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Abstract. It is well known that the calculus of reflections (developed by
Hjelmslev, Bachmann et al.) enables the derivation of a large part of
Euclidean and non-Euclidean geometry without using assumptions about
order and continuity. We show in this article that the calculus of reflec-
tions can conversely be used to introduce a relation of order in hyperbolic
geometry. Our investigations are based on the famous ‘Endenrechnung’
of Hilbert which was formulated purely in terms of the calculus of reflec-
tions by F. Bachmann. We then discuss some implications of these results
and show that the calculus of reflections enables (1) the introduction of
an order relation in a Pappian projective line and (2) to define an axiom
system for hyperbolic planes which seems to be as simple as the famous
axiom system of Menger who only used the notion of point-line incidence
to axiomatize plane hyperbolic geometry.
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1. Introduction

While it is well known, that the calculus of reflections enables the derivation of
a large part of Euclidean and non-Euclidean geometry without using assump-
tions about order and continuity (see Hjelmslev [7,8] and Bachmann [2]), it
seems to be an open question whether the calculus can be used to introduce
concepts of order and separation.

In the foundations of geometry the relations of betweenness and order are
introduced in hyperbolic geometry either as undefined notions which satisfy
certain axioms (see Hilbert [5,6] or in a modern setting Hartshorne [4]) or they
are defined in an algebraic way (see Bachmann [2, §15] who uses an algebraic
representation of the group of motions of a hyperbolic plane to show that the
field of coordinates has a subset of positive elements which induces a relation
of order on the set of points of the hyperbolic plane).
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We show in Sect. 2 that in hyperbolic geometry a relation of order can be for-
mulated purely in terms of the calculus of reflections without assuming axioms
of order and without making reference to a special algebraic representation of
the underlying geometrical structure. We proceed in two steps and show that
on the set of ends a relation of separation can be introduced which induces a
relation of order on the set of points of a hyperbolic plane. To elucidate this
approach we prove some theorems about separation and order which show that
our definitions satisfy well-known axioms.

In the subsequent sections we discuss some implications of our results. In
Sect. 3 we answer a question of Pambuccian who gives in [19] an extensive
overview of the axiomatics of ordered geometry. Starting with the one-dimen-
sional case he considers projective lines over fields of characteristic �= 2. Their
groups PGL2(K) of projective collineations were axiomatized by Bachmann [1]
and it is natural to ask, whether Bachmann’s axiom system—in which individ-
uals are Möbius transformations and the only primitive notion is the binary
operation of composition of Möbius transformations—allows us, to bring a
projective order relation into the picture [19, Subsection 2.7]. We answer this
question in the affirmative.

In Sect. 4 we use the results of Sect. 2 to define an axiom system for hyperbolic
planes which seems to be as simple as the famous axiom system of Menger [13]
who only used the notion of point-line incidence to axiomatize plane hyper-
bolic geometry (for axiomatizations of hyperbolic geometry see Pambuccian
[20]).

2. The relation of order in hyperbolic geometry

We show in this section that in hyperbolic geometry a relation of order can
be formulated purely in terms of the calculus of reflections. To this end we
proceed in two steps and show that on the set of ends a relation of separation
can be introduced which induces a relation of order on the set of points of the
hyperbolic plane.

As starting point of our investigations we choose the group-theoretic axiom
system of Bachmann [2, §14] (which was proposed by Klingenberg [10] and
Bergau [3]) for plane hyperbolic geometry which does not contain any axioms
of order (in contrast to the axiomatizations of Hilbert [6] and Hartshorne [4]).

Basic assumption. Let G be a group which is generated by an invariant set S
of involutory elements.

