Assuming now that P is non-convex we claim that one of the diagonal AC or
BE of P is lying inside P. Indeed, assuming that AC and BE are not contained
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Figure 9 A Euclidean pentagon not containing its diagonals
AC and BE

in P we have the configuration of Fig. 9. Then it is easy to prove that |AD|
+ |BD| > |AE| + |EC| + |CB| which gives a contradiction since AD = a,
BD = b, BC = a, AE = b. Therefore our claim is proven.

In the following we assume, without loss of generality, that AC ⊂ P.

(II2) : Since x + y ≥ π we have that a is geodesic of T. On the other hand,
we have AC ⊂ P and AC is freely homotopic to b in T. Now, from the
quadrilateral (A,C,B,D) we deduce that �P(A;C,D)+�P(C;A,B) >
π since y + z < π. Therefore AC is a geodesic of T and we set a0 = a
and b0 = AC, see Fig. 10.

(II3) : As is the case (II2) we may prove that AC = b′ is a geodesic of T
and AC is freely homotopic to b, see Fig. 11. Now we cut the triangle
(A,C,E) and we glue it to P along DB = AE = b. Then we take a
new pentagon Q = (A,D,Z,B,C) as in Fig. 11.

Considering the quadrilateral (A,C,B,D) ⊂ P we have z + y < π and from
Lemma 11 it follows that |b′| = |AC| < |b| = |DB|. Therefore, from triangle
(E,A,C) we deduce that �P(E;C,A) < π/2. If z ≥ π/2 then y < z and from
Lemma 11 we take again that �P(A;C,D)+ y > π. This gives a contradiction
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Figure 10 Existence of simple closed geodesics containing
the conical singularity in the case of a non-convex pentagon
with y + x ≥ π and y + z < π

Figure 11 Existence of simple closed geodesics containing
the conical singularity in the case of a non-convex pentagon
with y + x < π and y + z < π
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since by hypothesis we have x + y < π. Therefore z < π/2 and �Q(B;C,Z) =
�P(B;C,D) + �P(E;A,C) < π. This implies that CZ is contained in Q.

Now in Q the diagonal CZ is a geodesic of T. Indeed, we have that
�Q(C;A,Z)+�Q(Z;C,D) > π since �Q(A;C,D)+�Q(D;A,Z) = x+y < π.
Furthermore, we have CZ is freely homotopic to a. Therefore we set a0 = CZ
and b0 = AC.

(II4) : Then a0 = a and b0 = b.

�

Remark. In the proof of Proposition 12 we have used the fact that the polygon
P is Euclidean in order to prove an inequality between the lengths of sides of
P with the help of Fig. 9. All the other proofs work equally well if P is just a
flat polygon.

Now we are able to prove the following theorem.

Theorem 13. Let T be a flat torus with one boundary component c and one
conical singularity s ∈ c. Then,

(i) There are five closed geodesics whose lengths determine T under isometry;
four of them are simple and one consists of the union of two simple
geodesic loops based at s.

(ii) The area of T and the lengths of four simple closed geodesics of T deter-
mine two isometry types of T.

Proof. ¿From Proposition 12, there are simple closed geodesics a and b passing
through s, see Fig. 6. We cut and open T along a, b and we take a flat pentagon
P = (A,D,B,C,E). Without loss of generality, we may assume that a =
AD = CB, b = AE = DB; this notation means that the oriented segment
AD is identified with the oriented segment CB (similarly for AE and DB) in
order to take T.

Recall that x = �P(A;D,E), y = � P(D;A,B), z = �P(B;C,D). Since a and
b are geodesics we have

x + y ≥ π, y + z ≥ π (4)

We distinguish the following cases.

(1) x < π, y < π, z < π;
(2) x ≥ π, y < π, z < π (similarly, z ≥ π, y < π, x < π);
(3) y < π, x ≥ π, z ≥ π;
(4) y ≥ π, x < π, z < π;
(5) x ≥ π, y ≥ π, z < π (similarly, z ≥ π, y ≥ π, x < π).

In the following we will study each case separately. Our goal is to find addi-
tional closed geodesics in T whose lengths, with the lengths of a and b, deter-
mine T up to isometry. In most cases the additional closed geodesics appear
as diagonals of pentagons.
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Case (1): Let P be the flat pentagon obtained by cutting T along a and b.
Because of the condition (4) each angle of P is < 2π and thus P is a Euclidean
pentagon, from Proposition 7. Since x < π, y < π, z < π the diagonal AB is
contained in P and it is always a geodesic of T. Indeed, it is sufficient to prove
that

�P(A;B,E) + �P(B;A,C) + y ≥ π (5)

¿From the relation (4) we have �P (A;B,E) ≥ �P (B;A,D) and �P (B;A,C) ≥
�P (A;B,D) and since y+�P (B;A,D)+�P (A;B,D) = π we obtain the rela-
tion (5).

