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On warped product immersions
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Abstract. Warped product immersions appeared naturally in several recent studies. In this article we study
fundamental geometric properties of such immersions. In addition we prove that every non-flat complex space
form of complex dimension greater than one does not admit a warped product representation. As an application
we obtain an improvement of an earlier result in [3] concerning warped products in real space forms.
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1. Introduction

Let N1 and N2 be two Riemannian manifolds of positive dimension equipped with
Riemannian metrics g1 and g2, respectively, and let f be a positive differentiable func-
tion on N1. The warped product N1 ×f N2 is defined to be the product manifold N1 ×N2

equipped with the Riemannian metric given by g1 + f 2g2. We denote the dimension of
N1 and N2 by n1 and n2, respectively. It is well-known that the notion of warped products
plays some important roles in differential geometry as well as in physics (cf. [7]).

Let π1 : N1 ×f N2 → N1 and π2 : N1 ×f N2 → N2 denote the natural projections. For
a vector field X on N1, the lift of X to N1 ×f N2 is the vector field X̃ whose value at each
(p, q) is the liftXp to (p, q). Thus the lift ofX is the unique vector field onN1 ×f N2 that
is π1-related to X and π2-related to the zero vector field on N2. The set of all such lifts of
vector fields on N1 is denoted by L(N1). Similarly, we denote by L(N2) the lifts of vector
fields from vector fields on N2.

Let φ : N1 ×f N2 → M̃ be an isometric immersion of a warped product N1 ×f N2 into a
Riemannian manifold M̃ and h be its second fundamental form. Denote by h1 and h2 the
restriction of h to L(N1) and L(N2), respectively. We define the partial mean curvature

vectors
→
H 1 and

→
H 2 by the following partial traces:

→
H 1= 1

n1

n1∑
α=1

h(eα, eα),
→
H 2= 1

n2

n1+n2∑
t=n1+1

h(et , et ) (1.1)

36
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for some orthonormal frame fields e1, . . . , en1 and en1+1, . . . , en1+n2 of L(N1) and L(N2),
respectively.

For j = 1 or 2, an immersion φ : N1 ×f N2 → M̃ is called Nj -totally geodesic if the
partial second fundamental form hj vanishes identically. It is called Nj -minimal if the

partial mean curvature vector
→
Hj vanishes. And φ is called mixed totally geodesic if its

second fundamental form h satisfies h(X,Z) = 0 for any X ∈ L(N1) and Z ∈ L(N2).

Let ψ : N → M be an isometric immersion and ϕ be a differentiable function on M , we
denote by ∇ϕ and Dϕ the gradient of ϕ and the normal component of ∇ϕ restricted on N ,
respectively.

If M1 ×ρ M2 is a warped product and φi : Ni → Mi , i = 1, 2, are isometric immersions
between Riemannian manifolds. Define a positive function f on N1 by f = ρ ◦ φ1. Then
the map

φ : N1 ×f N2 → M1 ×ρ M2 (1.2)

given by φ(x1, x2) = (φ1(x1), φ2(x2)) is an isometric immersion, which is called a warped
product immersion (see [2, 6]).

The notion of warped product immersions appeared naturally in several recent studies related
to different geometric aspects. For examples, it appeared in the study of multi-rotation
surfaces in [5], a decomposition problem in [6], and a geometric inequality and minimal
immersion problem in [3]. Hence it is natural and desired to investigate the fundamental
properties of warped product immersions between warped product manifolds.

The main purpose of this article is thus to prove the following basic results for warped
product immersions.

THEOREM 1. Letφ = (φ1, φ2) : N1×f N2 → M1×ρM2 be a warped product immersion
between two warped product manifolds. Then we have:

(a) φ is mixed totally geodesic.
(b) The squared norm of the second fundamental form of φ satisfies

‖h‖2 ≥ n2‖D ln ρ‖2, n2 = dimN2, (1.3)

with the equality holding if and only if φ1 : N1 → M1 and φ2 : N2 → M2 are both
totally geodesic immersions.