Notation: The elements of S will be denoted by lowercase Latin letters. The
set of involutory elements of S2 will be denoted by P and their elements by
uppercase letters A,B, . . . The ‘stroke relation’ α | β is an abbreviation for the
statement that α, β and αβ are involutory elements. The statement α, β | δ is
an abbreviation of α | δ and β | δ.
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Axiom A1. For A,B there exists c with A,B | c.
Axiom A2. If A,B | c, d then A = B or c = d.
Axiom A3. If a, b, c | e then abc ∈ S.
Axiom A4. If a, b, c | E then abc ∈ S.
Axiom D. There exist a, b, c with a | b and a � c and b � c and ab � c.
Axiom ¬V ∗. There exist a, b with α � a, b for all α ∈ S ∪ P .
Axiom H. If a, b, c | D and if there is no α ∈ S ∪ P with α | a, g or
α | b, g or α | c, g then a = b or a = c or b = c.

The axiom system has a twofold interpretation. It characterizes the group of
motions of a hyperbolic plane by axioms which the reflections A,B,C, . . . in
points and the reflections a, b, c, . . . in lines satisfy. So according to Axiom A3
and Axiom A4 the theorem of three reflections holds: If three lines have a
common point or a common perpendicular, then the product of the reflections
in these lines is a line reflection.

The group of motions of a hyperbolic plane allows the recovery of the geometry
of the underlying hyperbolic plane. The points and lines of a hyperbolic plane
are in one-to-one correspondence with the reflections in points and lines and
geometric relations such as incidence or orthogonality correspond to group-
theoretical equations among reflections. Hence we can assign to (G,S) a geo-
metrical structure, called the group plane of (G,S) (cp. [2, §20,2]). Elements
of S are called lines and elements of P points. Lines a, b ∈ S are called orthog-
onal if ab ∈ P (written a | b). A point A and a line b are called incident if
Ab is involutory (written A | b). Two lines a, b are connected if they have a
common point or a common perpendicular. The mapping a → aα, A → Aα of
S onto S and P onto P is called the motion induced by α ∈ G (we write βα

instead of α−1βα). A set S(a, b) = {c : abc ∈ S} of lines is called a pencil. A
pencil S(a, b) is called ordinary if a, b are connected and singular otherwise.
Following Hilbert [5] a singular pencil of lines is called an end. We denote ends
by A,B, C, . . ..

Bachmann’s axioms for plane hyperbolic geometry can be formulated in the
geometrical language of the group plane (the second interpretation of the axiom
system): Axiom A1 and Axiom A2 can be interpreted as the existence and
uniqueness of a joining line of two points, Axiom A3 and Axiom A4 as three
lines which have a common point or a common perpendicular lie in a pencil,
Axiom ¬V ∗ as the existence of an end and Axiom H as the hyperbolic parallel
axiom (if A, g are not incident then there are at most two lines through A
which have neither a common point nor a common perpendicular with g).

In this way the calculus of reflections allows the formulation of geometric theo-
rems as theorems about elements of the group of motions which can be proved
by group-theoretic calculations.

According to the main theorem of Bachmann [2, §6 and §11] the following
holds: a hyperbolic plane can be extended to a Pappian projective plane (the
projective ideal plane) which can be coordinatized over a commutative field of
characteristic �= 2. The orthogonality of lines induces a hyperbolic polarity in
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the ideal plane (with the set of ends as the set of points of the absolute conic)
which can be described by a symmetric bilinear form f. The group G can be
represented as the orthogonal group O3(K, f).

We are interested in the properties of ends. The following propositions hold
according to Bachmann [2, §14 and §10,4]):

(1) Two lines of an end have neither a common point nor a common line.
(2) A line is an element of at most two ends.
(3) A line, which is element of an end, is the element of a second end.
(4) Any two ends have a common line.
(5) If A,B are ends and g ∈ A,B then AE = B (resp. Ah = B) if and only if

E | g (resp. h | g).

Following the famous ‘Endenrechnung’ of Hilbert [7] the following theorem is
proved by Bachmann (see [2, §15,1]):

Theorem 2.1. Let I (‘infinity’) be an arbitrary fixed end. On the set K of ends
�= I of (G,S) an addition + and a multiplication · can be introduced with the
following properties.

