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Characterizations of cyclic polytopes

Tibor Bisztriczky

Abstract. Let P denote a simplicial convex 2m-polytope with n vertices. Then the following are equivalent:
(i) P is cyclic; (ii) P satisfies Gale’s Evenness Condition; (iii) Every subpolytope of P is cyclic; (iv) P has at
least 2m+2 cyclic subpolytopes with n−1 vertices if n ≥ 2m+5; (v) P is neighbourly and has n universal edges.

We present an additional characterization based upon an easily described point arrangement property.
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1. Introduction

The importance of cyclic d-polytopes is well known and well documented. They have
important combinatorial properties and numerous applications in various branches of mathe-
matics and science. For example, they are solutions to extremum problems (The Upper
Bound Conjecture) and they serve as bases for diverse constructions (from triangulations
to bimatrix games). Their best known realization is with vertices on the moment curve
{(t, t2, . . . , td ) | t ∈ R} ⊂ R

d , d ≥ 2, and their best known characterization is Gale’s
Evenness Condition (GEC).

Let X be a set with an ordered list of points x1, x2, . . . , xn in R
d , d ≥ 2. We say that X is

k-inseparable (k ≥ 1) if for i = 1, 2, . . . , n − k, conv{xi, xi+1, . . . , xi+k} is disjoint from
every hyperplane spanned by points from X\{xi, xi+1, . . . , xi+k}.
Our two main results are the following:

THEOREM A. Let X = {x1, x2, . . . , xn} be a set of n ≥ d + 2 points in general position
in R

d; that is, n ∈ {d + 2k, d + 2k + 1} for some k ≥ 1. If there is an ordering on
X such that X is k-inseparable then P = convX is a cyclic d-polytope with respect to that
ordering.

THEOREM B. Let d = 2m, k ≥ 1 and X be a set of n ∈ {d + 2k, d + 2k + 1} points in
general position in R

d . Then X is the vertex set of a cyclic 2m-polytope if, and only if,
X is k-inseparable.
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The necessity in Theorem B follows from GEC (Y ⊂ X determines a facet of conv X if, and
only if, |Y | = d and any two vertices of X\Y have an even number of vertices of Y between
them) and that every cyclic 2m-subpolytope of a cyclic 2m-polytope is also cyclic. One
consequence of these is that (cf. [5]) the vertex set of a cyclic 2m-polytope is contained in
a 2m-order curve and thus, it is well known to be 1-inseparable with respect to the ordering
induced by either orientation of the curve. Clearly, a 1-inseparable set is k-inseparable for
k ≥ 1.

In regard to Theorem A, we assume that X = {x1, . . . , xn} is k-inseparable and note the
following simplifications and plan of proof:

1.1 It is clear that conv{x1, x2, . . . , xd}, conv{xn, x1, . . . , xd−1}, conv{xn−1, xn, x1, . . . ,

xd−2}, . . . , conv{xn−d+1, . . . , xn−1, xn} are facets of P . With this starting point, it
is easy to verify Theorem A in the cases k = 1 or d = 2. Hence, we assume that
k ≥ 2, d ≥ 3 and proceed by induction on d.

1.2 Let H̄ ⊂ R
d\{x1} be a hyperplane and x̄i be the projection of xi from x1 onto H̄ .

Then X̄ = {x̄2, . . . , x̄n} is a k-inseparable set of points in general position in H̄ and
|X̄| ∈ {(d − 1) + 2k, (d − 1) + 2k + 1}. From this and the induction hypothesis on
d , it follows that conv X̄ is a cyclic (d − 1)-polytope with n − 1 vertices and with
respect to the induced ordering. It is clear that conv X̄ is combinatorially equivalent
to the vertex figure P/x1 of P at x1.

Similarly, P/xn is also a cyclic (d−1)-polytope. By iteration and with P/[xi, xj ] :=
(P/xi)/xj = (P/xj )/xi, the quotient polytopes P/[x1, x2], P/[x1, xn] and
P/[xn−1, xn] are cyclic (d − 2)-polytopes with n − 2 vertices for d ≥ 4.

1.3 We recall (cf. [2], p. 63) that there are explicit formulae for the number c(n, d)

of facets of a cyclic d-polytope with n vertices, and that if d is odd then c(n, d) =
2c(n − 1, d − 1) − c(n − 2, d − 2).