(c) φ is N1-totally geodesic if and only if φ1 : N1 → M1 is totally geodesic.
(d) φ is N2-totally geodesic if and only if φ2 : N2 → M2 is totally geodesic and

(∇ ln ρ)|N1 = ∇ ln f holds, i.e., the restriction of the gradient of ln ρ to N1 is the
gradient of ln f , or equivalently, D ln ρ = 0.

(e) φ is a totally geodesic immersion if and only if φ is both N1-totally geodesic and
N2-totally geodesic.
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THEOREM 2. A warped product immersion φ = (φ1, φ2) : N1 ×f N2 → M1 ×ρ M2

between two warped product manifolds is totally umbilical if and only if we have:

(1) φ1 : N1 → M1 is a totally umbilical immersion with mean curvature vector given
by −D ln ρ, and

(2) φ2 : N2 → M2 is a totally geodesic immersion.

THEOREM 3. Letφ = (φ1, φ2) : N1×f N2 → M1×ρM2 be a warped product immersion
between two warped product manifolds. Then we have:

(a) The partial mean curvature vector
→
H 1 is equal to the mean curvature vector of

φ1 : N1 → M1; thus, φ is N1-minimal if and only if φ1 : N1 → M1 is a minimal
immersion.

(b) φ is N2-minimal if and only if φ2 : N2 → M2 is a minimal immersion and
(∇ ln ρ)|N1 = ∇ ln f holds.

(c) φ = (φ1, φ2) is a minimal immersion if and only if φ2 : N2 → M2 is a minimal
immersion and the mean curvature vector of φ1 : N1 → M1 is given by n−1

1 n2D ln ρ.

An isometric immersionψ : N → M from a Riemannian manifold into another Riemannian
manifold is called pseudo-umbilical if its shape operator A→

H
at the mean curvature vector

→
H satisfies A→

H
X = λX for any vector tangent toN , where λ is a function onN . Similarly,

an immersion φ : N1 ×f N2 → M is called N2-pseudo-umbilical if its shape operator A→
H

satisfies A→
H
Z = λZ for tangent vectors Z in L(N2).

A warped product manifold M1 ×ρ M2 is called a warped product representation of a real
space form Rm(c) of constant sectional curvature c if the warped product M1 ×ρ M2 is an
open dense subset of Rm(c).

For warped product immersions into a real space form, we have the following.

THEOREM 4. Letφ = (φ1, φ2) : N1×f N2 → M1×ρM2 be a warped product immersion
from a warped product N1 ×f N2 into a warped product representation M1 ×ρ M2 of a
real space form Rm(c). Then we have:

(1) The shape operator of φ satisfies

A→
H 1
Z =

{
�f

n1f
− c

}
Z (1.4)

for Z in L(N2), where � is the Laplacian operator of N1.
(2) For any X, Y ∈ L(N1) and Z ∈ L(N2), DZh(X, Y ) = 0 holds, where D is the

normal connection of φ. In particular, we have DZ
→
H 1= 0.
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(3) The two partial mean curvature vectors
→
H 1 and

→
H 2 are perpendicular to each other

if and only if the warping function f is an eigenfunction of the Laplacian operator
� with eigenvalue n1c.

(4) The warping function f is an eigenfunction of � with eigenvalue n1c if and only if
either φ1 : N1 → M1 is a minimal immersion or (∇ ln ρ)|N1 = ∇ ln f holds.

(5) When c = 0, the two partial mean curvature vectors
→
H 1 and

→
H 2 are perpendicular

to each other if and only if the warping function f is a harmonic function.
(6) If φ1 : N1 → M1 is a non-minimal immersion and the two partial mean curvature

vectors
→
H 1 and

→
H 2 are parallel at each point, then φ is N2-pseudo-umbilical and

φ2 : N2 → M2 is a minimal immersion.

By applying the above results we are able to make the following refinement of
Theorem 1.4 of [3].

