J. Geom. 79 (2004) 190 – 195 0047–2468/04/020190 – 6 © Birkhauser Verlag, Basel, 2004 ¨ DOI 10.1007/s00022-003-1563-8

Journal of Geometry

Sets expressible as finite unions of starshaped sets

Fausto A. Toranzos and Ana Forte Cunto

Abstract. Several papers have appeared with descriptions of sets that are expressible as unions of 2 or 3 starshaped sets. The general problem is relevant since it is closely related to the classical "*Art Gallery Problem*". Some new solutions, for generic values of the parameters, are presented here. These solutions are adaptations of known characterizations of starshaped sets.

Mathematics Subject Classification (2000): 52A30, 52A35. *Key words:* Art gallery problem, union of starshaped sets, point of local nonconvexity.

1. The main problem

In the recent literature on Convexity and Combinatorial Geometry have appeared several partial solutions of the following problem:

PROBLEM 1. Describe geometrical conditions that assure that a certain set $S \subset E^d$ is expressible as the union of k starshaped subsets.

This problem is a generalization of the classical "*Art Gallery Problem*" stated by Victor Klee more than a score of years ago. The statement of the present problem depends on two parameters, the dimension d of the space and the fixed number k of subsets. We remark that the solutions already known are conceived for particular values of these parameters. For instance, [6] gives a solution for $k = 2$ and arbitrary d. The same happens with [4]. On the other hand, [1], [2] and [3] deal with the case $d = 2$ and $k = 2$. Finally, [5] gives a solution for $d = 2$ and $k = 3$. Our aim in this paper is to provide solutions to the general problem, where the parameters d and k are arbitrary fixed positive integers. These new solutions are adaptations of known characterizations of starshaped sets.

2. Notations and first definitions

The environment space is a locally convex topological vector space E , that eventually will be explicitly endowed of dimensional and/or topological properties. The Euclidean d-dimensional space will be denoted E^d . Given two distinct points a and b of E, the *open segment* determined by them is denoted (a, b) and the substitution of one or both parenthesis by square brackets indicates the adjunction of the corresponding extremes. The

Vol. 79, 2004 Finite unions of starshaped sets 191

ray (or *halfline*) issuing from a and going through b is $R(a \rightarrow b)$. The complement, closure, interior, boundary, convex hull and affine hull of a set S will be denoted S^C , *cl* S, *int* S, ∂S , *conv* S, *aff* S, respectively. If S is a subset of E and $a \in S$, $b \in S$ we say that a sees b *via* S if $[a, b] \subset S$. It is clear that the relation of visibility is symmetric. If $x \in S$ we define the *star of* x in S as the set $st(x, S) = \{y \in S \mid x \text{ sees } y \text{ via } S\}$. A *star point* of S is a point $x \in S$ such that $st(x, S) = S$. The *mirador* of S is the set *mir* S of all star points of S. Other words have been used in the literature to describe the mirador: *kernel, convex kernel, hub*. We prefer the word "*mirador*" since "*kernel*" is used in Algebra and in Real Analysis with different meanings. S is a *convex set* if $mir S = S$, or, equivalently, if every point of S is a star point. S is *starshaped* if *mir* $S \neq \emptyset$, i.e. if S admits at least one star point. We say that a point $p \in S$ is a *point of local convexity* of S if there exists a neigborhood U_p of p such that the set $(U_p \cap S)$ is convex. Otherwise, we say that p is a *point of local nonconvexity* of S. The set of all points of local convexity of S is denoted *lc* S, and the set of all points of local nonconvexity is *lnc* S. It is clear that for each set S it holds *lnc* $S \subset \partial S$.

