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Abstract. We deal with spacelike hypersurfaces immersed with some con-
stant rth mean curvature in a steady state type spacetime, that is, a gen-
eralized Robertson–Walker spacetime of the type −R ×et Mn. In this
setting, supposing that the fiber Mn of the ambient space has nonneg-
ative constant sectional curvature, we establish characterization results
concerning domains of the spacelike slices {t}×Mn. Afterwards, we apply
such characterization results to study the uniqueness of complete space-
like hypersurfaces with one end in such a ambient space.

Mathematics Subject Classification (2010). Primary 53C42;
Secondary 53B30, 53C50, 53Z05, 83C99.

Keywords. Generalized Robertson–Walker spacetimes, steady state type
spacetimes, compact spacelike hypersurfaces, complete spacelike
hypersurfaces, rth mean curvatures.

1. Introduction

Let Mn be a connected, n-dimensional, oriented Riemannian manifold, I ⊂ R

an open interval and f : I → R a positive smooth function. Also, in the
product manifold M

n+1
= I ×Mn let πI and πM denote the projections onto

the factors I and Mn, respectively.

The class of Lorentzian manifolds which will be of our concern here is the one
obtained by furnishing M

n+1
with the Lorentzian metric

〈v, w〉p = −〈(πI)∗v, (πI)∗w〉πI(p) + (f ◦ πI) (p)2〈(πM )∗v, (πM )∗w〉πM (p),

for all p ∈ M
n+1

and v, w ∈ TpM . In such a case, we write

M
n+1

= −I ×f M
n, (1.1)
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and say that M
n+1

is a Lorentzian warped product space with warping func-
tion f .

According to the terminology due to Aĺıas et al. [4], a warped product space
(1.1) is called a generalized Robertson–Walker (GRW) spacetime. Note that, in
this definition the fiber is not assumed to be of constant sectional curvature,
in general. When this assumption holds and the dimension of the spacetime is
3, the GRW spacetime is a classical Robertson–Walker spacetime. Thus, GRW
spacetimes widely extend Robertson–Walker spacetimes, and they include, for
instance, the Einstein–de Sitter spacetime, Friedmann cosmological models,
the static Einstein spacetime and the de Sitter spacetime. As it was already
pointed out by Latorre and Romero [19], conformal changes of the metric of a
GRW spacetime, with a conformal factor which only depends on universal time,
produce new GRW spacetimes. Moreover, small deformations of the metric
on the fiber of Robertson–Walker spacetimes also fit into the class of GRW
spacetimes (for a thorough discussion about Robertson–Walker spacetimes, see
for example Chapter 5 of [7]).

In this paper, we are interested in the study of spacelike hypersurfaces im-
mersed with some constant rth mean curvature in a steady state type space-
time, that is, a GRW spacetime of the type −R ×et Mn. Such nomenclature,
which was established by Albujer and Aĺıas [1], is justified by the fact that,
when its fiber Mn is the Euclidean space R

n, such GRW spacetime is isometric
to the half Hn+1 of the de Sitter space S

n+1
1 , which models the so-called steady

state space (for more details, see Sect. 3).

The importance of considering Hn+1 comes from the fact that, in Cosmology,
H4 is the steady state model of the universe proposed by Bondi and Gold [8],
and Hoyle [18], when looking for a model of the universe which looks the same
not only at all points and in all directions (that is, spatially isotropic and
homogeneous), but also at all times (cf. [25], Section 14.8, and [17], Section
5.2).

Before give details on our results, we present a brief outline of recent works
which are directly related to our one.

In [1], Albujer and Aĺıas used the well known generalized maximum principle
of Omori–Yau [23,26] to prove that, given a complete spacelike hypersurface
Σn with constant mean curvature H in a steady state type spacetime −R ×et

Mn, whose Riemannian fiber Mn is supposed to have nonnegative sectional
curvature, if Σn lies between two slices of −R ×et Mn, then H = 1. Moreover,
when n = 2, they concluded that the spacelike surface Σ2 is necessarily a slice
{t} ×M2.