Next we assert that if DE and DC are contained in P then either DE or DC
is a geodesic in T. Indeed, DC is a geodesic if and only if

�P(C;B,D) + �P(D;B,C) + x ≥ π (6)

Also DE is a geodesic if and only if

�P(E;A,D) + �P(D;A,E) + z ≥ π (7)

Obviously, the sum of angles in relations (6) and (7) is equal to 2π. Therefore,
at most one of the relations (6) or (7) is valid.

Finally, without loss of generality, we assume that DC is contained in P but
DE is not contained in P, see Fig. 12. Since DE is not contained in P we have
�P(C;B,E) ≥ π and therefore �P(E;A,C) ≤ π. This implies that AC ⊂ P.
We have also that DC ⊂ P.

Figure 12 A Euclidean pentagon with x < π, y < π, z < π
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Figure 13 A Euclidean pentagon with x ≥ π, y < π, z < π

Now, |CB| = |AD| = |a| and y + z ≥ π, therefore |AC| ≥ |b|. The extension
of DC intersects AE to a point X. We have that |AX| ≤ |b|, |AC| ≥ |b|,
therefore there is a point Y ∈ CX such that |AY | = |b|. It is to see now
that �P(A;Y,D) ≥ �P(B;C,D) = z. Therefore, x ≥ z. This implies that
�P(C;B,D) + x + �P(D;B,C) ≥ π. This last condition implies that DC is a
geodesic in T.

Therefore, in each case P is determined from the lengths of geodesics AB and
DE or DC and the lengths of edges of P,which correspond to the geodesics a
and b of T.

Case (2): We may easily prove that AB ⊂ P and CD ⊂ P and we will show
that AB and CD are geodesics of T, see Fig. 13. Indeed, AB is a geodesic if
and only if

�P(A;B,E) + y + �P(B;C,A) ≥ π (8)

Now, BD is a geodesic and hence �P(D;B,A)+�P(B;D,A)+�P(B;C,A) ≥
π. On the other hand, �P(A;B,D) + �P(D;B,A) + �P(B;D,A) = π. Com-
paring these two relations we have �P(B;C,A) ≥ �P(A;B,D).

Finally, AD is a geodesic therefore �P(A;B,E)+�P(A;D,B)+�P(D;B,A) ≥
π and since �P(B;C,A) ≥ �P(A;B,D) we obtain the relation (8).

We may prove also that CD is a geodesic. Therefore P is determined from the
lengths of geodesics AB, CD and the lengths of edges of P .
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Figure 14 A Euclidean pentagon with x ≥ π, y < π, z ≥ π

Case (3): The diagonal r = BA is contained in P and it is always a geodesic
of T, see Fig. 14. Indeed, it is sufficient to prove that

�P(A;B,E) + �P(D;B,A) + �P(B;C,A) ≥ π ⇐⇒
�P(A;B,E) + π − �P(A;B,D) − �P(B;A,D) + �P(B;C,A) ≥ π ⇐⇒
�P(A;B,E) + �P(B;C,A) ≥ �P(A;B,D) + �P(B;A,D) ⇐⇒
�P(A;B,E) + �P(B;C,A) + �P(A;B,D) + �P(B;A,D) ≥
≥ 2�P(A;B,D) + 2�P(B;A,D) ⇐⇒
�P(A;D,E) + �P(B;C,A) ≥ 2�P(A;B,D) + 2�P(B;A,D)
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But �P(A;D,E) + �P(B;C,A) ≥ 2π, while 2�P(A;B,D) + 2�P(B;A,D) <
2π.Therefore our assertion is proven.

Now, we examine two cases:

�P(A;B,E) + y < π (9)

or
�P(B;C,A) + y < π (10)

First, we study the case (9). By cutting P along AB we take a triangle ABD
that we glue back along the side AE. Then we obtain a new pentagon, say Q
= (E,C,B,A,H), see Fig. 14. We have that Q has its angles at the vertices H,
A smaller than π. Therefore, we are reduced to the case (1) or (2), depending
of the angle �P(B;C,A) respectively. Therefore, the isometry type of Q is
determined by the lengths of simple closed geodesics and so the same is true
for P.

The case (10) is treated similarly.