THEOREM 5. Let φ : N1×f N2 → Rm(c) be an isometric immersion of a warped product
N1 ×f N2 into a real space form Rm(c) of constant curvature c. Then the squared mean
curvature H 2 of φ satisfies the inequality:

�f

f
≤ n2

4n2
H 2 + n1c, (1.5)

where nj = dimNj and n = n1 + n2.

The equality sign of (1.5) holds identically if and only if exactly one of the following two
cases occurs:

(1) The warping function f is an eigenfunction of the Laplacian operator� with eigen-
value n1c and φ is a minimal immersion;

(2) �f �= (n1c)f and locally φ is a non-minimal warped product immersion (φ1, φ2) :
N1 ×f N2 → M1 ×ρ M2 of N1 ×f N2 into some warped product representation
M1 ×ρ M2 of Rm(c) such that φ2 : N2 → M2 is a minimal immersion and the mean
curvature vector of φ1 : N1 → M1 is given by −(n2/n1)D ln ρ.

In the last section, we provide examples to illustrate that both case (1) and case (2) of
Theorem 5 do occur for c > 0, c = 0 and c < 0.

2. Proofs of Theorems 1, 2 and 3

Let N be an n-dimensional Riemannian manifold isometrically immersed in another
Riemannian manifold M̃ . Denote by 〈 , 〉 the inner product for N as well as for M̃ .
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Let ∇ and ∇̃ be the Levi-Civita connections ofN and M̃ , respectively. Then the Gauss and
Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X, Y ), (2.1)

∇̃Xξ = −AξX +DXξ (2.2)

for vector fields X, Y tangent to N and ξ normal to N , where h denotes the second funda-
mental form, D the normal connection, and A the Weingarten map of the submanifold.

The mean curvature vector
→
H is defined by

→
H= 1

n
traceh = 1

n

n∑
i=1

h(ei, ei), (2.3)

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle TN ofN . The squared

mean curvature is given by H 2 = 〈→
H,

→
H 〉.

Let (Nj , gj ) and (Mj , g̃j ), j = 1, 2, be Riemannian manifolds and φj : Nj → Mj,

j = 1, 2, be isometric immersions. Assume that

φ = (φ1, φ2) : N1 ×f N2 → M1 ×ρ M2

is a warped product immersion of the warped product manifold N1 ×f N2 into the warped
product manifold M1 ×ρ M2.

Denote by ∇1 and ∇f the Levi-Civita connections of N1 × N2 equipped with the direct
product metricg0 = g1+g2 and with the warped product metricg = g1+f 2g2, respectively.
Similarly, denote by ∇̃1 and ∇̃ρ the Levi-Civita connections of M1 × M2 equipped with
the direct product metric g̃0 = g̃1 + g̃2 and with the warped product metric g̃ = g̃1 +ρ2g̃2,
respectively.

For vector fields U and V on M1 ×ρ M2, it is known that the connections ∇̃1 and ∇̃ρ are
related by (see [1, 6]):

∇̃ρ
UV = ∇̃1

UV − 〈U2, V2〉(∇ ln ρ)+ 〈∇ ln ρ,U〉V2 + 〈∇ ln ρ, V 〉U2, (2.4)

where 〈 , 〉 is the inner product with respect to g̃, ∇ ln ρ is the gradient of ln ρ on M1, and
U2 and V2 are the natural projections of U and V onto L(M2), respectively.

From (2.4) we obtain

∇̃ρ
XY = ∇̃1

XY, (2.5)

∇̃ρ
ZW = ∇̃1

ZW − 〈Z,W 〉(∇ ln ρ), (2.6)

∇̃ρ
XZ = ∇̃ρ

ZX = (X ln ρ)Z (2.7)
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for X, Y in L(M1) and Z,W in L(M2). Hence, by applying (2.5) and (2.6), we obtain

h(X, Y ) = h0(X, Y ), (2.8)

h(Z,W) = h0(Z,W)− 〈Z,W 〉D ln ρ, (2.9)

h(X,Z) = 0 (2.10)

for X, Y in L(N1) and Z,W in L(N2), where h is the second fundamental form of the
warped product immersion (φ1, φ2) : N1 ×f N2 → M1 ×ρ M2, and h0 is the second
fundamental form of the direct product immersion (φ1, φ2) : N1 ×1 N2 → M1 ×1 M2

between two direct Riemannian products.

