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Isoptic characterization of spheres
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Abstract. If a convex body in K ∈ R
n subtends constant visual angles

over two concentric spheres exterior to K, then it is a ball concentric to
those spheres.
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1. Introduction

The masking number1 MK(P ) of the convex body K at P /∈ K as defined in
[9, (7.1)] is the integral

MK(P ) =
1
2

∫

Sn−1

#(∂K ∩ �(P,uξ))dξ, (1.1)

where # is the counting measure, ∂K denotes the boundary of K, ξ is the
spherical coordinate of the unit vector uξ ∈ S

n−1, and �(P,uξ) is the straight
line through P having direction uξ (Fig. 1).

K

•PKP

Figure 1 The masking number MK(P ) is twice the measure
of the visual angle KP of K at a point P /∈ K

1This is called the point projection in [1] or shadow picture in [3].
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The set of points P ∈ R
n, where a convex body K ⊂ R

n has constant α ∈
(0, |Sn−1|) masking number MK(P ) is called the α-isomasker2 of the convex
body K. The α-isomasker of the convex body K in the plane is the set of the
points where K subtends angles of constant α

2 ∈ (0, π) measure, and it is called
the α-isoptic of K.

Following the conjecture of Klamkin [4] Nitsche proved in [13] that if two
isoptics of K are concentric circles, then K is a disc. Nitsche also asked to
consider the problem in higher dimensions.

We generalize Nitsche’s result to higher dimensions in Theorem 5.1 as follows:
if two isomaskers of a convex body are also isomaskers of a ball with the same
masking numbers, then the body is that ball. We use an integral geometric
method.

2. Preliminaries

We work in the Euclidean n-space R
n (n ∈ N). Its unit ball is B = Bn (in the

plane the unit disc is D), its unit sphere is S
n−1 and the set of its hyperplanes

is H. The ball (resp. disc) of radius � > 0 centered at the origin 0 is denoted
by �B = �Bn (resp. �D). The unit sphere centered at a point P is S

n−1
P .

Using spherical coordinates ξ = (ξ1, . . . , ξn−1) every unit vector can be written
in the form uξ = (cos ξ1, sin ξ1 cos ξ2, sin ξ1 sin ξ2 cos ξ3, . . .), the i-th coordinate
of which is uiξ = (

∏i−1
j=1 sin ξj) cos ξi (ξn := 0). In the plane we use uξ =

(cos ξ, sin ξ) and u⊥
ξ = uξ+π/2 = (− sin ξ, cos ξ). In analogy to this latter one,

we introduce ξ⊥ = (ξ1, . . . , ξn−2, ξn−1 + π/2) for higher dimensions.

We introduce the notation |Sk| := 2πk/2/Γ(k/2) for the standard surface mea-
sure of the k-dimensional sphere, where Γ is Euler’s Gamma function.

The hyperplanes � ∈ H are parametrized so that �(uξ, r) is orthogonal to the
unit vector uξ ∈ S

n−1 and contains the point ruξ,3 where r ∈ R. For conve-
nience we also use �(P,uξ) to denote the hyperplane through the point P ∈ R

n

with normal vector uξ ∈ S
n−1. For instance, �(P,uξ) = �(uξ, 〈−−→OP,uξ〉), where

O = 0 is the origin and 〈., .〉 is the usual inner product.

On H we use the kinematic density d� = drdξ that is (up to a constant
multiple) the only measure on H invariant with respect to the Euclidean
motions [16].

By a convex body we mean a convex compact set K ⊆ R
n with non-empty

interior K◦ and with piecewise C1 boundary ∂K. For a convex body K we
let pK : S

n−1 → R denote the support function of K defined by pK(uξ) =
supx∈K〈uξ,x〉. We also use notation �K(u) = �(u, pK(u)).

