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The necessary condition for the discrete L0-Minkowski problem in R
2

Alina Stancu

Abstract. We prove that the sufficiency condition employed to show the existence and, in certain cases the
uniqueness, of solutions to the discrete, planar L0-Minkowski problem with data containing, at least, a pair of
opposite vectors is also a necessary condition.
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The classical Minkowski problem deals with the existence, uniqueness, regularity and
stability of closed, convex hypersurfaces whose Gauss curvature, viewed as a function
on the unit sphere, is preassigned. For an atomic measure on the unit sphere, the question
concerns the existence and uniqueness of polytopes with facets of fixed normal directions
and fixed surface areas. In the planar setting, the Minkowski problem consists of a sufficient
and necessary condition for the existence of a convex polygon whose sides have preassigned
lengths and orientations:

Let U = {→u1, ...,
→uN } be an ordered set of directions in S

1, not all in a half-disk, and let
L = {l1, ..., lN } be an ordered set of strictly positive numbers. There exists a convex N -gon

whose i-th side has outer normal →ui and, respectively, length li if and only if
N∑

i=1

li
→ui = →

0
R2 .

This is the simplest and the trivial case of Minkowski’s problem as the aforementioned
condition represents simply the closure of a polygonal line with the desired properties. One
should note that the convex polygon so obtained is unique up to translation. See [16] for a
detailed discussion on the full extent of Minkowski’s problem.

Due to Lutwak [10], a significantly more difficult question is whether a measure on the unit
sphere S

n can be realized as the Lp-surface area measure of a convex body, where p �= n

is some fixed real number. If so, is this body unique?
Lutwak showed within the Brunn-Minkowski-Firey theory that the classical problem, cor-
responding to p = 1, generalizes naturally to the Lp-Minkowski problem stated above. In
[10] a solution to the even Lp-Minkowski problem in R

n+1 was given for all p ≥ 1 except
for p = n when it was shown that no solution is possible. The problem is called even if the
measure takes equal values on opposite directions of S

n. It is conjectured that in the even
case the convex body, if it exists, is centrally symmetric, [10].
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Since its birth a decade ago, the Lp-problem has developed rapidly and it connects to a
number of other areas. For example, the solution to the even Lp-Minkowski problem was
one of the critical ingredients needed to obtain sharp affine Sobolev inequalities [13], [12]
and, for p = 2, it has implications to the Cramer-Rao inequality, one of the basic inequalities
in information theory [14]. Recent progress has been made in a variety of cases depending
on p and n with a plethora of methods mostly from PDE, [1], [2], [3], [4], [5], [6], [7], [8],
[9], [11], [15], [18], [19], [20] to cite just a few. Yet, much of the problem still presents a
real challenge when p < 1.

In the planar, discrete setting, the L0-Minkowski problem reduces to the following statement:

Let U = {→u1, ...,
→uN } be an ordered set of directions in S

1, not all in a half-disk, and let
� = {γ1, ..., γN } be an ordered set of strictly positive numbers. Does there exist a convex
N -gon such that the side i has outer normal →ui and the triangle formed by this side and the
origin has area γi? If so, is this polygon unique?

Despite their simple formulations, the existence and the uniqueness of the planar
L0-Minkowski problem, which are entwined with the asymptotic behavior of a semiflow
on the space of N -gons with given outer normals to the sides, are not trivial, [18], [19].

A sufficiency condition was employed to conclude:

THEOREM 1. [18], [19] Let U = {→u1, ...,
→uN } be an ordered family of pairwise distinct

unitary directions in S
1 and let � = {γ1, ..., γN } be an ordered set of strictly positive values.

Assume that one of the following holds:

(i) N ≥ 4 and U consists of pairwise linearly independent vectors, not all in a half-disk.
(ii) N > 4 and U contains, at least, two linearly dependent vectors. For any j, k with

→uj = −→uk , we have

γj + γk <

N∑
i=1,i �=j,k

γi . (1)

(iii) N = 4, U contains a unique pair of opposite vectors, →u1 = −→u3, and

γ1 + γ3 < γ2 + γ4. (2)

Then there exists a solution to the discrete planar L0-Minkowski problem.

The equality in (1) is not sufficient unless N = 4 and U of the form {→u1,
→u2, −→u1, −→u2}. In

this case, expressing the area in two different ways, one notes that γ1 + γ3 = γ2 + γ4 is
also a necessary condition. In fact, whether a condition of type (1) or (2) is also necessary
was not known except for the even case:
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THEOREM 2. [18] The discrete planar L0-Minkowski problem associated to the sets U =
{→u1, ...,

→uM, −→u1, ..., −→uM} and � = {γ1, ..., γM, γ1, ..., γM} , M > 2, has a solution if and
only if

γi <
∑
j �=i

γj , for any i = 1, ..., M. (3)

Moreover, the solution is unique and it is symmetric with respect to the origin.

