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Sets expressible as finite unions of starshaped sets
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Abstract. Several papers have appeared with descriptions of sets that are expressible as unions of 2 or 3 starshaped
sets. The general problem is relevant since it is closely related to the classical “Art Gallery Problem”. Some new
solutions, for generic values of the parameters, are presented here. These solutions are adaptations of known
characterizations of starshaped sets.
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1. The main problem

In the recent literature on Convexity and Combinatorial Geometry have appeared several
partial solutions of the following problem:

PROBLEM 1. Describe geometrical conditions that assure that a certain set S ⊂ Ed is
expressible as the union of k starshaped subsets.

This problem is a generalization of the classical “Art Gallery Problem” stated by Victor
Klee more than a score of years ago. The statement of the present problem depends on two
parameters, the dimension d of the space and the fixed number k of subsets. We remark that
the solutions already known are conceived for particular values of these parameters. For
instance, [6] gives a solution for k = 2 and arbitrary d . The same happens with [4]. On the
other hand, [1], [2] and [3] deal with the case d = 2 and k = 2. Finally, [5] gives a solution
for d = 2 and k = 3. Our aim in this paper is to provide solutions to the general problem,
where the parameters d and k are arbitrary fixed positive integers. These new solutions are
adaptations of known characterizations of starshaped sets.

2. Notations and first definitions

The environment space is a locally convex topological vector space E, that eventually
will be explicitly endowed of dimensional and/or topological properties. The Euclidean
d-dimensional space will be denoted Ed . Given two distinct points a and b of E, the
open segment determined by them is denoted (a, b) and the substitution of one or both
parenthesis by square brackets indicates the adjunction of the corresponding extremes. The
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ray (or halfline) issuing from a and going through b is R(a → b). The complement,
closure, interior, boundary, convex hull and affine hull of a set S will be denoted SC , cl S,
int S, ∂S, conv S, aff S, respectively. If S is a subset of E and a ∈ S, b ∈ S we say that
a sees b via S if [a, b] ⊂ S. It is clear that the relation of visibility is symmetric. If x ∈ S

we define the star of x in S as the set st(x, S) = {y ∈ S | x sees y via S}. A star point
of S is a point x ∈ S such that st(x, S) = S. The mirador of S is the set mir S of all star
points of S. Other words have been used in the literature to describe the mirador: kernel,
convex kernel, hub. We prefer the word “mirador” since “kernel” is used in Algebra and
in Real Analysis with different meanings. S is a convex set if mir S = S, or, equivalently,
if every point of S is a star point. S is starshaped if mir S �= ∅, i.e. if S admits at least
one star point. We say that a point p ∈ S is a point of local convexity of S if there exists
a neigborhood Up of p such that the set (Up ∩ S) is convex. Otherwise, we say that p is
a point of local nonconvexity of S. The set of all points of local convexity of S is denoted
lc S, and the set of all points of local nonconvexity is lnc S. It is clear that for each set S it
holds lnc S ⊂ ∂S.

We will denote
J (x, K) =

⋃
y∈K

[x, y]

If A and B are two sets, we denote

d(A, B) = inf {‖x − y‖ | x ∈ A, y ∈ B} and d(x, S) = d({x}, S)

Finally, we have
B(A, δ) = {y ∈ E | d(y, A) ≤ δ}

3. Convex components

A convex component K of the set S is a maximal convex subset of S. This idea has been
used fruitfully to describe the geometry of nonconvex sets. The name was coined in [8]
where it was proved the following theorem:

THEOREM 2. Let S be a nonconvex set and F = {Kλ | λ ∈ L} a covering family of convex
components of S. Then mir S = ⋂

λ∈L Kλ.

A bunch of sets is a family of sets F = {Mλ | λ ∈ L} such that
⋂

λ∈L Mλ is not empty.
We say that a family of sets is k-bunched if it is partitioned into precisely k subfamilies,
each of them a bunch. If d is a positive integer, we say that a family of sets F is d-Helly
if every subfamily of F having d + 1 (or less) members is a bunch. From Theorem 2 it
follows easily that a set S is starshaped if and only if it is the union of a bunched family of
convex sets.
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THEOREM 3. Let S be a nonvoid set. The following statements are equivalent:

1. S is expressible as the union of precisely k starshaped sets.
2. S admits a covering family of convex components that is k-bunched.

Proof. (1. 	⇒ 2.) Assume that S = ⋃k
i=1 Si where each Si is nonvoid and starshaped.

As we have just remarked, for each i between 1 and k there exists a family Ki = {Ki
λ ⊂

| λ ∈ Li} of convex components of Si such that
⋃

λ∈Li
Ki

λ = Si and
⋂

λ∈Li
Ki

λ = mir Si

that is not empty. Furthermore, ∀ i ∀ λ there exists K̂i
λ convex component of S such that

Ki
λ ⊂ K̂i

λ. Hence, the family

K̂ =
k⋃

i=1

{K̂i
λ | λ ∈ Li }

is a covering family of convex components of S that is clearly k-bunched.

(2. 	⇒ 1.) Assume that F is a covering family of convex components of S such that
F = ⋃k

i=1 Fi where each Fi is a bunch. Hence, for each i between 1 and k the set Si =⋃
K∈Fi

K is starshaped, and S = ⋃k
i=1 Si . �

It is important to remark that Theorem 3 is valid without any topological and/or dimensional
restriction.

COROLLARY 4. LetS be a compact subset of Ed . The following statements are equivalent:

1. S is expressible as union of precisely k starshaped sets.
2. S admits a covering family of convex components and a partition of this family into k

d-Helly subfamilies.