2We reserve the word isoptic for the set of points where not only the measure, but also the
shape of KP is constant. A result toward this direction can be found in [12].
3Although �(uξ, r) = �(−uξ, −r) this parametrization is locally bijective.
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If the origin is in K◦, then the support function of K is positive, otherwise
the zero or even negative values appear in its image according to whether the
origin is in ∂K or outside K. If the origin is in K◦, another useful function of
a convex body K is its radial function �K : S

n−1 → R+ defined by �K(u) =
|{ru : r > 0} ∩ ∂K|.
Assume that the origin 0 is an interior point of a convex body K. Define
H0 := {� ∈ H : 0 /∈ �}, and let δ̂ : H0 → R

n and δ̌ : R
n → H0, the dualizing

maps, be defined by

δ̂(�(u, r)) := −1
r
u and δ̌(ru) := �

(
− u,

1
r

)
, (2.1)

respectively, where u ∈ S
n−1 is unit vector and r > 0. These functions are

obviously inverses of each other, and it is an easy and well-known fact4 that

δ̂({� ∈ H : v ∈ �}) = �

(−v
|v| ,

1
|v|

)
and δ̌(�(u, r)) =

{
� ∈ H :

−1
r

u ∈ �

}
.

The dual body K� of K is bounded by ∂K̂ := {δ̂(�(u, pK(u))) : u ∈ S
n−1}. The

dual body K�, which is in fact the point reflection—to the origin 0—of the polar
body K∗ [17, Section 1.6], is convex, and its radial function is �K�(u) = 1

pK(−u)

[17, Theorem 1.7.6]. Further, we have (K�)� = K [17, Section 1.6].

A strictly positive integrable function ω : R
n \ B → R+ is called weight and

the integral

Vω(f) :=
∫

Rn\B

f(x)ω(x)dx

of an integrable function f : R
n → R is called the volume of f with respect to the

weight ω or simply the ω-volume of f . For the volume of the indicator function
χS of a set S ⊆ R

n we use the notation Vω(S) := Vω(χS) as a shorthand. If
several weights are indexed by i ∈ N, then we use the even shorter notation
Vi(S) := Vωi

(S) = Vi(χS) := Vωi
(χS).

Finally we introduce a utility function χ that takes relations as argument and
gives 1 if its argument is fulfilled. For example χ(1 > 0) = 1, but χ(1 ≤ 0) = 0
and χ(x > y) is 1 if x > y and it is zero if x ≤ y. However we still use χ also
as the indicator function of the set given in its subscript.

3. Dualizing the masking function

For any point P ∈ R
n define the sets K̄P and KP in the unit sphere S

n−1
P

centered at P that contains exactly those points X ∈ S
n−1
P for which the

4Embed the space R
n of K into R

n+1 in such a way that the (n + 1)th coordinate of every
point is 1 and the (n + 1)th coordinate axis intersects K in its inner point 0 ∈ R

n.
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hyperplane �(P,
−−→
PX) and the straight line �(P,

−−→
PX), respectively, intersects

K. Then, by (1.1) and some easy observations we have

MK(P ) =
1
2

∫

Sn−1

#(∂K ∩ �(P,uξ))dξ =
∫

KP

1 dξ =
1

|Sn−2|
∫

K̄P

1 dξ

=
1

|Sn−2|
∫

Sn−1

χ(�(P,uξ) ∩ K 
= ∅)dξ.

From this we obtain

|Sn−2|MK(P ) =
∫

Sn−1

χ(〈uξ, P 〉 ≤ pK(uξ)) dξ

= |Sn−1| −
∫

Sn−1

χ(〈uξ, P 〉 ≥ pK(uξ)) dξ

=: |Sn−1| −M�
K(δ̌(P )).

(3.1)

Assuming 0 ∈ K◦ one can reformulate the last integral to obtain

M�
K(δ̌(P )) =

∫

Sn−1

χ

(
〈−uξ�K�(−uξ),−u〉 ≥ 1

r

)
dξ

=
∫

Sn−1

χ

(
�K�(−uξ) ≥

1
r

〈−uξ,−u〉
)
dξ

=
∫

δ̌(P )

χ (x ∈ K�)
∣∣∣∣ dξdx

∣∣∣∣ dx,

where P = ru, r > 0, u ∈ S
n−1, and | dξdx | is the Jacobian of the map x → ξ

given by x = −|x|uξ. Let x = −1
r u + �uψ, where u ⊥ uψ ∈ S

n−1 and ψ

is a spherical coordinate on S
n−2 such that ξ = (ξ, ψ). Then by rotational

invariance we obtain immediately that
∣∣ dξ
dx

∣∣ = |x|2−n∣∣ dξ
d	

∣∣, where tan ξ = 	
1/r

and so

dξ

d�
=

r

1 + r2�2
.