It is precisely the existence of a centrally symmetric solution which makes the strict inequal-
ity (1) necessary. This is an immediate consequence of the fact that each parallelogram
formed by the vertices of parallel equal sides is included in the L0-polygonal body with
more than four sides. Thus the area of each such parallelogram which is equal to 4γi must be

strictly less than the area of the entire body, 2
N∑

i=1

γi . Theorem 2. answers also the polygonal

case of Lutwak’s conjecture which states that if an L0-solution to even data exists, then it
must be centrally symmetric. This was known for the L0-polygons with 4 or 6 sides. The
latter has been positively answered by A. Soranzo, [11], whose method is likely to hold
also for N = 8, but it does not in the general case.

In this paper, we show that the condition (1) (or (2) if N = 4) is necessary for the existence
of L0-solutions.

THEOREM 3. Let U = {→u1, ...,
→uN } be an ordered family of pairwise distinct unitary

directions in S
1 and let � = {γ1, ..., γN } be an ordered set of strictly positive values, N > 4.

If there exists an L0-polygon associated to (U, �), then for any pair (i, j) with →ui = −→uj ,
if such a pair exists, the inequality

γj + γk <

N∑
i=1,i �=j,k

γi

holds.

Proof. Let K be an L0-polygon for (U, �) as above. Suppose that there exist →ui ,
→uj ∈ U

such that →ui = −→uj .
Denote by li the length of the i-th side and by hi the distance from the origin to that side.

Note that for each i = 1, ..., N , one has
hili

2
= γi .

Furthermore denote by Pi, Pi+1, Pj , Pj+1 the vertices of the sides of outer normals →ui ,
respectively →uj . As, at least, two of its sides are parallel, PiPi+1PjPj+1 is at least a
trapezoid if not a parallelogram. We express its area in two ways:

Area(PiPi+1PjPj+1) = (hi + hj )(li + lj )

2
= γi + γj + a + b, (4)



Vol. 88, 2008 The necessary condition for the discrete L0-Minkowski problem in R
2 165

where a = Area(PiOPj+1), b = Area(Pi+1OPj), γi = Area(PiOPi+1), γj =
Area(PjOPj+1), and O denotes the origin, which belongs to the interior of K by the
definition of the L0-solution.

Since γi = hili/2, γj = hj lj /2, denote by η := lj / li to rewrite the last equality of (4) in
the form

1

η
γj + ηγi = a + b. (5)

Similarly, if ξ := hj/hi , one has

1

ξ
γj + ξγi = a + b. (6)

Thus η and ξ are the roots of the equation:

x2γi − x(a + b) + γj = 0. (7)

Therefore the equation has two real roots, possibly equal to each other,

x1,2 = (a + b) ± √
�

2γi

= 2γj

(a + b) ∓ √
�

, (8)

where � = (a + b)2 − 4γiγj ≥ 0. Actually (a + b)2 − 4γiγj ≥ 0 implies already a
necessary condition for the existence of K , namely

2
√

γiγj ≤
∑
k �=i,j

γk, (9)

with equality if and only if N = 4. It is easy to see that if N = 4, the area of the trapezoid
equals the area of the L0-polygon.

Note however that this condition will be automatically satisfied if

γi + γj <

N∑
k=1,k �=i,j

γk.

We will now show that γi + γj ≤ a + b. We may assume, without any loss of generality,
that γj ≤ γi .
Case 1: γi ≤ (a + b)/2. Since γj ≤ γi , we have γi + γj ≤ a + b.
Case 2: γi > (a + b)/2. As � = (a + b)2 − 4γiγj ≥ 0, we also have (a + b)/2 > γj .

Thus γj <
a + b

2
< γi . There exists a choice of origin, O∗ ∈ Int(PiPi+1PjPj+1),

such that Area(PiO
∗Pi+1) =: γ ∗

i = (a + b)/2 = γ ∗
j := Area(PjO

∗Pj+1). As the
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area of PiPi+1PjPj+1 did not change, one has for this particular choice of the origin, that
Area(PiO

∗Pj+1) + Area(Pi+1O
∗Pj ) =: a∗ + b∗ = γi + γj . Using the same reasoning

which led to equation (7), we deduce that η and ξ∗ = h∗
j /h∗

i are solutions of the equation

(a + b)x − 2(γi + γj ) + (a + b)
1

x
= 0. (10)

As a side remark, note that the existence of real roots implies

�∗ = 4
(
(γi + γj )

2 − (a + b)2
)

≥ 0, (11)

or, γi + γj ≥ a + b.