Later on, by using an extension of the classical Hopf’s theorem due to Yau [27]
and imposing suitable conditions on both the rth mean curvatures and on the
norm of the gradient of the height function, Camargo et al. [9] obtained another
uniqueness results concerning complete spacelike hypersurfaces immersed in a
steady state type spacetime.
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Next, Aquino and de Lima [6] applied a generalized maximum principle devel-
oped in [11] in order to prove uniqueness theorems for the spacelike slices of a
steady state type spacetime, under suitable conditions on both the rth mean
curvatures and the angle between the Gauss map of the spacelike hypersurface
and the unitary vector field ∂t tangent to the R-direction of the ambient space.

Meanwhile, as another suitable application of the generalized maximum prin-
ciple of Omori–Yau, Colares and de Lima [13] obtained rigidity results con-
cerning complete spacelike hypersurfaces into steady state type spacetimes.
Moreover, they also study the uniqueness of entire vertical graphs in such
ambient spacetimes.

Here, motivated by the works above described, first we extend a technique
due to Colares and de Lima [12] in order to establish characterization results
concerning domains entirely contained in a spacelike slice of a steady state
type spacetime (cf. Theorem 1 and Corollary 1). Afterwards, we apply such
characterization results in order to study the uniqueness of complete spacelike
hypersurfaces with one end (that is, complete spacelike hypersurfaces which
can be regarded as the union of a compact hypersurface whose boundary is
contained into a slice of the ambient space, with a complete hypersurface dif-
feomorphic to a circular cylinder) immersed into a steady state type spacetime
(cf. Theorem 2 and Corollary 2).

2. Spacelike hypersurfaces in GRW spacetimes

Proceeding with the context of the previous section, we recall that an n-
dimensional connected manifold Σn immersed into a Lorentzian space is said
to be a spacelike hypersurface if the metric on Σn induced from that of the am-
bient space is positive definite. It follows from the connectedness of Σn that one
can uniquely choose a globally defined timelike unit vector field N ∈ X(Σ)⊥,
having the same time-orientation of ∂t, that is, such that 〈N, ∂t〉 < 0. One
then says that N is the future-pointing Gauss map of Σn. Here, ∂t denotes the
coordinate vector field induced by the universal time on the ambient GRW
spacetime M

n+1
= −I ×f M

n.

Associated to the shape operator A : X(Σ) → X(Σ) of Σn (with respect to
N or −N) one has n algebraic invariants, namely, the elementary symmetric
functions Sr of the principal curvatures κ1, . . . , κn of A, given by

Sr = σr (κ1, . . . , κn) =
∑

i1<···<ir

κi1 . . . κir
,

where, for 1 ≤ r ≤ n, σr ∈ R[X1, . . . , Xn] is the rth elementary symmetric
polynomial on the indeterminates X1, . . . , Xn.

The rth mean curvature Hr of Σn is then defined by
(
n

r

)
Hr = (−1)r

Sr.
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In particular,

H1 = − 1
n

n∑

i=1

κi = − 1
n

tr(A)

is the mean curvature H of Σn, which is its main extrinsic curvature.

It is also worth noting that H2 defines a geometric quantity which is closely
related to the (intrinsic) scalar curvature R of Σn. For instance, when M

n+1

has constant sectional curvature c, it easily follows from the Gauss’ equation
that

R = n(n− 1)(c−H2)

Using the definiton of H, we can rewrite this expression as

R = n(n− 1)c+ |A|2 − n2H2,

where |A| is the Hilbert–Schmidt norm of A (that is, |A|2 = tr(A∗A), where
A∗ stands for the adjoint of A).

For what follows, we say that p0 ∈ Σn is an elliptic point of Σn if all principal
curvatures κi(p0) are negative with respect to an appropriate choice of the
Gauss map of Σn at p0.

From the ideas of Montiel and Ros concerning Lemma 1 in [22] and their use
of Garding’s inequalities (cf. [15]), and taking into account our sign convention
in the definition of the rth mean curvature, one easily derives the following
result (see also Proposition 2.3 of [10]).

