J. Geom. 87 (2007) 50 – 54 0047–2468/07/020050 – 5 © Birkhäuser Verlag, Basel, 2007 DOI 10.1007/s00022-007-1805-2

Journal of Geometry

On projective spaces PG(r, q) with $r \ge 4$

Nicola Durante, Vito Napolitano and Domenico Olanda*

Abstract. In this paper a characterization of PG(r, q), $r \ge 4$, in terms of planar spaces is given.

Mathematics Subject Classification (2000): 51Exx. Key words: Planar space, projective space.

1. Introduction

In a recent paper [3] finite planar spaces (S, L, P) with no disjoint planes and (k, q)-regular, that is such that any line has cardinality k + 1 and any pencil of lines has cardinality q + 1, have been studied.

Obviously in such a planar space, besides lines, also planes all have the same cardinality and hence through every line there is a constant number, say n + 1, of planes. Under these hypotheses, in [3] the authors prove that $|\mathcal{L}| \ge |\mathcal{P}|$ and equality holds if and only if $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ is PG(4, q).

Hence in [3] the authors obtain a characterization of PG(4, q) as a (k, q)-regular planar space.

Now, in order to get a characterization of $PG(r, q), r \ge 4$, we again investigate finite planar spaces $(S, \mathcal{L}, \mathcal{P})$ without assuming that lines and planes all have the same cardinality but supposing only that:

- (i) Every pencil of lines has size q + 1.
- (ii) Every pencil of planes has size n + 1.

Such a planar space is said *regular with parameters q and n*.

Recall that if the planes of the planar space $(S, \mathcal{L}, \mathcal{P})$ pairwise intersect in the empty set or in a line, then $(S, \mathcal{L}, \mathcal{P})$ is said a *locally projective threedimensional space*.

The following remarks are useful to illustrate the ideas behind this paper.

^{*}This research was carried out within the activity of INdAM-GNSAGA and supported by the Italian Ministry M.I.U.R.

Vol. 87, 2007

The projective spaces $PG(r, q), r \ge 3$, are examples of regular planar spaces with parameters q and n (with $n = q^{r-2} + q^{r-3} + \ldots + q$). Moreover if $r \ge 4$, then in the projective space there are lines and planes disjoint from each other and for such pairs the following property holds.

(iii) For any given line ℓ and plane π disjoint from each other, the number $\mathbf{s} = \chi(\ell, \pi)$ of planes through ℓ disjoint from π is a constant.

Indeed it is

$$\mathbf{s} = \chi(\ell, \pi) = (q^{r-2} + q^{r-3} + \ldots + q + 1) - (q^2 + q + 1).$$

The integer **s** is obtained subtracting the number of planes through ℓ meeting π from the total number of planes through ℓ .

Let $(S, \mathcal{L}, \mathcal{P})$ be the planar space obtained from a projective space $PG(r, q), r \ge 4$, by deleting a point p_0 . Then $(S, \mathcal{L}, \mathcal{P})$ is again a regular planar space with the same parameters q and n as PG(r, q) but Property (iii) does not hold. Indeed, in such a planar space, if ℓ is a line of length q + 1, then either

$$\chi(\ell,\pi) = (q^{r-2} + q^{r-3} + \ldots + q + 1) - (q^2 + q + 1)$$

or

$$\chi(\ell,\pi) = [(q^{r-2} + q^{r-3} + \ldots + q + 1) - (q^2 + q + 1)] + \mathbf{1}$$

according to $|\pi| = q^2 + q + 1$ or $|\pi| = q^2 + q$.

Above observations show that if a planar space satisfies Property (iii), then it cannot be obtained from a projective space PG(r, q) by deleting "some" points. Hence if it is embeddable in PG(r, q), then it is PG(r, q).

In this paper, as a verification of this idea, we obtain the following result.

THEOREM I. Let $(S, \mathcal{L}, \mathcal{P})$ be a finite regular planar space with parameters q and n satisfying Property (iii). Then it is $n \ge q$. If n = q, then $(S, \mathcal{L}, \mathcal{P})$ is a locally projective three dimensional space. If n > q, then $(S, \mathcal{L}, \mathcal{P})$ is PG(r, q), $r \ge 4$, if and only if it contains a projective line, that is a line of maximal length q + 1.