Thus, we obtain

M�
K(δ̌(P )) =

∫

δ̌(P )

χ
(
x ∈ K�

)|x|2−n |P |
1 + |P |2(|x|2 − |P |−2)

dx

=
∫

δ̌(P )

χ
(
x ∈ K�

)1/|P |
|x|n dx,

(3.2)

where dx is the standard surface measure on the hyperplane δ̌(P ).
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4. Measures of convex bodies

In view of (3.2) it is natural to consider the following transforms.

Let M and K be convex bodies such that 0 ∈ M ⊆ K◦. Let ν : H → C1(Rn) be
a function of weights, that is, ν

�
is a weight for every � ∈ H. Then the weighted

section function of K with respect to M, the so called kernel, is defined by

SνM;K(u) =
∫

〈x,u〉=pM(u)

χ(x ∈ K)ν
�M(u)(x) dx

�M(u), (4.1)

where dx
�M(u) is the usual surface measure on �M(u) (Fig. 2).

MK
M(u)

Sν
M;K(u)

Figure 2 Section of K with respect to the kernel M

The function ν : H → C1(Rn) of weights is called rotationally symmetric if
for every � ∈ H, x ∈ � and D ∈ SO(n) one has νD�

(Dx) = ν
�
(x), where

D ∈ SO(n) acts naturally on H. Assume that x,y ∈ R
n and u,v ∈ S

n−1. If
|x| = |y| and 〈x,u〉 = 〈y,v〉, then there is a D ∈ SO(n) such that Dx = y
and Du = v. Thus we have the following lemma immediately.

Lemma 4.1. The function ν of weights is rotationally symmetric if and only if
there is a function ν̄ : R

3 → R such that ν
�(u,r)(x) = ν̄(r, 〈x,u〉, |x|).

If the kernel body is a ball, i.e. �B, we use the notation Sν	;K := Sν	B;K as a
shorthand.

Lemma 4.2. Let the convex body K contain the ball �B. Then for any rotation-
ally symmetric function ν of weights we have

∫

Sn−1

Sν	;K(uξ)dξ = |Sn−2|
∫

K\	B

ν̄(�, �, |x|) (|x|2 − �2)
n−3

2

|x|n−2
dx, (4.2)

Proof. Define the function με of weights by

με
�(u,r)(x) := ν

�(u,r)(x + (r − 〈x,u〉)u)χ(0 ≤ 〈x,u〉 − r ≤ ε),

where ε > 0. Now we can write5

∫

Sn−1

Sν	;K(uζ)dζ =
∫

Sn−1

∫

〈x,uζ〉=	

ν
�(uζ ,	)

(x)χ(x ∈ K) dx� dζ

5Similar calculation is given in [11]. It is given here for the sake of completeness.
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=
∫

Sn−1

lim
ε→0

⎛
⎜⎝1
ε

∫

〈x,uζ〉≥	

με
�(uζ ,	)

(x)χ(x ∈ K) dx

⎞
⎟⎠ dζ

= lim
ε→0

⎛
⎜⎝1
ε

∫

Sn−1

∫

〈x,uζ〉≥	

με
�(uζ ,	)

(x)χ(x ∈ K) dx dζ

⎞
⎟⎠

=
∫

K\	B

lim
ε→0

⎛
⎜⎝1
ε

∫

〈x,uζ〉≥	

με
�(uζ ,	)

(x) dζ

⎞
⎟⎠ dx.

As ν is rotationally symmetric, ν
�(u,〈x,u〉)(x) = ν̄(〈x,u〉, 〈x,u〉, |x|), and this

implies με
�(uζ ,	)

(x) = ν̄(�, �, |x|)χ(0 ≤ 〈x,uζ〉 − � ≤ ε). Therefore, letting
|x|uξ = x, where uξ ∈ S

n−1, the calculation above continues as∫

Sn−1

Sν	;K(uζ)dζ

=
∫

K\	B

ν̄(�, �, |x|) lim
ε→0

⎛
⎜⎝1
ε

∫

〈x,uζ〉≥	

χ(0 ≤ 〈x,uζ〉 − � ≤ ε) dζ

⎞
⎟⎠ dx.