Lemma 1. Suppose that Σn has an elliptic point. If Hr is positive on Σn, then
the same holds for Hk, k = 1, . . . , r − 1. Moreover,

Hk−1 ≥ H
(k−1)/k
k and H ≥ H

1/k
k

for k = 1, . . . , r. Also, if k ≥ 2, then equality happens in one of the above
inequalities only at umbilical points.

Now, for 0 ≤ r ≤ n, let Pr : X (Σ) → X (Σ) be the r−th Newton transformation
of Σn, defined inductively by putting P0 = I (the identity of X (Σ)) and, for
1 ≤ r ≤ n,

Pr =
(
n

r

)
HrI +APr−1.

A standard fact concerning the Newton transformations is that

tr (Pr) = (r + 1)
(

n

r + 1

)
Hr, (2.1)

for 1 ≤ r ≤ n, where cr = (n− r)
(
n
r

)
= (r + 1)

(
n

r+1

)
(see, for instance, [2]).

If D(Σ) denotes the ring of the smooth real functions on Σn, then, associated
to Pr, one has the second order linear differential operator Lr : D(Σ) → D(Σ),
given by

Lr(ξ) = tr(Pr Hess ξ). (2.2)
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For a smooth function g : R → R and ξ ∈ D(Σ), it follows from the properties
of the Hessian operator that

Lr(g ◦ ξ) = g′(ξ)Lr(ξ) + g′′(ξ)〈Pr∇ξ,∇ξ〉. (2.3)

Given a local coordinate frame
{

∂
∂xi

}
of Σn at a point p, by a direct compu-

tation, from (2.2) it is not difficult to obtain the following local expression of
the linear operator Lr:

Lr(ξ)(p) =
∑

i,j,k,l

giktklg
lj ∂2ξ

∂xi∂xj
−

∑

i,j,k,l,s

giktklg
ljΓs

ij

∂ξ

∂xs
,

where

gij =
〈
∂ξ

∂xi
,
∂ξ

∂xj

〉
, G = (gij) , G−1 =

(
gij

)
, tij = Pr

(
∂ξ

∂xi
,
∂ξ

∂xj

)
,

and Γs
ij are the connection coefficients of ∇.

From the above local expression, we know that the linear operator Lr is elliptic
if, and only if, Pr is positive definite. Clearly, L0 = Δ, where Δ stands for the
Laplacian–Beltrami operator on Σn. Thus, L0 is always an elliptic operator.
In the following, we quote two results giving sufficient conditions for this to
happen for the operator Lr in general (see [3], Lemmas 3.2 and 3.3).

Lemma 2. If H2 > 0 on Σn, then P1 is positive definite for a appropriate
choice of the Gauss map N .

Lemma 3. Let Σn having an elliptic point with respect to an appropriate choice
of Gauss map. If Hr+1 > 0 on Σn for some 2 ≤ r ≤ n− 1, then Pk is positive
definite for all 1 ≤ k ≤ r.

In what follows, we consider two particular functions naturally attached to a
spacelike hypersurface Σn immersed into a GRW spacetime M

n+1
= −I ×f

Mn, namely, the (vertical) height function h = (πI)|Σ and the support function
〈N, ∂t〉, where we recall that N denotes the future-pointing Gauss map of Σn.

For a smooth function φ on M
n+1

, let ∇φ and ∇φ respectively denote the
gradient of φ on M

n+1
and that of its restriction to Σn. A simple computation

shows that
∇πI = −〈∇πI , ∂t〉∂t = −∂t,

so that
∇h = (∇πI)� = −∂�

t = −∂t − 〈N, ∂t〉N. (2.4)

Therefore,
|∇h|2 = 〈N, ∂t〉2 − 1, (2.5)

where | · | stands for the norm of a vector field on Σn.