Hence in this paper we obtain a characterization of PG(r, q), $r \ge 4$, in terms of regular planar spaces with parameters q and n.

2. Regular finite planar spaces with parameters q and n

In this section $(S, \mathcal{L}, \mathcal{P})$ will denote a finite planar space. If π is a plane of the planar space and *p* is a point of π , the set of lines of π through *p* is called *pencil of lines* with center *p*. If ℓ is a line, the set of planes containing ℓ is called *pencil of planes* with axis ℓ .

J. Geom.

From now on, we suppose that $(\mathcal{S}, \mathcal{L}, \mathcal{P})$ fulfils the following properties of regularity:

- (i) Every pencil of lines has size q + 1.
- (ii) Every pencil of planes has size n + 1.

Such a planar space is called, as previously said, a *regular planar space with parameters* q and n.

Next we investigate some properties of finite regular planar spaces with parameters q and n.

From Property (i) the following result follows easily.

PROPOSITION 2.1. $|\ell| \le q + 1$ for every line ℓ , and hence $|\pi| \le q^2 + q + 1$ for any plane π .

A line of maximal size q + 1 is called *a projective line*.

PROPOSITION 2.2. Let $(S, \mathcal{L}, \mathcal{P})$ be a finite regular planar space with parameters q and n. Then $n \ge q$, and equality holds if, and only if, any two planes meet in the empty set or in a line.

Proof. Let π be a plane, and let p be a point of π and r be a line through p which is not contained in π .

Let $\ell_0, \ell_1, \ldots, \ell_q$ be the q + 1 lines of π through p. Since through the line r there are the q+1 planes spanned by r and by the lines $\ell_0, \ell_1, \ldots, \ell_q$, respectively, we have $n+1 \ge q+1$, and the assertion follows easily.

Next we prove the following properties.

PROPOSITION 2.3. *Through any point p there is a constant number* θ *of lines.*

Proof. Let *p* be a point and *r* be a line through *p*. The lines through *p*, different from *r*, are partitioned on the n + 1 planes through *r*, and so the number θ of lines through *p* is:

$$\theta = (n+1)q + 1. \tag{2.1}$$

PROPOSITION 2.4. *Through any point p there is a constant number* η *of planes.*

Proof. Let *p* be a point. Counting in two ways the line-plane pairs (ℓ, π) both passing through *p* and with ℓ contained in π gives $\theta(n + 1) = \eta(q + 1)$. It follows that

$$\eta = \frac{\theta(n+1)}{q+1} = \frac{((n+1)q+1)(n+1)}{q+1}.$$
(2.2)

Notice that, as already seen in Proposition 2.2, if n = q, then $(S, \mathcal{L}, \mathcal{P})$ is a locally projective threedimensional planar space, and we refer the reader to the literature on this topic [1],

Vol. 87, 2007

[2], [4], [5], [7], [8]. Thus, from now on we may suppose that

$$\mathbf{n} > \mathbf{q}.\tag{2.3}$$

Under this assumption there are pairs of planes intersecting each other just in a point. Moreover the following result holds.

PROPOSITION 2.5. Let π be a plane and p be a point of π . The number k of planes through p and intersecting π exactly in p is a positive number and it is independent of p and π .

Proof. The planes through p different from π and intersecting π in a line are, by using (i) and (ii), (q + 1)n, and so

$$k = \eta - 1 - (q+1)n. \tag{2.4}$$

Let π and π' be a pair of planes intersecting each other just in a point p. Then every line contained in π' and not containing p is disjoint from the plane π . Hence there are disjoint line-plane pairs (ℓ, π) . For such pairs we assume that the following property holds.

(iii) For any given line ℓ and plane π disjoint from each other, the number $\mathbf{s} = \chi(\ell, \pi)$ of planes through ℓ disjoint from π is a constant.

In the next section we will prove that if $(S, \mathcal{L}, \mathcal{P})$ is a regular planar space with parameters q and n with n > q, satisfying Property (*iii*) and containing a *projective* line, then the space is PG(r, q) with $r \ge 4$ and hence Theorem I will be completely proved.