We will denote

$$
J(x, K) = \bigcup_{y \in K} [x, y]
$$

If A and B are two sets, we denote

$$
d(A, B) = \inf \{ \|x - y\| \mid x \in A, y \in B \} \text{ and } d(x, S) = d(\{x\}, S)
$$

Finally, we have

$$
B(A, \delta) = \{ y \in E \mid d(y, A) \le \delta \}
$$

3. Convex components

A *convex component* K of the set S is a maximal convex subset of S. This idea has been used fruitfully to describe the geometry of nonconvex sets. The name was coined in [8] where it was proved the following theorem:

THEOREM 2. Let S be a nonconvex set and $\mathcal{F} = \{K_\lambda \mid \lambda \in L\}$ a covering family of convex *components of* S. Then mir $S = \bigcap_{\lambda \in L} K_{\lambda}$.

A *bunch of sets* is a family of sets $\mathcal{F} = \{M_\lambda \mid \lambda \in L\}$ such that $\bigcap_{\lambda \in L} M_\lambda$ is not empty. We say that a family of sets is *k-bunched* if it is partitioned into precisely k subfamilies, each of them a bunch. If d is a positive integer, we say that a family of sets $\mathcal F$ is d-Helly if every subfamily of $\mathcal F$ having $d + 1$ (or less) members is a bunch. From Theorem 2 it follows easily that a set S is starshaped if and only if it is the union of a bunched family of convex sets.

THEOREM 3. *Let* S *be a nonvoid set. The following statements are equivalent:*

- 1. S *is expressible as the union of precisely* k *starshaped sets.*
- 2. S *admits a covering family of convex components that is k-bunched.*

Proof. (1. \implies 2.) Assume that $S = \bigcup_{i=1}^{k} S_i$ where each S_i is nonvoid and starshaped. As we have just remarked, for each i between 1 and k there exists a family $\mathcal{K}_i = \{K^i_\lambda\} \subset$ $\lambda \in L_i$ of convex components of S_i such that $\bigcup_{\lambda \in L_i} K_{\lambda}^i = S_i$ and $\bigcap_{\lambda \in L_i} K_{\lambda}^i = mir S_i$ that is not empty. Furthermore, $\forall i \forall \lambda$ there exists $\overline{\hat{K}}_{\lambda}^{i}$ convex component of S such that $K^i_\lambda \subset \widehat{K}^i_\lambda$. Hence, the family

$$
\widehat{\mathcal{K}} = \bigcup_{i=1}^k \{ \widehat{K}_{\lambda}^i \mid \lambda \in L_i \}
$$

is a covering family of convex components of S that is clearly k -bunched.

 $(2 \implies 1)$. Assume that F is a covering family of convex components of S such that $\mathcal{F} = \bigcup_{i=1}^{k} \mathcal{F}_i$ where each \mathcal{F}_i is a bunch. Hence, for each i between 1 and k the set $S_i = \bigcup_{i=1}^{k} \mathcal{F}_i$ is starshaped and $S = \bigcup_{i=1}^{k} S_i$. $\bigcup_{K \in \mathcal{F}_i} K$ is starshaped, and $S = \bigcup_{i=1}^k S_i$. $\sum_{i=1}^k S_i$.

It is important to remark that Theorem 3 is valid without any topological and/or dimensional restriction.

COROLLARY 4. *Let* S *be a compact subset of* **E**^d *. The following statements are equivalent:*

- 1. S *is expressible as union of precisely* k *starshaped sets.*
- 2. S *admits a covering family of convex components and a partition of this family into* k d*-Helly subfamilies.*

Proof. The well known theorem of Helly on intersections of convex sets imply that a family of compact convex subsets of E^d that is d-Helly is a bunch. Let us remark that the compactness of S can be dispensed if we ask that the family appearing in statement 2 be finite. \Box

4. Points having better visibility

Let $x \in S$ and $y \in S$. We say that x has *better visibility via* S than y if $st(y, S) \subset st(x, S)$. Let $M \subset S$, we say that p is an *S*-boss of M via S if p has better visibility via S than any point of M. A *platoon* is a subset P of S that admits an S-boss.