(1) (K,+, ·) is a field of characteristic �= 2.
(2) The groups G and PGL2(K) are isomorphic.

We now show that Bachmann’s axiom system allows us to bring the notion of
separation into the picture.

In projective geometry the order relation on a (projective) line can be described
by the notion of separation which is a quaternary relation // on the set of
points of a line with AB//CD to be read as ‘the point-pair (A,B) separates
the point-pair (C,D)′. For axiomatizations of this relation we refer to Pam-
buccian [19].

We use the following theorem to define a relation of separation on the set of
ends.

Theorem 2.2. Let A,B, C,D be four different ends. Then the following condi-
tions are equivalent:

(a) There exists a point E with AE = B and CE = D.
(b) The joining lines of A,B and C,D have a common point E.
(c) The joining lines of A,B and C,D have no common perpendicular.

Proof. (b) and (c) are equivalent since two lines of a hyperbolic plane have
either a common point or a common line or are elements of the same end. The
equivalence of (a) and (b) holds according to Bachmann [2, §14,2]. �
Definition 2.3. Let A,B, C,D be four different ends. The pair (A,B) separates
(C,D) (notation AB//CD) if (one of) the conditions of Theorem 2.2 hold.

Theorem 2.4. The relation of separation is invariant under motions of G and
hence under projective collineations.
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Proof. The separation relation is defined in terms of incidence and orthogo-
nality and hence is invariant under motions of G and under projective col-
lineations (since according to Theorem 2.1 the groups G and PGL2(K) are
isomorphic). �
We show that Definition 2.3 satisfies the axioms of a separation relation given
in Pambuccian [19, Section2.7].

Theorem 2.5. If (A,B) separates (C,D) then (A, C) does not separate (B,D).

Proof. Let a ∈ A, C and b ∈ B,D and g ∈ A,B and h ∈ C,D. Since AB//CD
there exists a point X | g, h. Suppose AC//BD, i.e. there exists a point E | a, b.
Then AE = C and BE = D (according to Theorem 2.2) and hence gE = h and
XE = X, i.e. X = E, which is a contradiction to AX = B and AE = C and
B �= C. �
Theorem 2.6. (M,N ) separates two or none of the pairs (A,B), (A, C), (B, C).

Theorem 2.6 is a configurational statement which says (see Theorem 2.2): Let
A,B, C be three different ends and a, b, c their joining lines (an asymptotic
triangle; see [2, §14,2]). If a line g (which connects ends M,N �= A,B, C)
intersects one of the sides of the asymptotic triangle then g intersects another
side as well.

This is the Axiom of Pasch formulated for an asymptotic triangle.

Theorem 2.6 is equivalent to the following theorem.

Theorem 2.7. Let A,B, C,M,N be five different ends and a ∈ B, C and b ∈
A, C and c ∈ A,B and g ∈ M,N . Then g has a common perpendicular with
at least one of the lines a, b, c. If g has a common perpendicular with two
of the lines a, b, c then g has a common perpendicular with each of the lines
a, b, c.

Proof. Suppose g has no common perpendicular with a, b and c. Then there
are points A | a, g and B | b, g and C | c, g and BAC = E ∈ P and E | g
(according to Axiom A4 ). Since AE = ABAC = CAC = BC = A we have
E ∈ A (according to [2, Proposition 5 in §11,2]) which is a contradiction to
A ⊆ S and S ∩ P = ∅.

Now suppose g has a common perpendicular with a and b. Let la | a, g and lb |
b, g and ha, hb, hc | g with ha ∈ A and hb ∈ B and hc ∈ C (which exist accord-
ing to [2, Proposition 2 in §14,4]). Since lb, hc, la | g we have lbhcla =: h ∈ S
and h | g and Ah = Albhcla = Chcla = Cla = B. According to [2, Proposition 9
in §11,3] we have h | c. Hence h is a common perpendicular of c and g. �
Theorem 2.8. If AC//BD then AC//XD or AC//BX .