3. The characterization theorem. The proof.

In this section $(S, \mathcal{L}, \mathcal{P})$ will denote a finite regular planar space with parameters q and n with n > q and satisfying Property (*iii*).

We will prove Theorem I by showing that if the planar space contains a projective line, that is a line of length q + 1, then it is PG(r, q), with $r \ge 4$.

We will prove the following proposition.

PROPOSITION 3.1. *If there is a projective line, then* $(S, \mathcal{L}, \mathcal{P})$ *is* PG(r, q) *with* $r \ge 4$ *.*

Proof. Let *L* be a projective line and let ℓ be a line disjoint with *L*. The line ℓ is skew with *L* and since n > q there exists at least a plane π through ℓ disjoint with *L*.

Since the line *L* has length q + 1, by (i), it meets every coplanar line, and so each plane through *L* meeting π , intersects π just in a point. It follows that there are as many planes through *L* meeting π as the points of π , hence $|\pi| = n + 1 - \mathbf{s}$.

We will now prove that ℓ has size q + 1.

Assume, by way of contradiction, that $|\ell| \leq q$. Let π' be a plane through ℓ , different from π , let p' be a point of $\pi' \setminus \ell$ and let ℓ' be a line through p' parallel to ℓ and contained in π' . Such a line does exist from (*i*) since $|\ell| \leq q$. In $\pi \setminus \ell$ there are at most $n - 1 - \mathbf{s}$ points and all of them, connected with ℓ' , give at most $n - 1 - \mathbf{s}$ planes through ℓ' , different from π' and meeting π . It follows that there would be at least $\mathbf{s} + 1$ planes through ℓ' disjoint from π , that contradicts (iii).

Next let ℓ be a line meeting L and let π be the plane spanned by the lines ℓ and L. Let p be a point of π and let π_0 be a plane through p intersecting π just in p. There is such a plane since n > q. Let now t be a line of π_0 not through p. Since the line t is disjoint with π , it is disjoint with both L and ℓ .

From the above argument it follows that $t \cap L = \emptyset$ and thus |t| = q + 1, hence from $t \cap \ell = \emptyset$ it follows again $|\ell| = q + 1$.

This proves that every line of the space is a projective line. So every plane is a projective plane and then the space is a projective space PG(r, q) with $r \ge 4$ since it is n > q. \Box

References

- [1] A. Beutelspacher, Embedding finite planar spaces in projective spaces, Finite Geometries. Lecture Notes in Pure and Appl. Math. Dekker–New York **103** (1985) 9–17.
- [2] J. Doyen and X. Hubaut, Finite regular locally projective spaces, Math. Z. 119 (1971) 83–88.
- [3] N. Durante, P.M. Lo Re and D. Olanda, On regular planar spaces of type (k, n), Discrete Math. **301** (2005) 66–73.
- [4] W.M. Kantor, Dimension and embedding theorems for geometric lattices, J. Comb. Th. (A) 17 (1974) 1731–195.
- [5] A. Kreuzer, Locally projective spaces which satisfy the bundle theorem, J. Geom. 56 (1996) 87–98.
- [6] A. Kreuzer, Linear spaces with projective lines, Combinatorics '98 (Palermo). Discrete Math. 255 (1-3) (2002) 249–258.
- [7] K. Metsch, Embedding theorems for locally projective three dimensional linear spaces, Proc. of Combinatorics '94 – Discrete Math. 174 (1997) 227–245.
- [8] L. Teirlinck, Combinatorial properties of planar spaces and embeddability, J. Comb. Th. (A) 43 (2) (1986) 291–302.

Nicola Durante and Domenico Olanda Dipartimento di Matematica e Applicazioni Università di Napoli "Federico II" Complesso di Monte S. Angelo - Edificio T via Cintia 80126 Napoli, Italy e-mail: ndurante@unina.it olanda@unina.it Vito Napolitano Dipartimento di Matematica Università della Basilicata Viale dell'Ateneo Lucano 85100 Potenza, Italy e-mail: vnapolitano@unibas.it

Received 26 July 2005; revised 22 November 2005.