THEOREM 5. *Let* S *be a nonconvex hunk. If lnc* S *admits a partition into* k *platoons, then* S *is expressible as union of at most* k *starshaped sets.*

Vol. 79, 2004 Finite unions of starshaped sets 193

Proof. Assume that $\ln c S = \bigcup_{i=1}^{k} P_i$ where each set P_i admits an S-boss b_i . For each i between 1 and k denote $S_i = st(b_i, S)$. These sets are clearly starshaped. We claim that they cover S. Let x be a generic point of S. From a result of Valentine [9] there exists *y* ∈ *lnc S* such that *x* ∈ *st*(*y*, *S*). But according to the hypothesis there is an index *j* between 1 and *k* such that *y* ∈ *P_i*. Hence, *x* ∈ *st*(*y*, *S*) ⊂ *st*(*b_i*, *S*) = *S_i*. □ j between 1 and k such that $y \in P_j$. Hence, $x \in st(y, S) \subset st(b_j, S) = S_j$.

The converse implication is false, as the following counterexample shows.

Figure 1

EXAMPLE 6. The shaded set in Figure 1 can be easily partitioned into two starshaped sets but its set of local non-convexity points (the four inner corners) admits no partition into two platoons.

5. Clear visibility

We say that x sees clearly y via S if y admits a neighborhood \mathcal{U}_y such that x sees the whole $(U_y ∩ S)$ via S. We remark that, contrary to what happens with simple visibility, the relation of clear visibility is not symmetrical. The idea of *clear visibility* was introduced by N. Stavrakas [7] in 1972. If $M \subset S$ and $x \in S$, we say that x is an S *-gazebo of* M if x sees clearly via S every point of M. Let $M \subset S$, then we will denote $\mathcal{N}_M = M \cap \text{Inc } S$.

LEMMA 7. *Let* S *be a nonconvex, compact and connected set. Let* K *be a convex component of* S, and $x \in S$ an S-gazebo of \mathcal{N}_K . Then $x \in K$.

Proof. Assume that x is not in K and denote $J = J(x, K)$. Define Q as the boundary of K in the relative topology of J , i. e.

 $Q = \{t \in K \mid \forall \varepsilon > 0 \text{ it holds } U(p, \varepsilon) \cap K \neq \emptyset \text{ and } U(p, \varepsilon) \cap (\sim K) \neq \emptyset\}.$

For each $p \in \mathcal{N}_K$ denote U_p an open neighborhood of p such that $U_p \cap S$ is totally visible from x, and $C_p = J(x, U_p) \sim \{x\}$. Hence, each C_p is open and so is $C_K = \bigcup_{p \in \mathcal{N}_K} C_p$. 194 Fausto A. Toranzos and Ana Forte Cunto J. Geom.

This implies that $\widetilde{Q} = Q \sim C_K$ is compact and free from points of local nonconvexity of S. If we denote $F = (J \sim C_K) \cap Inc S$, this is another compact set disjoint from \tilde{Q} . Hence there exists $\delta > 0$ such that $B(\tilde{Q}, \delta) \cap F = \emptyset$. For each $q \in \tilde{Q}$ define $\hat{q} \in (q, x)$ such that $d(\hat{q}, \widetilde{Q}) = \delta$ and denote $Q_{\delta} = \bigcup_{q \in \widetilde{Q}} [q, \hat{q}]$. It is clear that $Q_{\delta} \subset B(\widetilde{Q}, \delta)$. We claim that $Q_{\delta} \subset S$. Let T be a generic connected component of \widetilde{Q} and denote $T_{\delta} = \bigcup_{q \in T} [q, \hat{q}]$. From the construction we know that T_δ is free from points of local nonconvexity of S. Moreover, Q_{δ} is the union of all such sets T_{δ} generated by its connected components. If all the points of T are S-visible from x, then $T_\delta \subset S$, clearly. Now assume that there are points of T not visible from x. In this case we claim that the interior of T (in the relative topology of Q) is not empty. Otherwise, every point of T would be a limit of points of $C_K \subset st(x, S)$ and, since this star is closed, it would hold $T \subset st(x, S)$, in contradiction with our assumption. Our claim implies that T_δ has nonempty interior. Since S^C is open, the set $T_\delta \cap S^C$ would include an open ball. Denote U the largest open ball such that $U \subset T_\delta \cap S^C$. Then, owing to the maximality of U , $\partial U \cap \partial S$ would not be empty and we would be able to pick $z \in \partial U \cap \partial S$ and (since $z \in lc$ S) a hyperplane H_z that locally separates U from S. Now pick $w \in S \cap cl$ T_δ and w "above" H_z , i.e. in the same side of H_z as U. For instance, if q is a point in the relative boundary of T, we can pick $w = \hat{q}$ defined as above and with the required property. It is clear that under these circumstances, z and w do not see each other via S. Define Λ as an arc of curve of minimal length included in T_δ and joining z with w. Since Λ is not a segment, it must include a point m of local nonconvexity of S. This is a contradiction since $m \in T_\delta \subset Q_\delta \subset B(\widetilde{Q}, \delta)$ that is free from points of local nonconvexity. Hence, $T_\delta \subset S$ and our claim is proved. Now let us define $\widehat{K} = J(x, K) \cap B(K, \delta)$. It is clear that \widehat{K} would be convex and would include K properly. But our previous construction would yield that $\widehat{K} \subset S$ and this statement contradicts the maximality of K as a convex subset of S . This contradiction originates at the assumption that x does not belong to K.