Therefore, in order to complete our study, it suffices to study the case where,

�P(A;B,E) + y ≥ π and �P(B;C,A) + y ≥ π (11)

In this case, the knowledge of the area of P implies that the area of quadrilateral
P′ = (A,B,C,E) is known. We set θ = �P(A;B,E)+�P(C;E,B). For P′ we
know the lengths of its edges and its area. Now, from Lemma 10 we have P′ is
determined from the length of its sides, its area and from the fact that θ ≥ π
or θ < π. Therefore the lengths of four simple closed geodesics of T and its
area determine two isometry types of T.

Finally, we will prove that there is an additional closed geodesic whose length
with the lengths of the previous four simple closed geodesics determine T up to
isometry. Indeed, in the quadrilateral (A,B,C,E) at least one of the diagonals
AC, BE lies inside it. Without loss of generality, we assume that AC has this
property. Then, it is easy to prove that d = AC ∪DB is a geodesic; notice here
that the orientation from A to C and then from D to B is important in order
to define d. Obviously, this geodesic has a (non trivial) self-intersection point.
Now, if we know the length of d, and since we know the length of b = DB, we
know the length of the geodesic loop AC. Therefore the isometry type of T is
determined by the lengths of geodesics a, b, r, c, d, see Fig. 14.

Case (4): It is easy to verify that the diagonals CD and ED are contained in
P and furthermore that exactly one of them is a geodesic of T, see Fig. 15.
Indeed, CD is a geodesic if and only if

�P(C;B,D) + x + �P(D;B,C) ≥ π (12)

and ED is a geodesic if and only if

�P(E;A,D) + z + �P(D;A,E) ≥ π (13)
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Figure 15 A Euclidean pentagon with x < π, y ≥ π, z < π

Figure 16 A Euclidean pentagon with x ≥ π, y ≥ π, z < π

However, the sum of all angles in the relations (12) and (13) is equal to the
sum of all angles of P minus the angles of triangle (C,D,E) and hence this
sum is equal to 2π. Therefore our assertion is proven.

In the following we assume, without loss of generality that CD is a geodesic of
T. We cut the triangle (B,C,D) from P. Then we glue it to (A,D,C,E) along
the side AD = CB = a. Thus, we take a new pentagon Q = (A,Z,D,C,E),
see Fig. 15. Obviously, we have �Q(Z;A,D) < π and hence we fall in one of
the previous cases (1) or (2) or (3).
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Case (5): The diagonal CD is a geodesic of P. For this, it is sufficient to prove
that �P(D;B,C) + �P(A;E,D) + �P(C;B,D) ≥ π, see Fig. 16. However
�P (A;E,D) = x ≥ π, hence our assertion follows.

Now we cut the triangle (D,C,B) from P and we glue it to (A,D,C,E)
along AD = CB = a. Then we take a new pentagon Q = (A,Z,D,C,E),
see Fig. 16. Then �Q(Z;A,D) < π and �Q(A;Z,E) ≥ π. We look at the
angle �Q(D;Z,C). Then, if �Q(D;Z,C) ≥ π we fall in the case (3) and if
�Q(D;Z,C) < π we fall in the case (2).

Therefore in each case we can find closed geodesics of T whose lengths deter-
mine the geometry of T. �
Finally, we will prove the following lemma which shows that in the case (3)
and hence probably in the cases (4) and (5), there do not exist finitely many
simple closed geodesics whose lengths determine T.

Lemma 14. In the case (3) and under the assumption (11), there do not exist
closed geodesics freely homotopic to simple closed curves, whose lengths deter-
mine the isometry type of T.

Proof. Let a = AD = CB, b = DB = AE be the simple closed geodesics of
Theorem 13 and r = BA the simple closed geodesic of case (3) in 13. Notice
here that in what follows, a, b, r are oriented as it is shown in Figs. 14 or 17.
Let γ be a simple closed curve of T, equipped with an orientation. Then either
γ is freely homotopic to the boundary c or c−1 (choosing an orientation for
c) or γ is freely homotopic to a curve of the form ambn, where m,n ∈ Z and
(|m|, |n|) = 1. Indeed, this follows from the following simple topological fact:
if S is a torus and S0 ⊂ S is a torus with one hole, then two simple closed
curves γ, γ′ are isotopic in S if and only if they are isotopic in S0.

The condition (11) in case (3) of Theorem 13, implies that the curves ar−1,
r−1b are geodesics. Also, a−1b and ab−1 are geodesics since the angles x and
z are greater or equal to π, see Fig. 17.