Let d be odd. From 1.2, each facet of P containing x1 (respectively xn) satisfies
GEC and there are c(n − 1, d − 1) of them. Also, there are c(n − 2, d − 2) facets
of P that contain both x1 and xn. It follows now by the Upper Bound Theorem that
each facet of P contains x1 or xn, and as a consequence, P satisfies GEC. Thus
P is a cyclic d-polytope and we may assume that d is even.

1.4 Let d be even, k ≥ 2 and |X| = d + 2k + 1. We observe that |X| ≥ d + 5 and that
every d + 2k element subset of X is k-inseparable. Hence, if Theorem A is valid for
n = d + 2k then it is valid for n = d + 2k + 1.

1.5 With d = 2m ≥ 4 and n = d + 2k, our plan of proof is as follows:

• Verify Theorem A for k = 2.

• Show that X has a 2-independent subset X′.
• Show that P is obtained from conv X′ by a construction that, at each iteration,

yields a cyclic d-polytope.
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2. Preliminaries

Let Y be a set of points in R
d . Then conv Y and aff Y denote, respectively, the convex hull

and the affine hull of Y. For sets Y1, Y2, . . . , Yn, let

[Y1, Y2, . . . , Yn] = conv(Y1 ∪ Y2 ∪ . . . ∪ Yn)

and

〈Y1, Y2, . . . , Yn〉 = aff(Y1 ∪ Y2 ∪ . . . ∪ Yn).

For a point y ∈ R
d , let [y] = [{y}] and 〈y〉 = 〈{y}〉.

Let Y = {y1, y2, . . . , yv} be an ordered set of v points, and denote the ordering by
y1 < y2 < · · · < yv . We say that yi and yi+1 are successive points, and that yj

separates yi and yk if yi < yj < yk . Let Y ′ ⊂ Y . Then Y ′ is an even subset if it is
the union of mutually disjoint subsets {yi, yi+1}; otherwise, Y ′ is an odd subset. Next, Y ′
is a Gale subset if any two points of Y\Y ′ are separated by an even number of points of Y ′.
We note that even subsets are Gale, and that an odd Gale subset contains y1 or yv .

Let Q ⊂ R
d denote a convex d-polytope with V(Q), F(Q) and L(Q) denoting, respec-

tively, the set of vertices, the set of facets and the face lattice of Q. We recall that L(Q) is
the collection of all faces of Q, and the two d-polytopes are combinatorially equivalent if
their face lattices are isomorphic.

We say that Q is neighbourly if every [d/2] vertices of Q determine a face of Q, and that
Q is cyclic if it is combinatorially equivalent to the convex hull of some v ≥ d + 1 points
on {(t, t2, . . . , td ) | t ∈ R} in R

d .

We assume familiarity with the basic properties of convex polytopes (cf. [2]) and, in
particular, with neighbourly and cyclic polytopes (cf. [1] and [3]).

Let Y = {y1, . . . , yv} = V(Q) and G be a u-face of Q, 0 ≤ u ≤ d − 1. Then the
quotient polytope Q/G is a (d − u − 1)-polytope with face lattice isomorphic to {G′ ∈
L(Q) | G ⊂ G′}. We say that G is universal if either G ∈ F(Q) or Q/G is a neighbourly
polytope with |V(Q)| − |V(G)| vertices; that is, [G, Y ′] is a face of Q for every Y ′ ⊂ Y

with |Y ′| ≤ [(d − |V(G)|)/2].

We are particularly interested in Q/G in the case u = d − 3. Then Q∗ = Q/G is a
(planar) convex polygon and, as a simplification, we let

V(Q∗) = {y∗
i | [G, yi] is a (d − 2)-face of Q}.

Then [y∗
i , y∗

j ] is an edge of Q∗ iff [G, yi, yj ] ∈ F(Q), and 〈y∗
i , y∗

j 〉 separates y∗
r and y∗

s in

the plane iff the hyperplane 〈G, yi, yj 〉 separates yr and ys in R
d .
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In the case that Y is ordered, we say that y1 < y2 < · · · < yv is a vertex array of Q. Then
Q satisfies GEC if for any Y ′ ⊂ Y : [Y ′] ∈ F(Q) if, and only if, |Y ′| = d and Y ′ is Gale.
As already noted, Q is a cyclic d-polytope if, and only if, it satisfies GEC with respect to
some vertex array.

Henceforth, we assume that d = 2m ≥ 4 and that Q = [y1, . . . , yv] is neighbourly. Then
a universal tower in Q is a strictly increasing sequence T = {Gj }mj=1 of universal faces of
Q, with |V(Gj )| = 2j for 1 ≤ j ≤ m.

