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Simplices with congruent k-faces

Horst Martini and Walter Wenzel

Abstract. Let S be a non-degenerate simplex in R
n. We prove that S is regular if, for some k ∈ {1, . . . , n − 2},

all its k-dimensional faces are congruent. On the other hand, there are non-regular simplices with the property that
all their (n − 1)-dimensional faces are congruent.
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1. Introduction

Due to M. Zacharias [10], E. Genty and E. Lemoine observed about 1880 that the faces
of a tetrahedron T ⊂ R

3 are congruent if they have the same areas. These special three-
dimensional simplices are usually called “isosceles tetrahedra” and have many interesting
properties, cf. [5, §9] and [6, §1.4] for various references and [7] for a recent contribution.
Inspired by this implication, H. Lenz asked in 1987 for analogous statements in R

n, n ≥ 4,
see the book “Mathematical Problems” at the Oberwolfach institute.

P. Frankl and H. Maehara [2] showed that, for n ≥ 4, an n-dimensional simplex all whose
two-dimensional faces have equal areas is necessarily regular (this even holds in spaces of
constant curvature, cf. [4]), and B. Weißbach [9] proved that this is no longer true for any
k ∈ {3, . . . , n−1}: there are non-regular n-dimensional simplices all whose k-dimensional
faces have equal k-volumes. P. McMullen [8] found various further properties of these
so-called k-equiareal simplices in R

n.

Based on these investigations it is natural to replace the criterion of k-equiareality by the
stronger assumption that all k-dimensional faces of an n-dimensional simplex be even
congruent.

Our main result holds for n ≥ 3 and any k ∈ {1, . . . , n − 2}: An n-dimensional simplex
S ⊂ R

n is regular if all its k-dimensional faces are congruent. (It should be noticed that
J. Horváth [3] proved this already for k ∈ {3; 4}. He also posed the respective question
for higher dimensions.) Since the analogous assumption for the case n = 2, k = 1 yields
equilateral triangles, and for n = 3, k = 2 the above mentioned isosceles tetrahedra are
obtained, it remains to look at the cases n ≥ 4, k = n − 1. It turns out that, since an
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n-dimensional simplex remains realizable in R
n if its edge lengths are slightly disturbed, for

any of these cases non-regular n-dimensional simplices with congruent (n−1)-dimensional
faces exist. The latter observations were also obtained by other authors, see §3 below.

2. A characterization of regular n-simplices

In this section we want to show that a given n-dimensional simplex is regular if there exists
some k with 1 ≤ k ≤ n − 2 such that all its faces of dimension k are congruent. First we
show the following purely combinatorial result.

PROPOSITION 2.1. Assume M is a finite set with at least 4 elements, and let P2(M)

denote the family of all subsets of M with exactly 2 elements. Assume f : P2(M) → S is
a map with values in some set S. Suppose that f satisfies the following condition:

For all pairwise distinct elements a, b, c ∈ M and M ′ = M\{a, b, c} there exists some
bijection σ : M ′ → M ′ with f ({a, x}) = f ({b, σ (x)}) for all x ∈ M ′ .

Then, with the abbreviation fab = fba := f ({a, b}) for a, b ∈ M with a �= b , the
following holds:

i) If a, b, c, d ∈ M are pairwise distinct and fac �= fad, then one has

fac = fbc and analogously fad = fbd .

ii) For all pairwise distinct a, c, d ∈ M one has fac = fad .
iii) The map f is constant; that is, one has fab = fcd whenever a, b, c, d ∈ M satisfy

a �= b and c �= d .