As

lim
ε→0

⎛
⎜⎝1
ε

∫

〈x,uζ〉≥	

χ(0 ≤ 〈x,uζ〉 − � ≤ ε) dζ

⎞
⎟⎠

= lim
ε→0

⎛
⎜⎜⎜⎝

|Sn−2|/|x|
ε/|x|

	
|x|∫

(	+ε)
|x|

√
1 − λ2

n−3
dλ

⎞
⎟⎟⎟⎠ =

|Sn−2|
|x|

√
1 −

(
�

|x|
)2

n−3

,

the lemma is proved. �
Although the following lemma was already proved as Lemma 5.3 in [11], we
present it here for the sake of completeness with its short proof.

Lemma 4.3. Let ωi (i = 1, 2) be weights, let K and L be convex bodies contain-
ing the unit ball B, and let c ≥ 1.

1. If cV1(K) ≤ V1(L) and there is a constant cK such that

ω2(X) ≥ cKω1(X), if X /∈ K,
ω2(X) = cKω1(X), if X ∈ ∂K,
ω2(X) ≤ cKω1(X), if X ∈ K,

where equality may occur only in a set of measure zero, then cV2(K) ≤
V2(L).
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2. If V1(K) ≤ cV1(L) and there is a constant cL such that

ω2(X) ≤ cLω1(X), if X /∈ L,
ω2(X) = cLω1(X), if X ∈ ∂L,
ω2(X) ≥ cLω1(X), if X ∈ L,

where equality may occur only in a set of measure zero, then V2(K) ≤
cV2(L).

In both cases equality in the resulted inequality implies K = L and c = 1.

Proof. In both statements K�L = ∅ implies V1(K) = V1(L), hence c = 1 and
V1(K) = V1(L).

Assume from now on that K�L 
= ∅.

We prove here only (1) since the verification of (2) is similar.

Having (1) we proceed as

V2(L) − cV2(K)

= V2(L) − V2(K) + (1 − c)V2(K) = V2(L \ K) − V2(K \ L) + (1 − c)V2(K)

=
∫

L\K

ω2(x)
ω1(x)

ω1(x)dx−
∫

K\L

ω2(x)
ω1(x)

ω1(x)dx+ (1 − c)V2(K)

> cK(V1(L \ K) − V1(K \ L)) + (1 − c)V2(K)

= cK(V1(L) − V1(K)) + (1 − c)V2(K)

≥ (c− 1)(cKV1(K) − V2(K)) =(c− 1)

⎛
⎝

∫

K

(
cK − ω2(x)

ω1(x)

)
ω1(x)dx

⎞
⎠ ≥ 0.

This implies V2(L) − cV2(K) > 0.

The lemma is proved. �

5. Spherical isomaskers

First we calculate the integral of the masking function MK of the convex body
K ⊂ r̄Bn over the sphere r̄Sn−1 (r̄ > 0). Starting with Eq. (3.1) we get

∫

Sn−1

MK(r̄uξ) dξ =
1

|Sn−2|
∫

Sn−1

|Sn−1| −M�
K(δ̌(r̄uξ)) dξ

=
|Sn−1|2
|Sn−2| − 1

|Sn−2|
∫

Sn−1

M�
K(δ̌(r̄uξ)) dξ.



70 Á. Kurusa and T. Ódor J. Geom.

Assuming 0 ∈ K◦ we can continue by using (3.2) and (4.1) and obtain
∫

Sn−1

MK(ruξ) dξ =
|Sn−1|2
|Sn−2| − 1

|Sn−2|
∫

Sn−1

∫

�(−uξ,
1
r )

χ
(
x ∈ K�

) 1/r̄
|x|n dx dξ.

This means
∫

Sn−1

MK(rξ) dξ =
|Sn−1|2
|Sn−2| − 1

|Sn−1|
∫

Sn−1

S
ν
1
r̄ ;K�(uξ) dξ, (5.1)

where ν
�(u,r)(x) = r|x|−n. Having this we are ready to prove the following

generalization of Nitsche’s result [13].

Theorem 5.1. Let �2 > �1 > r̄ > 0 and let K be a convex body contained in the
interior of �1Bn. If the sphere �1S

n−1 is the common α-isomasker and �2S
n−1

is the common β-isomasker of the convex body K and r̄B, then K = r̄B.

Proof. By the conditions we have MK(�1u) = α = Mr̄Bn(�1u) and MK(�2u) =
β = Mr̄Bn(�2u) for every u ∈ S

n−1.