The restriction of h0 to L(N1) and to L(N2) are the second fundamental form of
φ1 : N1 → M1 and φ2 : N2 → M2, respectively. Hence, h0(X, Y ) and h0(Z,W) are
orthogonal for X, Y in L(N1) and Z,W in L(N2).

Equation (2.10) is nothing but statement (a) of Theorem 1.

Statements (b) and (c) of Theorem 1 follows from (2.8) and (2.9).

Ifφ : N1×f N2 → M1×ρM2 is aN2-totally geodesic immersion, then it follows from (2.9)
that h0(Z,W) = 〈Z,W 〉(D ln ρ) for Z and W in L(N2). Since D ln ρ and h0(Z,W) are
orthogonal, we have h0(Z,W) = 0 and D ln ρ = 0. The first equation implies that φ2 is
totally geodesic and the second equation implies that (∇ ln ρ)|N1 = ∇ ln f .

Conversely, if φ2 is totally geodesic and (∇ ln ρ)|N1 = ∇ ln f holds, then it follows from
(2.9) that h(Z,W) = 0 forZ,W ∈ L(N2). Hence φ2 is a totally geodesic immersion. This
proves statement (d) of Theorem 1.

Statement (e) of Theorem 1 follows from statements (c) and (d) of Theorem 1 and
equation (2.10).

To prove Theorem 2, let us assume that φ : N1 ×f N2 → M1 ×ρ M2 is a totally umbilical
immersion. Then we have

h(X, Y ) = 〈X, Y 〉 →
H, h(Z,W) = 〈Z,W 〉 →

H (2.11)

for X, Y in L(N1) and Z,W in L(N2).

On the other hand, equations (2.8) and (2.11) imply that
→
H is tangent to the first factor

M1. Hence, it follows from (2.9) and (2.11) that h0(Z,W) = 0 for Z,W in L(N2), since
h0(Z,W) is always tangent to the second factor M2. Therefore φ2 : N2 → M2 is a totally
geodesic immersion. Consequently, we obtain condition (2) of Theorem 2.

Also from (2.8), (2.9), and (2.11) we find

h0(X, Y ) = 〈X, Y 〉 →
H,

→
H = −D ln ρ (2.12)

for X, Y in L(N1) which implies condition (1) of Theorem 2.
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Conversely, it is easy to verify that if both conditions (1) and (2) of Theorem 2 hold,
then φ is a totally umbilical immersion. This gives Theorem 2.

Since each lift of N1 is a totally geodesic submanifold of the warped product manifold

N1 ×f N2 (cf. [1, 7]), equation (2.8) implies that
→
H 1 is nothing but the mean curvature

vector of φ1 : N1 → M1. This gives statement (a) of Theorem 3.

If φ : N1 ×f N2 → M1 ×ρ M2 is N2-minimal, then equation (2.9) implies that

f 2 trace h0
2 = n2(D ln ρ). (2.13)

Because D ln ρ and trace h0
2 are orthogonal, we know that φ2 is a minimal immersion and

(∇ ln ρ)|N1 = ∇ ln f holds.

Conversely, if φ2 is a minimal immersion and (∇ ln ρ)|N1 = ∇ ln f holds, then it follows
from equation (2.9) that trace h2 = 0. Hence we have statement (b) of Theorem 3.

Finally, let us suppose that φ : N1 ×f N2 → M1 ×ρ M2 is a minimal immersion. Then we
have trace h = 0. Thus, by applying (2.8) and (2.9), we find

0 = trace h0
1 + f 2 trace h0

2 − n2(D ln ρ). (2.14)

Since trace h0
1 and D ln ρ are both tangent to the first factor M1 and trace h0

2 is tangent
to M2, equation (2.14) implies that

trace h0
1 = n2(D ln ρ), trace h0

2 = 0 (2.15)

which implies that φ2 : N2 → M2 is a minimal immersion and the mean curvature vector
of φ1 : N1 → M1 is given by n−1

1 n2D ln ρ.