Since, by (8), η is one of the numbers
(a + b) ± √

�

2γi

= 2γj

(a + b) ∓ √
�

, by (10), either

(a + b)
(a + b) − √

�

2γi

− 2(γi + γj ) + (a + b)
(a + b) + √

�

2γj

= 0 (12)

or

(a + b)
(a + b) + √

�

2γi

− 2(γi + γj ) + (a + b)
(a + b) − √

�

2γj

= 0 (13)

holds.

The first equality leads to

�(γi + γj ) + (a + b)
√

�(γi − γj ) = 0, (14)

while the second resumes to

�(γi + γj ) + (a + b)
√

�(γj − γi) = 0. (15)

As γi > γj , the first equality can hold if and only if � = 0, otherwise both terms are strictly
positive. If this happens, η = ξ = √

γj /γi . On the other hand, � = 0 is equivalent to
a + b = 2

√
γiγj , so the roots of the equation (10) are distinct

√
γi/γj ,

√
γj /γi . Therefore

�∗ > 0 and γi + γj > a + b. However, since η remains the same under different
choices of origin, we may refine the previous procedure as follows. Consider origins 0(λ)

such that Area(PiO(λ)Pi+1) =: γi(λ) = λ(a + b) and Area(PjO(λ)Pj+1) =: γj (λ) =
(1 − λ)(a + b), where λ belongs to some open interval containing 1/2. Note that for
this choice γi(λ) + γj (λ) = a + b and Area(PiO(λ)Pj+1) + Area(PjO(λ)Pi+1) =:
a(λ) + b(λ) = γi + γj . Thus η is also a solution of the equation

λ(a + b)x − (γi + γj ) + (1 − λ)(a + b)
1

x
= 0. (16)
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In the subcase considered here, recall that a +b = 2
√

γiγj and η = √
γj /γi . These reduce

equation (16) to (2λ − 1)(γi − γj ) = 0. As λ can be different than 1/2, we infer that
γi = γj contradicting the assumption of the case.

Thus � �= 0, and (15) must hold. We divide it by
√

� and re-write as
√

�(γi + γj ) = (a + b)(γi − γj ). (17)

Squaring both sides we obtain, after simplification, γi + γj = a + b.

In conclusion, for all N ≥ 4, the existence of an L0-solution implies γi + γj ≤ a + b.
However, if N > 4, due to the convexity of K , the vertices Pk, k �= i, i + 1, j, j + 1,
belong to the exterior of PiPi+1PjPj+1. Thus a + b <

∑
k �=i,j

γk , or

γi + γj <
∑
k �=i,j

γk, (18)

which proves that, if N > 4, our sufficiency condition is also necessary. �

REMARK. For simplicity, we have not included in Theorem 3. the case N = 4 which will
address here. Following the same reasoning as above, it suffices to consider the equal-
ity case when N = 4. Suppose γ1 + γ3 = γ2 + γ4 =: a + b, and suppose that the
sides 1 and 3 are parallel. Assume, without any loss of generality, that γ3 ≤ γ1. Then
{η := l3/l1, ξ := h3/h1} = {1, γ3/γ1}.
If η = 1, l1 = l3 and K is a parallelogram. In this case, it was already known that
γ1 +γ3 = γ2 +γ4 is a necessary and sufficient condition for the existence of an L0-solution.
Same conclusion if γ1 = γ3, thus we may assume γ3 < γ1.

Therefore γ3 <
γ2 + γ4

2
< γ1. Choosing the origin O∗ as before, (10) becomes x2 − 2x +

1 = 0 as γ1 + γ3 = γ2 + γ4 =: a + b. Thus η = 1, contradicting γ1 �= γ3.

We may conclude that, if N = 4, the equality case occurs if and only if the L0-solution is
a parallelogram. Otherwise, γ1 + γ3 < γ2 + γ4 which is the sufficient condition employed
in the case of four directions with exactly one pair of opposite normal vectors. �

We end by noting the difference between the discrete planar case of p = 0 and the smooth
planar L0-case where neither a necessary nor a sufficient condition is related to the existence
of solutions, [5]. The uniqueness was established only for the even problem, [6]. In fact,
even more interesting is the fact that for any p ≥ 1, and any n ≥ 1, the discrete Lp-
Minkowski problem has a unique solution independent of the structure of the sets U ⊂ S

n

and �, [9], where γi corresponds now to the surface area of the i-th facet of outer normal
→ui . We believe that the higher dimensional discrete case of the L0-Minkowski problem will
also require a sufficient and necessary condition and we would like to investigate this issue
in a further paper.
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