THEOREM 8. *Let* S *be a nonconvex, compact and connected set. Assume that* S *admits a covering family* $\mathcal F$ *of convex components and a set of precisely* k *points* $B =$ {b1; ^b2;...; bk} ⊂ ^S *such that* [∀]^K [∈] ^F [∃] bi [∈] ^B *that is an* ^S*-gazebo of* ^NK. *Then* ^S *can be partitioned into at most* k *starshaped subsets.*

Proof. For each index *i* from 1 to *k* denote

$$
S_i = \bigcup \{ K_{\lambda} \in \mathcal{F} \mid b_i \in K_{\lambda} \}
$$

Clearly, each of these sets is starshaped and they cover S .

The converse implication of this result is false. The counterexample is the same set of Figure 1. As we mention above, this set S is the union of two starshaped sets, and it admits a minimal covering by four convex components $\{K_1; K_2; K_3; K_4\}$, each of them

a rectangle. Nevertheless, it is impossible to find a pair $B = \{b_1; b_2\}$ of points that act as S-gazebos of \mathcal{N}_{K_i} for $i = 1, \ldots, 4$.

References

- [1] M. Breen, Clear visibility and unions of two starshaped sets in the plane, Pacific J. **115** (1984) 267–275.
- [2] M. Breen, A Krasnosel'skii-type theorem for unions of two starshaped sets in the plane, Pacific J. **120** (1985) 19–31.
- [3] M. Breen, and T. Zamfirescu, A characterization theorem for certain unions of two starshaped sets in R^2 , Geom. Dedicata **6** (1987) 95–103.
- [4] M. Breen, Characterizing compact unions of two starshaped sets in R^d , J. Geom. **35** (1989) 14–19.
- [5] M. Breen, Unions of three starshaped sets in R^2 , J. Geom, **36** (1989) 8–16.
- [6] C.F. Koch and J.M. Marr, A characterization of unions of two star-shaped sets, Proc. Amer. Math. Soc. **17** (1966) 1341–1343.
- [7] N.M. Stavrakas, The dimension of the convex kernel and points of local nonconvexity, Proc. Amer. Math. Soc. **34** (1972) 222–224.
- [8] F.A. Toranzos, Radial functions of convex and star-shaped bodies, Amer. Math. Monthly **74** (1967) 278–280.
- [9] F.A. Valentine, Local convexity and L_n sets, Proc. Amer. Math. Soc. **16** (1965) 197–202.

Fausto A. Toranzos and Ana Forte Cunto Departamento de Matematica ´ Universidad de Buenos Aires Pabellon 1 ´ Ciudad Universitaria 1428 Buenos Aires Argentina e-mail: fautor@sinectis.com.ar

Received 9 January 2001; revised 2 July 2001.

To access this journal online: http://www.birkhauser.ch