Let T = {Gj }mj=1 be a universal tower in Q,Fj = {F ∈ F(Q) | Gj ∈ F }, F0 = F(Q)\F1

and

C = C(Q, T ) = F1\(F2(. . . \Fm) . . . ).

Then C = (F1\F2) ∪ (F3\F4) ∪ · · · ∪ (Fm−1\Fm) for even m, C = (F1\F2) ∪ · · · ∪ Fm

for odd m, and there is a point y ∈ R
d that lies exactly beyond C; that is, y is beyond each

F ∈ C and beneath each F ∈ F(Q)\C. If y is exactly beyond C then [Q, y] is said to be
obtained from Q by serving y through C; cf. [3].

Finally, we let U(Q) denote the set of universal edges of Q and note that |U(Q)| ≤ v if
v ≥ d + 3.

2.1. ([5]) If Q is a cyclic 2m-polytope then the vertices of Q lie on a d-order curve.
2.2. ([4]) E = [yi, yj ] ∈ U(Q) if, and only if, H ∩E = ∅ for every hyperplane spanned

by points from V(Q)\{yi, yj }.
2.3. ([3]) Q is cyclic with y1 < y2 < · · · < yv if, and only if,

U(Q) = {[yi, yi+1] | i = 1, . . . , v and yv+1 = y1}, v ≥ 2m + 3.

2.4. ([4]) If Q is not cyclic and v ≥ 2m + 5 then Q has at most 2m + 1 cyclic
2m-subpolytopes with v − 1 vertices.

2.5. ([5]) Let Q be cyclic with y1 < y2 < · · · < yv. Then T = {Gj }nj=1 is a univer-
sal tower with Gj = [y1, . . . , yj , yv−j+1, . . . , yv]; moreover, if Q′ = [Q, yv+1]
is obtained from Q by sewing yv+1 through C(Q, T ) then Q′ is cyclic with
y1 < y2 < · · · < yv < yv+1.

We note that although 2.5 is not explicitly stated in the cited article, it is readily deduced
from the sewing construction and the description of U(Q′).

As the last entry in this section, we present the manner in which we apply the sewing
construction.

LEMMA C. With the notation of 2.5; let Q′ = [Q, yv+1] such that {[y1, . . . , yd−1, yd ],
[y1, . . . , yd−1, yv+1]} ⊂ F(Q′) and Q′/[yi, yi+1] is a cyclic (d − 2)-polytope with v − 1
vertices and the ordering induced by y1 < y2 · · · < yv < yv+1, i = v − 3, v − 2, v − 1.

Then Q′ is obtained by sewing yv+1 through C(Q, T ).
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Proof. We need to show that yv+1 lies exactly beyond

C(Q, T ) = (F1\F2) ∪ (F3\F4) ∪ · · ·

with Fj = {[y1, . . . , yj , Sd−2j , yv−j+1, . . . , yv] | Sd−2j ⊂ {yj+1, . . . , yv−j }},

Fj\Fj+1 = {F ∈ Fj | {yj+1, yv−j } �⊂ F }

and Su, an u element even subset of Y = {y1, . . . , yv}.
If F ∈ Fj and j ≥ 2 is even then [yv−1, yv] ⊂ F, V(F ) is an even subset of Y ∪ {yv+1},
and the cyclic property of Q′/[yv−1, yv] implies that F ∈ F(Q′); that is, yv+1 is beneath F .
Similarly, we obtain that yv+1 is beneath each F ∈ F(Q)\F1 with [yv−3, yv−2] or
[yv−2, yv−1] in F, and beyond each F such that F ∈ Fj\Fj+1 for odd j ≥ 3 or
F ∈ F1\{[y1, Sd−2, yv] | Sd−2 ⊂ {y2, . . . , yv−3}}.
In order to prove that yv+1 is beyond [y1, Sd−2, yv] for Sd−2 ⊂ {y2, . . . , yv−3} and beneath
[Sd ] for Sd ⊂ {y1, . . . , yv−3}, we observe that

a) {[y1, . . . , yd−1, yd ], [y1, . . . , yd−1, yv+1]} ⊂ F(Q′) implies that yv+1 is beyond
[y1, . . . , yd−1, yv] ∈ F1, and

b) if G is a (d − 3)-face of Q and {F1, F2} and {F2, F3} are adjacent pairs of facets of
Q such that G = F1 ∩ F2 ∩ F3, yv+1 is beyond F2 and beneath F1 and F3 then
yv+1 is beneath each F ∈ F(Q) such that G ⊂ F �= F2.