Proof. Suppose (A, C) separates (B,D) but not (X ,D). Then (A, C) separates
one of the pairs (B,D), (B,X ), (X ,D) and hence according to Theorem 2.6
two of the pairs, i.e. AC//BX . �
Theorem 2.9. If neither AB//CD nor AD//BC then AC//BD.
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Proof. Let a, b, c, d, e, f be the joining lines of the ends A,B resp. B, C resp.
C,D resp. A,D resp. A, C resp. B,D. Under the assumptions of the theorem
the lines a, c (resp. d, b) have a common perpendicular g resp. h.

According to [2, §14,2] holds Ag = B and Ahgh = B. Hence g, gh | a and g = h
or h | a. Since Ah = D �= B it is h � a. Hence g = h and E := gh is a point with
AE = Agh = C and BE = Agh = D, i.e. E is a common point of e and f . �
The set of ends can be considered as the set of points of a projective line
(the points of the projective coordinate line P1(K) over the field K are the
1-dimensional subspaces of the two-dimensional vector space V2(K) of pairs
over K and a point of P1(K) thus consists of all pairs in K proportional to a
pair (x, 1) with x ∈ K or to (1, 0) (the point at ‘infinity’) which correspond to
the end I and to the ends �= I; see Theorem 2.1).

Hence our results can be summarized in the following way:

Theorem 2.10. The projective line of ends, with the relation of separation
defined in Definition 2.3, is an ordered projective line and the coordinate field
K is orderable.

Proof. According to the Theorems 2.4 to 2.9 the axioms of separation of a pro-
jective line given in Pambuccian [19, Section 2.7] are satisfied and hence the
associated coordinate field is orderable. �
Since the field K of ends of a hyperbolic plane is the coordinate field of the
associated projective ideal plane and since K is according to Theorem 2.10
an orderable field, the ideal plane can be ordered and hence induces a rela-
tion of order in the hyperbolic plane. Since a hyperbolic plane contains with
two points of the ideal plane their joining line and with each point all lines
through this point, Hilbert’s axioms of incidence and order are satisfied, i.e., a
hyperbolic plane is an ordered plane in the sense of Pambuccian [19, Section
3.1].

We close this section and show how the relation of betweenness on the set of
points of a hyperbolic plane can be defined purely in terms of the calculus of
reflections.

Let κ be the conic of the projective ideal plane whose points are the ends
of the given hyperbolic plane. We choose parametric coordinates of κ which
are induced by the pencil of lines through a point I of κ. The cross-ratio
CR(ABCD) of four points A,B, C,D �= I of κ is defined as the cross-ratio of
the lines a, b, c, d ∈ I through A,B, C,D respectively and does not depend on
the choice of the point I of κ (by Steiners theorem). AB//CD holds if and
only if CR(ABCD) < 0 (see Karzel and Kroll [9] or Lenz [11]).

Since a line cuts a pencil in sets of points with the same cross-ratio as the
intercepted lines, the projection π of κ from one of its points I on a line l of
the hyperbolic plane with l /∈ I preserves the cross-ratio and hence induces
a relation of separation on l (if A,B,C,D are points on l with A = Aπ and
B = Bπ and C = Cπ and D = Dπ then AB//CD if AB//CD).
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The relation of separation on κ induces on the set of ends �= I a relation of
betweenness (if A,B, C are ends �= I then B lies between A and C if AC//BI)
and the projection π induces an associated relation on l: If A,B,C are points
on l (with A = Aπ and B = Bπ and C = Cπ and D = Dπ) then B lies between
A and C if AC//BI.

More explicitly the following holds: Let A,B,C be points on a line l and I an
end with l /∈ I. Let a, b, c ∈ I with a | A and b | B and c | C and A,B, C the
unique ends �= I with a ∈ A, b ∈ B and c ∈ C. Then B lies between A and C
if there exists a point E with AE = C and BE = I (i.e. if AC//BI).