Figure 3 MK(P ) is clearly smaller than MK(Q)

Some elementary observations and reasoning illustrated in Fig. 3 implies that
K◦ contains the common center 0 of the balls r̄B, �1Bn and �2Bn.
Now Eq. (5.1) implies

∫

Sn−1

S
ν
1

�1
;K�(uξ) dξ =

∫

Sn−1

S
ν
1

�1
;(r̄Bn)�(uξ) dξ =

∫

Sn−1

S
ν
1

�1
; 1r̄ Bn(uξ) dξ,

∫

Sn−1

S
ν
1

�2
;K�(uξ) dξ =

∫

Sn−1

S
ν
1

�2
;(r̄Bn)�(uξ) dξ =

∫

Sn−1

S
ν
1

�2
; 1r̄ Bn(uξ) dξ.
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As the function ν of weights having ν̄(�2, �2, r) = �2r
−n is obviously rotational

invariant, (4.2) implies

∫

K�\ 1
�2

Bn

(|x|2 − �−2
2

)n−3
2

|x|2n−2
dx =

∫
1
r̄ Bn\ 1

�2
Bn

(|x|2 − �−2
2

)n−3
2

|x|2n−2
dx,

and

∫

K�\ 1
�1

Bn

(|x|2 − �−2
1

)n−3
2

|x|2n−2
dx =

∫
1
r̄ Bn\ 1

�1
Bn

(|x|2 − �−2
1

)n−3
2

|x|2n−2
dx.

Let ω̄1(r) := r2−2n(r2−�−2
1 )

n−3
2 , ω̄2(r) := r2−2n(r2−�−2

2 )
n−3

2 , and let ω1(x) :=
ω̄1(|x|), ω2(x) := ω̄2(|x|). Then ω1

ω2
is clearly a constant, say cL, on 1

r̄Bn, and

ω̄1(r)
ω̄2(r)

=

(
r2 − �−2

1

)n−3
2

(
r2 − �−2

2

)n−3
2

=
(

1 − �−2
1 − �−2

2

r2 − �−2
1

)n−3
2

shows that ω̄1
ω̄2

is strictly monotone increasing.

The above observations show that the conditions in (2) of Lemma 4.3 are
satisfied for K�, L := 1

r̄Bn and c = 1, hence V2(K�) ≤ V2(L), and equality
implies K� = L and c = 1.

As K = (K�)� = (L)� = r̄Bn, the theorem is proved. �

6. Discussion

To have a complete generalization of Nitsche’s result [13] from the point of view
of Theorem 5.1, one should prove that if a convex body K has two spherical
isomaskers of values α1 
= α2, then there is a ball r̄Bn with the same α1- and
α2-isomaskers of radius �1 
= �2. Although Nitsche proved this in the plane,
the authors conjecture that this is no longer valid in higher dimensions.

Conjecture 6.1. There are positive values α1 
= α2 and �1 
= �2 such that there
is a non-spherical convex body K ⊂ R

n the α1- and α2-isomaskers of which
are spheres of radius �1 
= �2, respectively.

However note that it is proved in [7] that if two convex bodies in the plane
have rotational symmetry of angle 2(π − ν) and have common ν-isoptic, then
that ν-isoptic is a circle.

In higher dimensions the only positive result the authors know about is the
surprisingly easy [5, Theorem 2]. It states that if a convex body K ⊂ R

n has
an isoptic I in the sense of a k-dimensional angles for any 1 < k < n− 1, then
K is reconstructible from I.
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[11] Kurusa, Á., Ódor, T.: Spherical floating body. Manuscript submitted (2014)

[12] Matsuura, S.: A problem in solid geometry. J. Math. Osaka City Univ. A 12,
89–95 (1961)

[13] Nitsche, J.C.C.: Isoptic characterization of a circle (proof of a conjecture of M.S.
Klamkin). Am. Math. Mon. 97, 45–47 (1990)
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[16] Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge Mathe-
matical Library. Cambridge University Press, Cambridge (2004)

[17] Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge
(1993) (2nd edn., 2013)

http://dx.doi.org/10.1007/s13366-011-0074-2
http://dx.doi.org/10.1007/s00022-012-0137-z
http://dx.doi.org/10.1007/s13366-014-0203-9


Vol. 106 (2015) Isoptic characterization of spheres 73
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