Take now an oriented simple closed curve γ of T which is not freely homo-
topic to c or to c−1. Therefore, γ is freely homotopic to one of the curves
ambn, a−mbn, amb−n, a−mb−n, where m, n > 0 and (m,n) = 1. Then the geo-
desic γ0 in the free homotopy class of γ must be one of the following curves,
am−1r−1bn−1 or a−mbn or amb−n or a1−mrb1−n. Therefore the image of γ0
runs the images of geodesics a, b, r. So the length of γ does not give any more
information about the geometry of T. This proves our lemma. �
Remark 15. If the singularity s is in the interior of T then T is determined, up
to isometry, from the lengths of five closed geodesics and the area of T. Indeed,
if c = ∂T we may translate c0 into a parallel geodesic c0 passing through s.
Let T0 ⊂ T be the torus bounded by c0. The geometry of T0, and hence the
area of T0, is determined by the lengths of five closed geodesics, see Theorem
13. Therefore, the area of annulus A ⊂ T with ∂A = c∪ c0 is known. This area
with the length of c determine A up to isometry.



Vol. 106 (2015) On the geometry of flat surfaces with a single singularity 275

Figure 17 Three simple closed geodesics containing the con-
ical singularity

3. Closed flat surfaces with one singularity

Theorem 16. Let S be a closed, orientable flat surface of genus g ≥ 3 with one
singularity s. Assume that there are g simple closed geodesics of S such that
each one separates a torus of genus one from S. Then there are 5g + (g − 3)
closed geodesics γi of S, all passing through s, whose lengths determine, up
to isometry, the geometry of S. Furthermore, each γi can be chosen to be
homotopic to a simple closed curve in S.

If g = 2 we assume that there is a simple closed geodesic separating S into two
tori. Then there are nine closed geodesics γi of S, all passing through s, whose
lengths determine, up to isometry, the geometry of S. Furthermore, seven of
the γi are simple and each one of the two remaining is a union of two simple
geodesic loops based at s.

Proof. If g = 2, then S is decomposed, via a simple closed geodesic c passing
through s, into two tori T1, T2, see Fig. 18. From the demonstration of Theorem
13, from each i = 1, 2, the isometry type of Ti is determined by five simple
closed curve ak

i , k = 1, 2, 3, 4, 5, all passing through s, such that:

(1) a1
1 = a1

2 = c;
(2) ak

i are simple closed geodesics for k = 2, 3, 4;
(3) a5

i is a simple geodesic loop, not necessarily geodesic.

Consider now a geodesic γ whose image is a5
1 ∪ a2

2 and oriented as in Fig. 18.
Obviously γ is a geodesic which has a self intersection point. Therefore, if we
know the length of γ we deduce the length of a5

1 since a2
2 is a geodesic of known
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Figure 18 A decomposition of S into two Euclidean tori

Figure 19 A decomposition of S into Euclidean tori
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length. This proves our theorem for g = 2. Actually, in order to define γ we
could combine a5

1 with any geodesic in {a2
2, a

3
2, a

4
2}.

If g ≥ 3, then S can be decomposed into g tori Ti, i = 1, 2, .., g and a flat
polygon say F. As before, for each i there are inside Ti five simple closed
geodesic loops ak

i , k = 1, .., 5, all based at s, such that:

(1) a1
i = ci;

(2) ak
i are simple closed geodesic, ∀ k = 2, 3, 4;

(3) a5
i is a simple geodesic loop, not necessarily geodesic;

(4) the lengths of ak
i determine the isometry type of Ti for each i.

Consider now an arbitrary a5
i and without loss of generality we may assume

that the angle w at s, between ci and a5
i is ≥ π, see Fig. 19. Then, considering

for example the geodesic a2
i−1 the union a5

i ∪ a2
i−1 = γi, where a2

i−1, a5
i are

oriented as in Fig. 19, forms a closed geodesic with a trivial self intersection
point. Therefore γi is homotopic to simple closed curve of S. Now, from the
length of γi we deduce the length of a5

i , since the length of simple closed
geodesic a2

i−1 is known.

Furthermore, we may prove that the flat polygon F can be triangulated by
diagonals of F and it is easy to check that each such diagonal is a geodesic of
S. This proves our theorem for g ≥ 3. �
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Université Strasbourg I (1998)

[3] Gromov, M., Lafontaine, J., Pansu, P.: Structures metriques pour les variétés
Riemanniennes. Fernand Nathan, Paris (1981)

[4] Hopf, H.: Differential geometry in the large. Volume 1000, Lectures notes in
Mathematics. Springer, Berlin (1989)
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