In terms of the calculus of reflections we get the following theorem which can
be used as a definition of a relation of betweenness in a hyperbolic plane.

Theorem 2.11. Let A,B,C be points on a line l and I an end with l /∈ I.
Then B lies between A and C if there exists a point E with (IA)E = IC and
IE = IB.

Proof. Using the notations of the theorem we get IA = A and IB = B and
IC = C (according to (5) in Sect. 2) and from this the theorem follows imme-
diately. �

3. Ordered projective lines

Pambuccian gives in [19] an extensive overview of the axiomatics of ordered
geometry. Starting with the one-dimensional case he considers projective lines
over fields K of characteristic �= 2. Their group PGL2(K) of projective col-
lineations was axiomatized by Bachmann [1] and it is natural to ask, whether
Bachmann’s axiom system—in which individuals are Möbius transformations
and the only primitive notion is the binary operation of composition of Möbius
transformations—allows us to bring a projective order relation into the picture
(see [19, Section 2.7]).

Bachmann (see [1] and [2, §11]) and Lingenberg [12] characterize the projec-
tive general linear group PGL2(K) as an abstract group H whose generators
are involutory and satisfy the following axioms (involutory elements of H are
denoted by lowercase Latin letters; involutory elements a, b are called connected
if there is an involutory element v such that av and bv are involutory).

Basic assumption. H is a group and each element of H can be represented as
the product of two involutions.

Axiom 1. If a �= b and abc, abd are involutory then acd is involutory.
Axiom 2. There exist elements a, b which are not connected.
Axiom 3. If neither a, b nor c, d are connected then there exists an element v
such that abv and cdv are involutory.

A group which satisfies this axiom system is called a H-group.

According to [2, Theorem 9] the following theorem holds.
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Theorem 3.1. A group PGL2(K) over a field K of characteristic �= 2 is
a H-group and each H-group can be represented as a group PGL2(K) over
a field K of characteristic �= 2.

The group PGL2(K)—associated to a projective line—allows a second geo-
metric interpretation (see Veblen and Young [24, Chapter viii] and Bachmann
[2, §10,4]): PGL2(K) is isomorphic to the group of projective collineations of a
Pappian projective plane which leave a non-empty (non-degenerated) conic κ
invariant. The involutory elements of H are in this interpretation the harmonic
homologies (projective reflections) whose axis and center are not incident and
pole and polar with respect to the conic.

If K is an ordered field then the points which are in the interior of κ and the
lines which are incident with at least one interior point are the elements of
Klein’s model of a hyperbolic plane. The set S of projective reflections in lines
of the hyperbolic plane generate the group G of motions and (G,S) satisfies
the axioms of a hyperbolic plane given in Sect. 2.

According to [2, Theorem 11] the following theorem holds.

Theorem 3.2. A H-group over a field K of characteristic �= 2—and hence a
group PGL2(K)—is the group of motions of a hyperbolic plane if and only if
K can be ordered.

Since a projective line can be ordered if and only if the underlying field can be
ordered (see Karzel and Kroll [9] or Lenz [11]) the following theorem holds.

Theorem 3.3. The group of projective collineations of an ordered projective line
is isomorphic to the group of motions of a hyperbolic plane. These groups can
be characterized by the axiom system of Bachmann given in Sect. 2.

Hence the question of Pambuccian mentioned above can be answered in the
affirmative: A projective line over a field of characteristic �= 2 can be ordered if
and only if the group G of projective collineations has a subset S of involutory
elements such that (G,S) satisfies the axiom system given in Sect. 2 and the
relation of separation can be introduced as in Definition 2.3.