The converse is easy to verify.

3. Proof of Theorem 4

Let ϕ a differentiable function on a Riemannian n-manifold N . Then the Laplacian of
ϕ is given by

�ϕ =
n∑
j=1

{(∇ej ej )ϕ − ej ejϕ}, (3.1)

where e1, . . . , en is an orthonormal frame field on N . For each plane section of N ,
we denoted by K(π) the sectional curvature of the plane section π .

Suppose thatM1 ×ρ M2 is a warped product representation of a real space form Rm(c) and
φ : N1 ×f N2 → M1 ×ρ M2 is a warped product immersion. Then, from statement (a) of
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Theorem 1, we have

h(X,Z) = 0 (3.2)

for X in L(N1) and Z in L(N2).

Since N1 ×f N2 is a warped product, we get [7]

∇XZ = ∇ZX = (X ln f )Z, 〈∇XY,Z〉 = 0 (3.3)

for unit vector fields X, Y in L(N1) and Z in L(N2). By applying (3.3) we find

K(X ∧ Z) = 〈∇Z∇XX − ∇X∇ZX,Z〉 = 1

f
{(∇XX)f −X2f }. (3.4)

If we choose a local orthonormal frame e1, . . . , en1+n2 in such way that e1, . . . , en1 are in
L(N1) and en1+1, . . . , en1+n2 in L(N2), then (3.4) yields

�f

f
=

n1∑
α=1

K(eα ∧ es), s = n1 + 1, . . . , n1 + n2. (3.5)

On the other hand, from the equation of Gauss, we know that the curvature tensor R of
N1 ×f N2 satisfies

〈R(X, Y )Z,W 〉 = 〈h(X,W), h(Y, Z)〉 − 〈h(X,Z), h(Y,W)〉
+ c {〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉} (3.6)

for vectors X, Y,Z,W tangent to N1 ×f N2. Using (3.2), (3.5), and (3.6), we obtain

〈 →
H 1, h(Z,Z) 〉 = �f

n1f
− c (3.7)

for any unit Z in L(N2). Thus, by applying polarization, we find

〈 →
H 1, h(Z,W) 〉 = 0 (3.8)

for orthonormal vectors Z,W in L(N2). Equations (3.7) and (3.8) imply that the shape

operator at
→
H 1 satisfies

A→
H 1
Z =

{
�f

n1f
− c

}
Z (3.9)

for Z in L(N2). Thus we have statement (1).
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It follows from (3.2) and (3.3) that the covariant derivative of the second fundamental form
satisfies

(∇̄Xh)(Y, Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ) (3.10)

= −h(∇XY,Z) = 0,

due to the fact that N1 is totally geodesic in N1 ×f N2.

On the other hand, by applying (3.2) and (3.3), we also find

(∇̄Zh)(X, Y ) = DXh(X, Y ). (3.11)

Therefore, after applying (3.10), (3.11), and the equation of Codazzi, we obtain
statement (2).

By applying equations (1.1) and (3.7) we obtain

〈→
H 1,

→
H 2〉 = �f

n1f
− c (3.12)

which gives statement (3).

It follows from equations (2.8) and (2.9) that the partial mean curvature vectors
→
H 1 and

→
H 2

are perpendicular to each other if and only if we have either

(i)
→
H 1= 0 or

(ii) (∇ ln ρ)|N1 = ∇ ln f .

According to statement (a) of Theorem 3, the first case occurs when and only when φ1 is
a minimal immersion. By combining these results with statement (3) of Theorem 4, we
obtain statement (4) of Theorem 4.

Obviously, statement (5) is a special case of statement (3).

If φ1 is a non-minimal immersion and if the two partial mean curvature vectors
→
H 1 and

→
H 2 are parallel, then there exists a function µ such that

→
H 2 = µ

→
H 1. In such case

the mean curvature vector of φ is related to the partial mean curvature vector
→
H 1 by

→
H = ((n1 + n2µ)/n)

→
H 1. Therefore, after applying (3.9) we may conclude that φ is

N2-pseudo-umbilical.