From Lemma 4.1 of [3], we have that

Lrh = −(log f)′(h) (crHr + 〈Pr∇h,∇h〉) − crHr+1〈N, ∂t〉. (2.6)
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On the other hand, from Corollary 8.2 of [3] we have that

Δ(f(h)〈N, ∂t〉) = nf(h)〈∇H, ∂t〉 + nHf ′(h) + f(h)〈N, ∂t〉|A|2
− (n− 1)f(h)〈N, ∂t〉(log f)′′(h)|∇h|2
+ f(h)〈N, ∂t〉RicM (N∗, N∗), (2.7)

where RicM stands for the Ricci tensor of the Riemannian fiber Mn, and
N∗ = (πM )∗(N). Moreover, if −I ×f M

n is a RW spacetime, from Corollary
8.4 of [3], we also have that

Lr(f(h)〈N, ∂t〉) =
(

n

r + 1

)
f(h)〈∇Hr+1, ∂t〉 + crHr+1f

′(h)

+
(

n

r + 1

)
f(h)〈N, ∂t〉 (nHHr+1 − (n− r − 1)Hr+2)

+f(h)〈N, ∂t〉
(

κM

f2(h)
− (ln f)′′(h)

)

× (
crHr|∇h|2 − 〈Pr∇h,∇h〉

)
, (2.8)

where κM stands for the sectional curvature of the Riemannian fiber Mn.

3. Uniqueness results in steady state type spacetimes

Let L
n+2 denote the (n + 2)-dimensional Lorentz–Minkowski space (n ≥ 2),

that is, the real vector space R
n+2 endowed with the Lorentz metric defined

by

〈v, w〉 =
n+1∑

i=1

viwi − vn+2wn+2,

for all v, w ∈ R
n+2. We define the (n+ 1)-dimensional de Sitter space S

n+1
1 as

the following hyperquadric of L
n+2

S
n+1
1 =

{
p ∈ Ln+2; 〈p, p〉 = 1

}
.

The induced metric from 〈 , 〉 makes S
n+1
1 into a Lorentz manifold with constant

sectional curvature one. Let a ∈ L
n+2 be a past-pointing null vector, that is,

〈a, a〉 = 0 and 〈a, en+2〉 > 0, where en+2 = (0, . . . , 0, 1). Then the open region
of the de Sitter space S

n+1
1 , given by

Hn+1 =
{
x ∈ S

n+1
1 ; 〈x, a〉 > 0

}

is the so-called steady state space (cf. [20], Example 4.2). Observe that Hn+1 is
a noncomplete manifold, being only half of the de Sitter space. Its boundary,
as a subset of S

n+1
1 , is the null hypersurface

L0 =
{
x ∈ S

n+1
1 ; 〈x, a〉 = 0

}
,

whose topology is that of R × S
n−1 (see [21], Section 2).
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We observe that the steady state space Hn+1 can also be expressed in an
isometrically equivalent way as the RW spacetime

−R ×et R
n.

To see it, take b ∈ L
n+2 another null vector such that 〈a, b〉 = 1 and consider

the map Φ : Hn+1 → −R ×et R
n defined by

Φ(x) =
(

ln(〈x, a〉), x− 〈x, a〉b− 〈x, b〉a
〈x, a〉

)
.

Then it can easily be checked that Φ is an isometry between both spaces which
conserves time orientation (see [1], Section 4).

Following the ideas of Albujer and Aĺıas [1], we now consider a natural exten-
sion of the steady state space Hn+1 = −R ×et R

n. Let Mn be a connected
n-dimensional Riemannian manifold and consider the GRW spacetime

−R ×et Mn.

We will refer to such wider family of GRW spacetimes as steady state type
spacetimes. For instance, when Mn is the flat n-torus we get the de Sitter
cusp as defined in [14]. In this setting, we will state and prove our first result.

Theorem 1. Let Σn be a compact immersed spacelike hypersurface of a steady
state type spacetime −R×et Mn, whose Riemannian fiber Mn has nonnegative
constant sectional curvature κM . Suppose that Σn lies over a slice Mt = {t}×
Mn, for some t ∈ R, with its boundary ∂Σ contained in Mt. If one of the
following conditions is satisfied:

(i) H2 is a constant with 1 ≤ H ≤ H2, or
(ii) Hr+1 is a constant (with r ≥ 2) with 1 ≤ Hr ≤ Hr+1 and there exists an

elliptic point in Σn,

then Σn is a domain of Mt.