4. A simple axiom system for plane hyperbolic geometry

After Hilbert’s [6] axiomatization of plane hyperbolic geometry there have
been various attempts to simplify his axiom system (for a survey see Pam-
buccian [20]). Tarski [23] used only one sort of individual variables (points)
and only two primitive notions (betweenness and equidistance) which led to
a remarkable simplification of the language and of the axioms of Hilbert. In
[13] and [14] Menger showed that it is sufficient to use the notion of point-line
incidence to axiomatize hyperbolic geometry and claimed that for this reason
hyperbolic geometry is simpler than Euclidean geometry (see Skala [21] for a
formulation of Menger’s axiom system in a first-order language).
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Both axiom systems mentioned above are axiomatizations of ‘classical’ hyper-
bolic planes with free mobility which can be coordinatized over Euclidean
fields. According to Bachmann [2, §15,2] these are the hyperbolic planes in
which every line is element of an end.

Given that an axiom system for hyperbolic geometry should be able to define
elementary geometric concepts such as incidence, order and congruence, the
results of Sect. 2 allow the formulation of a simple axiom system H for clas-
sical hyperbolic planes with only one sort of individual variables (elements
α, β, γ, . . . of a set G) and only one binary operation · on G. To improve the
readability of the axioms, we introduce the following abbreviations:

ε(α) ⇔ α2 = α (to be interpreted as α is an idempotent element)

ι(α) ⇔ ε(α2) ∧ ¬ ε(α) (to be interpreted as α is an involution of (G, ·))
α |β ⇔ ι(α) ∧ ι(β) ∧ ι(α · β) (we write α, β | γ if α | γ ∧ β | γ)

α�β ⇔ ι(α) ∧ ι(β) ∧ (∃γ) (ι(γ) ∧ α, β | γ) (in the negated case we write �)

We present the axioms in informal language (their formalization being straight-
forward) and define two subsets P and S of G (which correspond in a first-order
language to unary predicates).

(1) α ∈ P ⇔ ι(α) ∧ (∀β) (ι(β) → α ∼ β)
(2) α ∈ S ⇔ ι(α) ∧ (∃β) (ι(β) ∧ α � β)

As in Sect. 2 elements of S are denoted by lowercase Latin variables a, b, . . .
and elements of P by uppercase variables A,B, . . .. The axiom system consists
of the following axioms:

Axiom H1. If α, β, γ ∈ G then (α · β) · γ = α · (β · γ)
Axiom H2. If α, β ∈ G and α2 = α then α · β = β = β · α
Axiom H3. If α ∈ G then there are a, b with α = a · b or a,A with α = a · A.
Axiom H4. If a | b then a · b ∈ P .
Axiom H5. If A · B = B · A then A = B.
Axiom H6. If A,B | c, d then A = B or c = d.
Axiom H7. If a, b, c | e then abc ∈ S.
Axiom H8. If a, b, c | E then abc ∈ S.
Axiom H9. If α, β, γ |σ and ι(τ) and α, β, γ � τ then α=β or α=γ or β=γ.
Axiom H10. There exist A, b with A � b.

Theorem 4.1. The axioms H1–H10 axiomatize classical hyperbolic planes.

Proof. We show that the axioms of a hyperbolic plane given in Sect. 2 are
satisfied.

According to Axiom H1 the operation · is a binary associative operation on G.
Let α ∈ S. Then α4 = α2 and (according to Axiom H2 ) α2 is a neutral element
which we denote by 1. This definition does not depend on the choice of α: If
β ∈ S then (αα)β = β (since αα is a neutral element) and ((αα)β)β = ββ
which implies αα = ββ (since ββ is a neutral element). We show that every
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element α ∈ G has an inverse element with respect to 1: If α = ab or α = aA
(see Axiom H3 ) then α−1 = ba resp. α−1 = Aa since ab · ba = a(bb)a = aa = 1
resp. aA · Aa = aa = 1. This proves that (G, ·) is a group with 1 as identity
element. Hence the elements α ∈ G with ι(α) are the involutions of G and
according to (1) and (2) these are the elements of P and of S. According to
Axiom H3 the set of involutions generates G.