Since φ1 is assumed to be a non-minimal immersion, we have
→
H 1 �= 0 according to

statement (a) of Theorem 3. Therefore, by applying the parallelism of
→
H 1 and

→
H 2 and

the orthogonality of h0(X, Y ) and h0(Z,W) for X, Y ∈ L(N1) and Z,W ∈ L(N2),
we may conclude from (2.8) and (2.9) that φ2 : N2 → M2 is a minimal immersion.
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4. Proof of Theorem 5

It follows from Theorem 1.4 of [3] that every isometric immersion φ : N1 ×f N2 → Rm(c)

of a warped product manifold N1 ×f N2 into a real space form Rm(c) satisfies inequality
(1.5), with the equality sign holding if and only if we have

(A) φ is a mixed totally geodesic immersion and

(B) n1
→
H 1= n2

→
H 2 holds.

Now, let us assume that the immersion φ satisfies the equality case of (1.5) identically.

If the warping function f is an eigenfunction of the Laplacian operator � with eigen-
value n1c, then the equality case of (1.5) implies that φ is a minimal immersion. Thus we
obtain case (1) of Theorem 5.

Next, assume that the warping function f is not an eigenfunction of � with eigen-
value n1c. Then φ is a non-minimal immersion. Since the immersion φ is mixed totally
geodesic according to (A), Theorem 16 of [6] implies that locally there exists a warped
product representation M1 ×ρ M2 of Rm(c) such that φ is a warped product immersion:

φ = (φ1, φ2) : N1 ×f N2 → M1 ×ρ M2

from N1 ×f N2 into M1 ×ρ M2. Since �f �= (n1c)f , statement (1) of Theorem 4

implies that
→
H 1 is nonzero. Hence, by applying statement (a) of Theorem 3, we know that

φ1 : N1 → M1 is a non-minimal immersion.

Since the two partial mean curvature vectors
→
H 1 and

→
H 2 are parallel according to (B),

we obtain from statement (6) of Theorem 4 that φ2 :N2 → M2 is a minimal immersion.

Hence, by applying (2.9), we find
→
H 2= −D ln ρ. Therefore, by using the condition:

n1
→
H 1= n2

→
H 2 from (B), we obtain

→
H 1= −(n2/n1)D ln ρ. Combining this with state-

ment (a) of Theorem 3 shows that the mean curvature vector of φ1 : N1 → M1 is given
by −(n2/n1)D ln ρ.

Obviously, when the warping function f is an eigenfunction with eigenvalue n1c and φ is
a minimal immersion, the equality case of (1.5) holds identically.

Finally, suppose that f is not an eigenfunction with eigenvalue n1c and φ is a non-minimal
warped product immersion: φ = (φ1, φ2) : N1 ×f N2 → M1 ×ρ M2 from N1 ×f N2 into
a warped product representation M1 ×ρ M2 of Rm(c) which satisfies the two conditions:

(2-a) φ2 : N2 → M2 is a minimal immersion and

(2-b) the mean curvature vector of φ1 : N1 → M1 is given by −(n2/n1)D ln ρ.

Then, by applying statement (a) of Theorem 1, we know that φ is a mixed totally geodesic
immersion.
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Also, from (2-a) and (2.9) we have

→
H 2= −D ln ρ. (4.1)

On the other hand, by using (2-b) and statement (a) of Theorem 3, we also have

→
H 1= −n2

n1
D ln ρ. (4.2)

Combining (4.1) and (4.2) gives n1
→
H 1 = n2

→
H 2. Therefore, by applying Theorem 1.4

of [3], we obtain the equality case of (1.5) holds identically.

5. An additional result

A Kaehler manifold M̃n(c) of constant holomorphic sectional curvature c is called
a complex space form. There are three types of complex space forms: elliptic, hyper-
bolic, or flat, according as the holomorphic sectional curvature is positive, negative, or
zero. Complex projective n-space CPn, complex hyperbolic n-space CHn, and complex
Euclidean n-space C

n are complete and simply-connected complex space forms of elliptic,
hyperbolic, and flat type, respectively.

