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Simplices with congruent k-faces

Horst Martini and Walter Wenzel

Abstract. Let S be a non-degenerate simplex in R". We prove that S is regular if, for some k € {1, ...,n — 2},
all its k-dimensional faces are congruent. On the other hand, there are non-regular simplices with the property that
all their (n — 1)-dimensional faces are congruent.
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1. Introduction

Due to M. Zacharias [10], E. Genty and E. Lemoine observed about 1880 that the faces
of a tetrahedron 7' C R are congruent if they have the same areas. These special three-
dimensional simplices are usually called “isosceles tetrahedra” and have many interesting
properties, cf. [5, §9] and [6, §1.4] for various references and [7] for a recent contribution.
Inspired by this implication, H. Lenz asked in 1987 for analogous statements in R”, n > 4,
see the book “Mathematical Problems” at the Oberwolfach institute.

P. Frankl and H. Maehara [2] showed that, for n > 4, an n-dimensional simplex all whose
two-dimensional faces have equal areas is necessarily regular (this even holds in spaces of
constant curvature, cf. [4]), and B. Wei3bach [9] proved that this is no longer true for any
k € {3, ..., n—1}: there are non-regular n-dimensional simplices all whose k-dimensional
faces have equal k-volumes. P. McMullen [8] found various further properties of these
so-called k-equiareal simplices in R".

Based on these investigations it is natural to replace the criterion of k-equiareality by the
stronger assumption that all k-dimensional faces of an n-dimensional simplex be even
congruent.

Our main result holds for n > 3 and any k € {1,...,n — 2}: An n-dimensional simplex
S C R" is regular if all its k-dimensional faces are congruent. (It should be noticed that
J. Horvéth [3] proved this already for k € {3; 4}. He also posed the respective question
for higher dimensions.) Since the analogous assumption for the case n = 2,k = 1 yields
equilateral triangles, and for n = 3, k = 2 the above mentioned isosceles tetrahedra are
obtained, it remains to look at the cases n > 4,k = n — 1. It turns out that, since an
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n-dimensional simplex remains realizable in R” if its edge lengths are slightly disturbed, for
any of these cases non-regular n-dimensional simplices with congruent (n — 1)-dimensional
faces exist. The latter observations were also obtained by other authors, see §3 below.

2. A characterization of regular n-simplices

In this section we want to show that a given n-dimensional simplex is regular if there exists
some k with 1 < k < n — 2 such that all its faces of dimension k are congruent. First we
show the following purely combinatorial result.

PROPOSITION 2.1. Assume M is a finite set with at least 4 elements, and let P>(M)
denote the family of all subsets of M with exactly 2 elements. Assume f : Po(M) — S is
a map with values in some set S. Suppose that f satisfies the following condition:

For all pairwise distinct elements a,b,c € M and M' = M\{a, b, ¢} there exists some
bijectiono : M’ — M’ with  f({a,x}) = f({b,o(x)}) forall x € M’.

Then, with the abbreviation fu, = fpa := f{a,b}) for a,b € M with a # b, the
following holds:

i) Ifa,b, c,d € M are pairwise distinct and fuc # faq, then one has

Jac = fpe and analogously fuq = fra.

il) For all pairwise distinct a,c,d € M one has  fuc = faa-
iii) The map f is constant; that is, one has fqop = foq whenever a, b, c,d € M satisfy
a#bandc #d.

Proof. i) Put M" := M\{a, b, c, d}. By the condition on f we obtain
np:=1f{x e M"U {d} fax = fact =y € M"U {d}|fby = fac}

as well as

ny = f{x € M"U{c}| fax = fac} =ty € M" U{c} | foy = fac}-

Now the assumption f,. # fuq yields np = n1 + 1 and thus fpe = fyc.

ii) Assume ii) fails for certain pairwise distincta, ¢, d € M,andput M’ := M\{a, c, d}.
Then i) yields for all x € M": fu,c = fye and faqg = fra . On the other hand, the
assumption of our proposition implies that there exists some bijectiono : M’ — M’
with fox = fusy forall x € M’ . Thuswe getforallx € M':  fue = foe = foxr =
Jfdox) = foxyd = faa, a contradiction!

iii) is now a direct consequence of ii), because we may assume thata, b, c, d are pairwise

distinct, and then we get f,p = foe = fed-
O
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Based on Proposition 2.1, we can now prove

PROPOSITION 2.2. Assume n > 3, and S C R" be a non-degenerate simplex such that
all faces of dimension n — 2 are congruent. Then S is regular; that means, all edges of S
exhibit the same length.

Proof. LetV =V (S) = {Py, ..., P,} denote the vertex set of S, put M := {0, 1,...,n},
and for i, j € M with i # j let [;; denote the Euclidean distance between P; and P;.
By Proposition 2.1, it suffices to prove the following: For pairwise distinct i, j, k € M
and M’ := M\{i, j, k} there exists some bijection o : M’ — M’ with l;, = l;5(,) for all
veM.

Consider the (n — 2)-dimensional faces S := conv ({Po, ..., P,J\{P}, P&}) and S, :=
conv ({Po, ..., P,}\{P;, Px}), where “conv”’ means convex hull.

By our assumption, there exists some congruence transformation « : R” — R" which
maps S; onto S,. In particular, for every positive number [/, the number of edges of S|
not belonging to S, and exhibiting the length / equals the number of edges of this length
belonging to S, but not to S;. This implies our assertion, because the edges of S; not
belonging to S, are the line segments P; P, forv € M’, while P; P, ; € M’, are the edges
of S, not belonging to ;. O

REMARK. In the last proof, some edge P;P,, v € M’, is not necessarily mapped to
Pj Po'(v) under «.

More generally, we can now also prove

THEOREM 2.3. Assume n > 3, and S € R" be a non-degenerate simplex such that for
some k with 1 <k <n — 2 all k-dimensional faces of S are congruent. Then S is regular.

Proof. By Proposition 2.2, applied to n’ := k + 2, all (k + 2)-dimensional faces are regular.
Thus the assertion follows from the fact that any two edges of S belong to some (k + 2)-
dimensional face. O

3. Simplices with congruent (n — 1)-faces

In contrast to the last section, for n > 3 there exist n-dimensional simplices which are not
regular but have the property that all their faces of dimension n — 1 are congruent. (For
n = 2, such simplices do not exist since each triangle with congruent sides is regular.)
Namely, by using the theory of eigenvalues it is already proved in [1, Lemma 1] that a
non-degenerate simplex remains realizable in Euclidean space under any slight disturbance
of its edge lengths. Thus we can prove
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PROPOSITION 3.1. For any n > 3, there exists a non-degenerate simplex S C R" which
is not regular, but has the property that all its faces of dimension n — 1 are congruent.

Proof. Let Py, ..., P, denote the vertices of some regular simplex Sy in R” all whose
edges exhibit length 1, say. By the arguments from [1] there exists some § € (0, 1) and
some non-degenerate simplex S with vertices PJ, ..., P, and edge lengths

1P/ = Pjll = 1438 for i — j| = 2 but {i, j} # {0, n},
1P/ — P}l = 1 for {i, j} =1{0,n} or |i — jl =1.

Thus, the graph with vertex set { P}, ..., P,} and edge set {{P/, P/’.} S|P — PJ’.|| =1}isa
cycle of length n 4+ 1. By symmetry, it is clear that all (n — 1)-dimensional faces of S are
congruent. However, S is not regular since n > 2. O

B. Weissbach (private communication) informed the authors to have a further, independent
approach to this result, and we also refer to [3].
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