Proof. We can assume, without lost of generality, that t = 0. Consequently,
since we are assuming that Σn is over M0, we have that h is nonnegative. In
this setting, we define on Σn the function ξ given by

ξ = c eh − 〈N,K〉, (3.1)

where h is the vertical height function of Σn, K = eh∂t, N is the future-
pointing Gauss map of Σn and c is an arbitrary positive constant. From equa-
tions (2.3), (2.6) and (2.8) we have

Lr(ξ) = −c cr eh(Hr + 〈N, ∂t〉Hr+1) − ehcr Hr+1

−
(

n

r + 1

)
eh〈N, ∂t〉(nHHr+1 − (n− r − 1)Hr+2)

− e−h〈N, ∂t〉κM

(
crHr|∇h|2 − 〈Pr∇h,∇h〉

)
, (3.2)

where cr = (r + 1)
(

n
r+1

)
.

We also note that we are in position to apply either Lemma 2 or Lemma 3 in
order to conclude that Lk is elliptic, for any k ∈ {0, . . . , r}. Then, since the
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fact that Lr is elliptic is equivalent to Pr be positive definite, from (2.1) we
get

〈Pr∇h,∇h〉 ≤ tr(Pr)|∇h|2 = crHr|∇h|2. (3.3)

Thus, taking into account that 〈N, ∂t〉 ≤ −1 and κM ≥ 0, from (3.2) and (3.3)
we obtain

Lr(ξ) ≥ −c cr eh(Hr + 〈N, ∂t〉Hr+1) − ehcr Hr+1

−
(

n

r + 1

)
eh〈N, ∂t〉(nHHr+1 − (n− r − 1)Hr+2). (3.4)

Now, we claim that

nHHr+1 − (n− r − 1)Hr+2 ≥ (r + 1)H(r+2)/(r+1)
r+1 . (3.5)

In fact, taking into account our restrictions on Hr and Hr+1, from Lemma 1
we have that

Hr ≥ H
r/(r+1)
r+1 > 0 and H ≥ H1/r

r .

Moreover, from Newton inequalities (cf. [16], Theorem 144; see also [10], Propo-
sition 2.3), we have that

Hr+2 ≤ H2
r+1

Hr
.

Next, from these above inequalities, we obtain that

HHr+1 −Hr+2 ≥ Hr+1

Hr
(HHr −Hr+1) ≥ Hr+1

Hr

(
HHr −H(r+1)/r

r

)

= Hr+1

(
H −H1/r

r

)
≥ 0. (3.6)

Thus, from (3.6) we have that

nHHr+1 − (n− r − 1)Hr+2 = nHHr+1 − nHr+2 + (r + 1)Hr+2

+ (r + 1)HHr+1 − (r + 1)HHr+1.

After a simple algebraic computation and using the inequality (3.6), we con-
clude from above expression that

nHHr+1 − (n− r − 1)Hr+2 = (n− r − 1)(HHr+1 −Hr+2) + (r + 1)HHr+1

≥ (r + 1)H(r+2)/(r+1)
r+1 ,

and our affirmation is shown.

Hence, taking into account once more our hypothesis on Hr and Hr+1, from
(3.4) and (3.5) we obtain

1
cr
Lr(ξ) ≥ eh

{
−cHr − c 〈N, ∂t〉Hr+1 −Hr+1 − 〈N, ∂t〉H(r+2)/(r+1)

r+1

}

≥ eh
{

−cHr + cHr+1 −Hr+1 +H
(r+2)/(r+1)
r+1

}

= eh
{
c (Hr+1 −Hr) +Hr+1(H

1/(r+1)
r+1 − 1)

}
.
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Thus, from above expression we conclude that Lr(ξ) ≥ 0 on Σn. Now, the
maximum principle ensures that

ξ ≤ ξ
∣∣
∂Σ
. (3.7)

Consequently, from (3.1) and (3.7), it follows that

c eh ≤ c eh − 〈N, eh∂t〉 = ξ ≤ ξ
∣∣
∂Σ

≤ c+ α,

where α = max∂Σ |〈N, ∂t〉|. Thus, we have that

eh ≤ 1 +
α

c
. (3.8)