Just like real space forms, a warped product manifoldM1 ×ρ M2 is called a warped product
representation of a complex space form M̃n(c) if the warped product manifold M1 ×ρ M2

is an open dense subset of M̃n(c).

Since the Euclidean 2n-space E
2n admits warped product representations of the form

M1 ×ρ M2, the complex Euclidean n-space C
n with n ≥ 1 also admits warped product

representations of the form M1 ×ρ M2. Moreover, it is known that (−π
2 ,

π
2 ) ×cos s R and

R ×ex R are warped product representations of CP1(1) and CH1(−1), respectively.

In contrast, for CPn and CHn with n > 1 we have the following non-existence result.

PROPOSITION 1. Every non-flat complex space form M̃n(c) with n > 1 does not admit a
warped product representation of the form: M1 ×ρ M2.

Proof. Assume thatM1 ×ρ M2 is a warped product representation of a complex space form
M̃n(c) of constant holomorphic sectional curvature c. If c �= 0, then M̃n(c) is irreducible.
Thus the warping function ρ is a non-constant function.

For a given fixed point p ∈ M1, the lift M̂p

2 = {p} × M2 of M2 is a totally umbili-
cal submanifold of M̃n(c) whose mean curvature vector is given by −(∇ ln ρ)(p) (see
[1, p. 66]). Since ρ is non-constant, there exists a point p ∈M1 such that M̂p

2 is a non-
totally geodesic submanifold. For each such point p, a result of [4] implies that M̂p

2 is a
totally real submanifold whose dimension is less than n, unless M2 is one-dimensional.
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On the other hand, for each point q ∈ M2, the lift M̂q

1 = M1×{q} ofM1 is a totally geodesic
submanifold of M̃n(c). Hence M̂q

1 is either a totally real submanifold or a holomorphic
submanifold of M̃n(c).

Now, we divide the proof into two cases.

CASE 1 (dimM2 > 1). In this case, M̂p

2 is a totally real submanifold of dimension less
than n. Since M1 ×ρ M2 is a warped product representation of M̃n(c) and M̂q

2 is totally
real, M̂q

1 cannot be a holomorphic submanifold. Hence M̂q

1 is a totally real submanifold
since M̂q

1 is a totally geodesic submanifold of a non-flat complex space form. Thus we
have dimM1 ≤ n. Therefore the dimension of M1 ×ρ M2 is less than the real dimension
of M̃n(c) which is a contradiction. Consequently, this case cannot occur.

CASE 2 (dimM2 = 1). In this case, the lift M̂q

1 cannot be a holomorphic submanifold.
Hence the lift M̂1

1 is a totally real totally geodesic submanifold. Therefore we must have
dimM1 = 1. Consequently, we obtain n = 1 which is a contradiction. �

6. Examples

In this section we provide several simple examples of isometric immersions from warped
products into real space forms to show that both case (1) or case (2) of Theorem 5 do occur
for c = 0, c > 0 and c < 0.

EXAMPLE 1. There exist many minimal isometric immersions from some warped
productsN1 ×f N2 with harmonic warping function f into a Euclidean space. For instance,
ifN2 is a minimal submanifold of the unit (m−1)-hypersphere Sm−1 in E

m centered at the
origin, then the minimal cone C(N2) over N2 with vertex at the origin of E

m is the warped
product manifold R+ ×s N2 whose warping function f = s is a harmonic function. Here
s denotes the coordinate function of the positive real line R+.

This example provides us many examples of isometric immersions of warped products in a
real space form which satisfy case (1) of Theorem 5.