We note that in b): F1 ∩F2 and F2 ∩F3 are (d −2)-faces of Q, and “beyond” and “beneath”
are interchangeable.

Let F = [y1, Sd−2, yv], Sd−2 ⊂ {y2, . . . , yv−3}. By a), we may assume that there is a
d ≤ t ≤ v − 3 such that if S′

d−2 ⊂ {y2, . . . , yt−1} then yv+1 is beyond [y1, S
′
d−2, yv].

Let yt ∈ Sd−2 ⊂ {y2, . . . , yt }, Sd−2 = Sd−4 ∪ {yt−1, yt }, G = [y1, Sd−4, yv] and F1 =
[G, yv−2, yv−1]. Then F1 ∈ Fj\Fj+1 for some odd j ≥ 3 and yv+1 is beyond F1. Next,
there exist 2 ≤ r < s ≤ t − 1 such that Sd−4 ∩ {yr , ys} = ∅ and, {y1} ∪ Sd−4 ∪ {yr} and
S′

d−2 = {yr} ∪ Sd−4 ∪ {ys} are even sets. Then yv+1 is beneath F2 = [G, yr, yv−1] ∈ F2

and beyond F3 = [G, yr, ys] = [y1, S
′
d−2, yv].

Let F = [Sd ], Sd ⊂ {y1, . . . , yv−3}. By a), we may assume that there is a d + 1 ≤
t ≤ v − 3 such that if S′

d ⊂ {y1, . . . , yt−1} then yv+1 is beneath [S′
d ]. Let yt ∈ Sd ⊂

{y1, . . . , yt }, Sd−2 ∩ {yt−1, yt } = ∅ and G = [Sd−2]. As already noted, yv+1 is beneath
F1 = [G, yv−1, yv]. Next, there exist 1 ≤ r < s ≤ t − 1 such that Sd−2 ∩ {yr , ys} = ∅,

S′
d = Sd−2 ∪ {yr , ys} is even and, either yr = y1 or {y1, . . . , yr−1} ⊂ Sd−2. Thus, yv+1 is

beneath F3 = [G, yr, ys] = [S′
d ] and beyond F2 = [G, yr, yv] ∈ F1\F2. �



Vol. 84, 2005 Characterizations of cyclic polytopes 35

3. Proof of Theorem A

In light of the observations 1.1 to 1.5, let X = {x1, x2, . . . , xn} be a k-inseparable set of
n points in general position in R

d; n = d + 2k, d = 2m ≥ 4 and k ≥ 2. Let P = [X] and
assume that the ordering is x1 < · · · < xn. We show that

3.1. Fi = [xi, xi+1, . . . , xi+d−1] ∈ F(P ) for i = 1, 2, . . . , n − d + 1,

3.2. P is cyclic if k = 2, and
3.3. X has a 2-inseparable subset X′, and P is obtained from [X′] by 2k − 4 sewings

of the type described in 2.5.

Proof [Proof of 3.1]. Since {F1, Fn−d+1} ⊂ F(P ), we assume that 2 ≤ i ≤ n − d.
Let Oi = [xi, xi+1, . . . , xi+d−3] and recall that P ∗

i = P/Oi is a convex polygon. Since
P/[xn−1, xn], P/[xn, x1] and P/[x1, x2] are cyclic (d − 2)-polytopes with n − 2 vertices
and the induced ordering, it follows that {[xn−1, xn, Oi], [xn, x1, Oi]} ⊂ F(P ) for each
i and [x1, x2, Oi] ∈ F(P ) for i �= 2.

Let i = 2. Then the preceding and F1 = [x1, O2, xd ] yield that [x∗
n−1, x

∗
n], [x∗

n, x∗
1 ] and

[x∗
1 , x∗

d ] are edges of P ∗
2 , and 〈x∗

n, x∗
d 〉 separates x∗

1 and x∗
n−1. Since X is k-inseparable, we

have that

〈O2, xd, xn〉 ∩ [xd+1, . . . , xn−1] = ∅ = 〈O2, xd, xd+1〉 ∩ [xd+2, . . . , xn],

and from this it readily follows that [x∗
d , x∗

d+1] is an edge of P ∗
2 . Thus, F2 ∈ F(P ) and

〈x1, O2, xd+1〉 separates xd and [xn−1, xn].