Proof. i) Put M ′′ := M\{a, b, c, d}. By the condition on f we obtain

n1 := �{x ∈ M ′′ ∪ {d}|fax = fac} = �{y ∈ M ′′ ∪ {d}|fby = fac}
as well as

n2 := �{x ∈ M ′′ ∪ {c} | fax = fac} = �{y ∈ M ′′ ∪ {c} | fby = fac}.
Now the assumption fac �= fad yields n2 = n1 + 1 and thus fbc = fac.

ii) Assume ii) fails for certain pairwise distinct a, c, d ∈ M , and put M ′ := M\{a, c, d}.
Then i) yields for all x ∈ M ′: fac = fxc and fad = fxd . On the other hand, the
assumption of our proposition implies that there exists some bijection σ : M ′ → M ′
with fcx = fdσ(x) for all x ∈ M ′ . Thus we get for all x ∈ M ′: fac = fxc = fcx =
fdσ(x) = fσ(x)d = fad, a contradiction!

iii) is now a direct consequence of ii), because we may assume that a, b, c, d are pairwise
distinct, and then we get fab = fac = fcd .
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Based on Proposition 2.1, we can now prove

PROPOSITION 2.2. Assume n ≥ 3, and S ⊆ R
n be a non-degenerate simplex such that

all faces of dimension n − 2 are congruent. Then S is regular; that means, all edges of S

exhibit the same length.

Proof. Let V = V (S) = {P0, . . . , Pn} denote the vertex set of S, put M := {0, 1, . . . , n},
and for i, j ∈ M with i �= j let lij denote the Euclidean distance between Pi and Pj .
By Proposition 2.1, it suffices to prove the following: For pairwise distinct i, j, k ∈ M

and M ′ := M\{i, j, k} there exists some bijection σ : M ′ → M ′ with liν = ljσ(ν) for all
ν ∈ M ′ .

Consider the (n − 2)-dimensional faces S1 := conv ({P0, . . . , Pn}\{Pj , Pk}) and S2 :=
conv ({P0, . . . , Pn}\{Pi, Pk}), where “conv” means convex hull.

By our assumption, there exists some congruence transformation α : R
n → R

n which
maps S1 onto S2. In particular, for every positive number l, the number of edges of S1

not belonging to S2 and exhibiting the length l equals the number of edges of this length
belonging to S2 but not to S1. This implies our assertion, because the edges of S1 not
belonging to S2 are the line segments PiPν for ν ∈ M ′, while PjPµ, µ ∈ M ′, are the edges
of S2 not belonging to S1. �

REMARK. In the last proof, some edge PiPν, ν ∈ M ′, is not necessarily mapped to
PjPσ(ν) under α.

More generally, we can now also prove

THEOREM 2.3. Assume n ≥ 3, and S ⊆ R
n be a non-degenerate simplex such that for

some k with 1 ≤ k ≤ n − 2 all k-dimensional faces of S are congruent. Then S is regular.

Proof. By Proposition 2.2, applied to n′ := k +2, all (k +2)-dimensional faces are regular.
Thus the assertion follows from the fact that any two edges of S belong to some (k + 2)-
dimensional face. �

3. Simplices with congruent (n − 1)-faces

In contrast to the last section, for n ≥ 3 there exist n-dimensional simplices which are not
regular but have the property that all their faces of dimension n − 1 are congruent. (For
n = 2, such simplices do not exist since each triangle with congruent sides is regular.)
Namely, by using the theory of eigenvalues it is already proved in [1, Lemma 1] that a
non-degenerate simplex remains realizable in Euclidean space under any slight disturbance
of its edge lengths. Thus we can prove
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PROPOSITION 3.1. For any n ≥ 3, there exists a non-degenerate simplex S ⊆ R
n which

is not regular, but has the property that all its faces of dimension n − 1 are congruent.

Proof. Let P0, . . . , Pn denote the vertices of some regular simplex S0 in R
n all whose

edges exhibit length 1, say. By the arguments from [1] there exists some δ ∈ (0, 1) and
some non-degenerate simplex S with vertices P ′

0, . . . , P
′
n and edge lengths

‖P ′
i − P ′

j‖ = 1 + δ for |i − j | ≥ 2 but {i, j} �= {0, n},
‖P ′

i − P ′
j‖ = 1 for {i, j} = {0, n} or |i − j | = 1.

Thus, the graph with vertex set {P ′
0, . . . , P

′
n} and edge set {{P ′

i , P
′
j } : ‖P ′

i − P ′
j‖ = 1} is a

cycle of length n + 1. By symmetry, it is clear that all (n − 1)-dimensional faces of S are
congruent. However, S is not regular since n > 2. �

B. Weissbach (private communication) informed the authors to have a further, independent
approach to this result, and we also refer to [3].
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