According to AxiomH4 involutory elements of S2 are elements of P . Let E be
an arbitrary element of P . According to Axiom H3 there are a, b with E = a ·b
or there are a,A with E = a·A. If E = a·A then E | A which is a contradiction
to Axiom H5. Hence there are a, b with E = a · b which shows that P is the
set of involutions of S2 and that the Basic Assumption of Sect. 2 holds.

We show that Axiom A1 of Sect. 2 is satisfied. Let A,B ∈ P . According to (1)
there is an element e ∈ S with A,B | e or an element E ∈ P with A,B | E.
Since there are no elements C,D with C | D (according to Axiom H5 ) there
is an element e with A,B | e and Axiom A1 holds.

The Axioms A2, A3, A4 of Sect. 2 hold since the Axioms H6, H7, H8 hold.
Axiom ¬V ∗ is satisfied since there exists an element of S (see Axiom H10 ).

Axiom H9 is a generalization of Axiom H (see Sect. 2), which was intro-
duced by Struve and Struve [22] for a common characterization of hyperbolic
and co-Minkowskian geometry. If α, β, γ, σ, τ satisfy the assumptions of Axiom
H9 then α, β, γ, τ ∈ S (since α, β, γ, τ are involutions with α, β, γ � τ) and
α, β, γ |σ. If σ ∈ P Axiom H9 is equivalent with Axiom H. If σ ∈ S axiom H9
holds as well (see Struve and Struve [22]).

It remains to show that Axiom D of Sect. 2 holds. According to Axiom H10
there exist A, b with A � b and according to Axiom A1 there is an element
c ∈ S with c | A,Ab and b | c (because of Axiom H6 ). If d is an element
with d � b (which exists according to (2)) then b, c, d show that Axiom D is
satisfied.

The axiom system characterizes classical hyperbolic planes since according to
(2) every line is element of an end. �
There is no general accepted definition for the simplicity of an axiom sys-
tem (see Pambuccian [15]). However axiom system H uses the simplest possi-
ble language with only one sort of individual variables and only one (binary)
operation. In this sense it is the simplest possible one.

Beside the many different ways to look at simplicity using syntactic criterions
(cf. Pambuccian [16]) we want to emphasize a semantic one: Axiom system H
allows the elementary definition of geometric relations such as incidence, order
and congruence in a simple way: If the elements of S are called lines and the
elements of P points (cf. Sect. 2) then a point A and a line b are incident if
A | b; lines a, b are orthogonal if a | b; three lines a, b, c lie in a pencil if ι(abc);
segments (A,B) and (C,D) (i.e. pairs of points) are congruent if there is an
element α ∈ G with α−1Aα = C and α−1Bα = D; angles �(a, b) and �(c, d)
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(i.e. pairs of lines) with vertices E resp. F are congruent if there is an element
α ∈ G with α−1Eα = F and α−1aα = c and α−1bα = d.

If A,B,C are points on a line g then B lies between A and C if the condition
of Theorem 2.11 holds. This condition is equivalent to the following one (since
in a classical hyperbolic plane every line is element of an end): If a, b, c are lines
through A,B,C respectively which are orthogonal to g then B lies between A
and C if there is a point E on b with EaE � c.

Moreover, the axiom system H can be considered as an axiomatization of the
group of motions of a (classical) hyperbolic plane with α ∈ G interpreted as a
motion, the binary operation · as the composition of motions and α−1Aα as
the image of the point A under α.

This is remarkable since in a first-order language quantifiers can bind only
individual variables, but not sets of individual variables which are normally
used to define the concept of a rigid motion (as bijections of the set of points
and of the set of lines). However, this does not mean that motions of a hyper-
bolic plane cannot be axiomatized by a first-order language—as axiom system
H shows.

Remark Written in prenex normal form (a formula of first-order logic is in
prenex normal form if it is written as a string of quantifiers followed by a
quantifier-free part) axiom system H is a ∀∃∀-axiom system whereas an axi-
omatization in terms of incidence alone (as Menger’s axiom system) must con-
tain at least one ∀∃∀∃-statement (as shown in Pambuccian [18]). This shows
that axiom system H is simpler than Menger’s axiom system as far as quan-
tifier complexity is concerned.