EXAMPLE 2. Let (r, θ, z) denote the cylindrical coordinates of E
3. Then the metric tensor

g̃ of E
3 is given by

g̃ = dr2 + dz2 + r2dθ2. (6.1)

Let E
2+ = R+ × R denote the half plane defined by E

2+ = {(r, z) : r > 0} equipped with
the standard Euclidean metric g̃1 = dr2 + dz2 and let S1 be the unit circle with metric
g̃2 = dθ2. Then E

2+ ×r S
1 equipped with metric g̃ = g̃1 + r2g̃2 is a warped product

representation of E
3.
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Let s be the natural coordinate of the open interval (−π
2 ,

π
2 ). Consider the warped product

N1 ×f N2 =: (−π
2 ,

π
2 )×cos s S

1 and also consider the immersion:

φ = (φ1, φ2) : (−π
2 ,

π
2 )×cos s S

1 → E
2+ ×r S

1, (6.2)

where φ1 is defined by φ1(s) = (cos s, sin s) for s ∈ (−π
2 ,

π
2 ) and φ2 : S1 → S1 is the

identity map.

It is easy to verify that φ is an isometric warped product immersion whose image is an open
dense subset of the standard unit sphere S2 in E

3. The squared mean curvature H 2 of
φ is equal to one. Since the warping function f ofN1 ×f N2 is cos s and s is the arc length
of φ1, the Laplacian�f of f is given by −f ′′(s). Thus we find�f = f which shows that
the equality sign of (1.5) holds identically.

On the other hand, it is easy to verify that ∇ ln r = r−1∂/∂r . Hence we have

D ln ρ = cos s
∂

∂r
+ sin s

∂

∂z
(6.3)

which gives
→
H 1= −D ln ρ. Therefore we also have condition (2-b). This provides us an

example which satisfies case (2) of Theorem 5.

EXAMPLE 3. Let S2n1 be the unit 2n1-sphere equipped with the metric:

g = du2
1 + cos2 u1du

2
2 + · · · +

2n1−1∏
k=1

cos2 uk du
2
2n1
. (6.4)

If we put

g1 = du2
1 + cos2 u1du

2
2 + · · · +

n1−1∏
k=1

cos2 uk du
2
n1
,

g2 = du2
n1+1 + cos2 un1+1du

2
n1+2 + · · · +

2n1−1∏
k=n1+1

cos2 uk du
2
2n1
,

then S2n1 is isometric to the warped product N1 ×f N2, where N1 = (Sn1 , g1) and
N2 = (Sn1 , g2), and f = cos u1 · · · cos un1 . A direct long computation shows that the
warping function f satisfies �f = n1f .

Let φ : N1 ×f N2 → E
2n1+1 be the standard embedding of S2n1 in E

2n1+1. Then the
squared mean curvature H 2 of φ is equal to one. Therefore we obtain the equality case
of (1.5). Since φ is a non-minimal immersion, Theorem 5 implies that the immersion φ
satisfies case (2) of Theorem 5.
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EXAMPLE 4. Let N1 ×f N2 denote the warped product representation of the unit
2n1-sphere S2n1 with N1 = (Sn1 , g1), N2 = (Sn1 , g2), and f = cos u1 · · · cos un1 as given
in Example 3.

Consider a totally umbilical immersion:

φ : N1 ×f N2 → H 2n1+1(c) (6.5)

of the warped product manifoldN1×f N2 into the real hyperbolic (2n1+1)-spaceH 2n1+1(c)

of constant curvature c < 0. Then the squared mean curvature H 2 of φ is equal to 1 − c.
Since we have (�f )/f = n1, the equality case of (1.5) holds identically.

Because φ is a non-minimal immersion, the immersion φ :N1 ×f N2 →H 2n1+1(c) satisfies
case (2) of Theorem 5.

EXAMPLE 5. Let N1 ×f N2 denote the same warped product representation of S2n1 as
given Examples 3 and 4.

Consider a totally umbilical immersion:

φ : N1 ×f N2 → S2n1+1(c) (6.6)

of N1 ×f N2 into a (2n1 + 1)-sphere S2n1+1(c) of constant curvature c < 1. Then the
squared mean curvatureH 2 of φ is equal to 1−c. Since we have (�f )/f = n1, the equality
case of (1.5) holds identically.

It is easy to see that the immersionφ :N1×f N2 →S2n1+1(c) satisfies case (2) for 0 < c < 1.
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