Therefore, since the positive constant c is arbitrary and h ≥ 0, from inequality
(3.8) we get that the height function h vanishes identically on Σn and, hence,
we conclude that ψ(Σn) ⊂ M0 and this finishes the proof. �
From equation (2.7), we can reason as in the proof of Theorem 1 in order to
obtain the following:

Corollary 1. Let Σn be a compact immersed spacelike hypersurface of a steady
state type spacetime −R×et Mn, whose Riemannian fiber Mn has nonnegative
Ricci curvature. Suppose that Σn lies over a slice Mt = {t}×Mn, for some t ∈
R, with its boundary ∂Σ contained in Mt. If Σn has constant mean curvature
H ≥ 1, then Σn is a domain of Mt.

Remark 1. We observe that the restriction on the sectional curvature of the
fiber of the ambient space in Theorem 1 corresponds, in the context of steady
state type spacetimes, to the strong null convergence condition, which was
established by Aĺıas and Colares [3]. Moreover, the restriction on the Ricci
curvature of the fiber in Corollary 1 is exactly the so-called null convergence
condition (see, for instance, [5] and [20]).

According to Section 5 of [12], we say that a complete spacelike hypersurface
Σn immersed in a steady state type spacetime −R ×et Mn has one end Cn if,
for each t ∈ R such that Mt ∩ Σn �= ∅, Σn can be regarded as

Σn = Σt ∪ Cn,

where Σt is a connected compact hypersurface whose boundary is contained
into the slice Mt = {t} × Mn and Cn is a manifold diffeomorphic to the
circular cylinder [t,+∞) × S

n−1 which lies in a region of −R ×et Mn of the
form [t,+∞) ×Mn or (−∞, t] ×Mn.

Now, let Σn be a complete hypersurface with one end of a steady state type
spacetime −R ×et Mn. We say that Σn is tangent from above at the infinity
to a slice Mt, if either Σn is a slice Mt̃, for some t̃ ≥ t, or, for all t̃ ≥ t, one of
the following conditions is satisfied

(i) Mt̃ ∩ Σn = ∅;
(ii) Mt̃ ∩ Σn �= ∅ and the compact part Σt̃ of Σn lies over Mt̃.

From Theorem 1, we obtain the following uniqueness result:
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Theorem 2. Let Σn be a complete immersed spacelike hypersurface with one
end of a steady state type spacetime −R ×et Mn, whose Riemannian fiber Mn

is complete with nonnegative constant sectional curvature. Suppose that Σn is
tangent from above at the infinity to a slice Mt = {t} ×Mn, for some t ∈ R.
If one of the following conditions is satisfied:

(i) H2 is a constant with 1 ≤ H ≤ H2, or
(ii) Hr+1 is a constant (with r ≥ 2) with 1 ≤ Hr ≤ Hr+1 and there exists an

elliptic point in Σn,

then Σn is a slice Mt̃, for some t̃ ≥ t.

Proof. Suppose by contradiction that Σn is not a slice of −R ×et Mn. Then,
there are constants t2 > t1 such that the Mt1 ∩ Σn �= ∅ and Mt2 ∩ Σn �= ∅.
Consequently, from Theorem 1, we get that Σn

t1 ⊂ Mt1 and Σn
t2 ⊂ Mt2 . Hence,

since Σn
t2 ⊂ Σn

t1 , we arrive at a contradiction. �
From Corollary 1, we can reason as in the proof of Theorem 2 to get the
following:

Corollary 2. Let Σn be a complete immersed spacelike hypersurface with one
end of a steady state type spacetime −R ×et Mn, whose Riemannian fiber Mn

is complete with nonnegative Ricci curvature. Suppose that Σn is tangent from
above at the infinity to a slice Mt = {t} × Mn, for some t ∈ R. If Σn has
constant mean curvature H ≥ 1, then Σn is a slice Mt, for some t ∈ R.

Remark 2. Colares jointly with the second author obtained uniqueness and
nonexistence results concerning complete constant mean curvature spacelike
hypersurfaces with one end and over a spacelike hyperplane of the steady state
space Hn+1 (cf. [12], Theorem 5.3 and Corollary 5.4).
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Ćıcero P. Aquino
Departamento de Matemática
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