It is now easy to check that iterations of the above argument yield Fi ∈ F(P ) for i ≤ k,

and that 〈x1, Oi, xi+d−2〉 = 〈x1, xi, Oi+1〉 separates [x2, . . . , xi−1] and [xi+d−1, . . . , xn]
for 3 ≤ i ≤ k + 1.

In summary: {F1, . . . , Fk} ⊂ F(P ) and 〈x1, xk+1, Ok+2〉 = 〈x1, xk+1, . . . , xd+k−1〉
separates [x2, . . . , xk] and [xk+d , . . . , xn]. Then n = d + 2k and reverse labelling yield
{Fk+2, . . . , Fn} ⊂ F(P ) and 〈xk+2, . . . , xd+k, xn〉 = 〈Ok+2, xd+k, xn〉 separates
[xd+k+1, . . . , xn−1] and [x1, . . . , xk+1].

From P ∗
k+2, we now readily obtain that [x∗

k+1, x
∗
d+k] is necessarily an edge, and hence,

[xk+1, Ok+2, xd+k] = Fk+1 ∈ F(P ). �

Proof [Proof of 3.2]. We show first that X = {x1, x2, . . . , xd+4} is neighbourly and then
apply 2.2 and 2.3.

Let X̃ be an m element subset of X. By 3.1, we may assume that X̃ �⊂ F3 and that, say,
X̃ ∩ {x1, x2} �= ∅. Then [x1, x2] ∈ U(X) and |X̃\{x1, x2}| ≤ m − 1 yield that [x1, x2, X̃]
is a face of P . Since P is simplicial, [X̃] is also a face of P .
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Since P is neighbourly and {[xd+3, xd+4], [xd+4, x1], [x1, x2]} ⊂ U(P ), it follows by 2.2
that each G ∈ {[xd+3, xd+4, x1], [xd+4, x1, x2]} is disjoint from every hyperplane spanned
by points from X\V(G). Then X is 2-inseparable with respect to the cyclic ordering
x1 < x2 < · · · < xd+4 < x1 and, as noted in 1.2, P/[xi, xi+1] is a cyclic (d − 2)-polytope
with d + 2 vertices for i = 1, . . . , d + 4 and xd+5 = x1. Thus, |U(P )| = d + 4 and P is
cyclic by 2.3. �

Proof [Proof of 3.3]. Let k ≥ 3, X′ = {x1, x2, xk+1, . . . , xk+d , xn−1, xn}, X̃ be a set
of three successive points in X′ and H be a hyperplane spanned by points from X′\X̃.

Since H ∩ (X̃ ∪ {x3, . . . , xk} ∪ {xk+d+1, . . . , xk+d+k−2}) = ∅ and X is k-inseparable,
we may assume that X̃ ∩ {xk+1, xk+d} = ∅; that is, X̃ = {xi, xi+1, xi+2} ⊂
{xk+2, . . . , xk+d−1}. Then |X′\X̃| = d + 1 implies that, say, [x1, x2] ⊂ H . Let H =
〈x1, x2, y1, . . . , yd−2〉 with {y1, . . . , yd−2} ⊂ X′\(X̃ ∪ {x1, x2}). Since P̄ = P/[x1, x2] is
cyclic with x̄3 < · · · < x̄n, it follows from 2.1 that {x̄3, . . . , x̄n} is 1-inseparable. Then
〈ȳ1, . . . , ȳd−2〉 ∩ [x̄i , x̄i+1, x̄i+2] = ∅ and H ∩ [X̃] = ∅.

Since X′ is 2-inseparable, Q = [X′] is a cyclic d-polytope with x1 < x2 < xk+1 < · · · <

xk+d < xd+2k−1 < xd+2k. Let Q0 = [Q, xk]. Then 1.2, 3.1, Lemma C and 2.5 yield that
Q0 is cyclic with x1 < x2 < xk < xk+1 < · · · < xk+d < xd+2k−1 < xd+2k.

It is now clear that Qi = [Qi−1, xk−i] is cyclic for i = 1, . . . , k − 3, and that with
P0 = Qk−3 = [x1, x2, . . . , xd+k, xd+2k−1, xd+2k], Pi = [Pi−1, xd+k+i] is cyclic for
i = 1, . . . , k − 2 and P = Pk−2. �

As a final comment, we recall that a neighbourly 2m-polytope Q with v vertices is almost-
cyclic if |U(Q)| = v − 2. In view of the preceding, it is natural to ask for example if
almost-cyclic 2m-polytopes with n+ 2k or n+ 2k + 1 vertices are characterizable in terms
of �-inseparability for some � > k?
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