Acknowledgments

The author thanks the referee for suggestions that significantly improved the
presentation of the article.

Appendix

The referee raised the question whether there does not exist a ∀∃-axiom sys-
tem in this language for this theory (the existence of an ∀∃-axiom system for
elementary hyperbolic geometry was shown by V. Pambuccian [17]).

To this end we introduce an axiom system H∗ for classical hyperbolic planes
with one sort of individual variables (elements α, β, γ, . . . of a set G), one binary
operation · on G and two constant symbols λA and λb. Axiom system H∗ is a
slightly modified version of axiom system H: The sets P and S are defined as
conjugate classes of G (see Bachmann [2, §15,2]) which can be represented by
the elements λA and λb of G.

ε(α) ⇔ α2 = α (to be interpreted as α is an idempotent element)
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ι(α) ⇔ ε(α2) ∧ ¬ ε(α) (to be interpreted as α is an involution of (G, ·))
α |β ⇔ ι(α) ∧ ι(β) ∧ ι(α · β) (we write α, β | γ if α | γ ∧ β | γ)

α�β ⇔ ι(α) ∧ ι(β) ∧ (∃γ) (ι(γ) ∧ α, β | γ) (in the negated case we write �)

α≈β ⇔ (∃σ) σ−1ασ = β (to be interpreted as α is conjugate to β)

We define two subsets P and S of G in the following way:

(1*) α ∈ P ⇔ α ≈ λA

(2*) α ∈ S ⇔ α ≈ λb

As in Sect. 2 elements of S are denoted by lowercase Latin variables a, b, . . .
and elements of P by uppercase variables A,B, . . .. The axiom system consists
of the following axioms:

Axiom H1*. If α, β, γ ∈ G then (α · β) · γ = α · (β · γ)
Axiom H2*. If α, β ∈ G and α2 = α then α · β = β = β · α
Axiom H3*. ι(λA) and ι(λb) and λA �= λb and λA � λb.
Axiom H4*. If α ∈ G and ι(α) then α � λA.
Axiom H5*. There exists α ∈ G with ι(α) and α � λb.
Axiom H6*. If α ∈ G and ι(α) then either α ≈ λA or α ≈ λg.
Axiom H7*. If α ∈ G then there are a, b with α = a · b or a,A with α = a · A.
Axiom H8*. If a | b then a · b ∈ P .
Axiom H9*. If A · B = B · A then A = B.
Axiom H10*. If A,B | c, d then A = B or c = d.
Axiom H11*. If a, b, c | e then abc ∈ S.
Axiom H12*. If a, b, c | E then abc ∈ S.
Axiom H13*. If α, β, γ |σ and ι(τ) and α, β, γ �τ then α=β, α=γ or β=γ.

Theorem 4.2. The axioms H1*–H13* axiomatize classical hyperbolic planes.

Proof. (G, ·) is a group and the elements α ∈ G with ι(α) are the involutions of
G (since the Axioms H1*, H2* and H7* hold; see the proof of Theorem 4.1).

Because of (1*) and (2*) it is λA ∈ P and λb ∈ S. The elements of S and
P are involutions (since P and S are conjugate classes and λA and λb are
involutions; see Axiom H3* ) and generate G (according to Axiom H7* ).

According to the Axioms H4*, H5* and H6* the definitions (1*) and (2*) of
S and P are equivalent to the corresponding definitions (1) and (2) of axiom
system H.

To finish the proof we have to show that the Axioms H1–H10 of axiom system
H hold. The Axioms H1–H9 hold since the Axioms H1*, H2*, H7*, H8*, H9*,
H10*, H11*, H12*, H13* hold. Axiom H10 is satisfied because Axiom H3*
holds. �
Written in prenex normal form axiom system H∗ is a ∀∃-axiom system.
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