Proof. The well known theorem of Helly on intersections of convex sets imply that a
family of compact convex subsets of Ed that is d-Helly is a bunch. Let us remark that
the compactness of S can be dispensed if we ask that the family appearing in statement 2
be finite. �

4. Points having better visibility

Let x ∈ S and y ∈ S. We say that x has better visibility via S than y if st(y, S) ⊂ st(x, S).
Let M ⊂ S, we say that p is an S-boss of M via S if p has better visibility via S than any
point of M . A platoon is a subset P of S that admits an S-boss.

THEOREM 5. Let S be a nonconvex hunk. If lnc S admits a partition into k platoons, then
S is expressible as union of at most k starshaped sets.
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Proof. Assume that lnc S = ⋃k
i=1 Pi where each set Pi admits an S-boss bi . For each

i between 1 and k denote Si = st(bi, S). These sets are clearly starshaped. We claim
that they cover S. Let x be a generic point of S. From a result of Valentine [9] there
exists y ∈ lnc S such that x ∈ st(y, S). But according to the hypothesis there is an index
j between 1 and k such that y ∈ Pj . Hence, x ∈ st(y, S) ⊂ st(bj , S) = Sj . �

The converse implication is false, as the following counterexample shows.

Figure 1

EXAMPLE 6. The shaded set in Figure 1 can be easily partitioned into two starshaped sets
but its set of local non-convexity points (the four inner corners) admits no partition into two
platoons.

5. Clear visibility

We say that x sees clearly y via S if y admits a neighborhood Uy such that x sees the whole
(Uy ∩S) via S. We remark that, contrary to what happens with simple visibility, the relation
of clear visibility is not symmetrical. The idea of clear visibility was introduced by N.
Stavrakas [7] in 1972. If M ⊂ S and x ∈ S, we say that x is an S -gazebo of M if x sees
clearly via S every point of M . Let M ⊂ S, then we will denote NM = M ∩ lnc S.

LEMMA 7. Let S be a nonconvex, compact and connected set. Let K be a convex
component of S, and x ∈ S an S-gazebo of NK . Then x ∈ K .

Proof. Assume that x is not in K and denote J = J (x, K). Define Q as the boundary of
K in the relative topology of J , i. e.

Q = {t ∈ K | ∀ ε > 0 it holds U(p, ε) ∩ K �= ∅ and U(p, ε) ∩ (∼ K) �= ∅}.
For each p ∈ NK denote Up an open neighborhood of p such that Up ∩ S is totally visible
from x, and Cp = J (x, Up) ∼ {x}. Hence, each Cp is open and so is CK = ⋃

p∈NK
Cp.



194 Fausto A. Toranzos and Ana Forte Cunto J. Geom.

This implies that Q̃ = Q ∼ CK is compact and free from points of local nonconvexity of S.
If we denote F = (J ∼ CK) ∩ lnc S, this is another compact set disjoint from Q̃. Hence
there exists δ > 0 such that B(Q̃, δ) ∩ F = ∅. For each q ∈ Q̃ define q̂ ∈ (q, x) such that
d(q̂, Q̃) = δ and denote Qδ = ⋃

q∈Q̃ [q, q̂]. It is clear that Qδ ⊂ B(Q̃, δ). We claim that

Qδ ⊂ S. Let T be a generic connected component of Q̃ and denote Tδ = ⋃
q∈T [q, q̂].

From the construction we know that Tδ is free from points of local nonconvexity of S.
Moreover, Qδ is the union of all such sets Tδ generated by its connected components. If
all the points of T are S-visible from x, then Tδ ⊂ S, clearly. Now assume that there are
points of T not visible from x. In this case we claim that the interior of T (in the relative
topology of Q) is not empty. Otherwise, every point of T would be a limit of points of
CK ⊂ st(x, S) and, since this star is closed, it would hold T ⊂ st(x, S), in contradiction
with our assumption. Our claim implies that Tδ has nonempty interior. Since SC is open,
the set Tδ ∩ SC would include an open ball. Denote U the largest open ball such that
U ⊂ Tδ ∩ SC . Then, owing to the maximality of U , ∂U ∩ ∂S would not be empty and
we would be able to pick z ∈ ∂U ∩ ∂S and (since z ∈ lc S) a hyperplane Hz that locally
separates U from S. Now pick w ∈ S ∩ cl Tδ and w “above” Hz, i.e. in the same side of
Hz as U . For instance, if q is a point in the relative boundary of T , we can pick w = q̂

defined as above and with the required property. It is clear that under these circumstances,
z and w do not see each other via S. Define � as an arc of curve of minimal length included
in Tδ and joining z with w. Since � is not a segment, it must include a point m of local
nonconvexity of S. This is a contradiction since m ∈ Tδ ⊂ Qδ ⊂ B(Q̃, δ) that is free from
points of local nonconvexity. Hence, Tδ ⊂ S and our claim is proved. Now let us define
K̂ = J (x, K)∩B(K, δ). It is clear that K̂ would be convex and would include K properly.
But our previous construction would yield that K̂ ⊂ S and this statement contradicts the
maximality of K as a convex subset of S. This contradiction originates at the assumption
that x does not belong to K . �

THEOREM 8. Let S be a nonconvex, compact and connected set. Assume that S

admits a covering family F of convex components and a set of precisely k points B =
{b1; b2; . . . ; bk} ⊂ S such that ∀K ∈ F ∃ bi ∈ B that is an S-gazebo of NK. Then S can
be partitioned into at most k starshaped subsets.

Proof. For each index i from 1 to k denote

Si =
⋃

{Kλ ∈ F | bi ∈ Kλ}
Clearly, each of these sets is starshaped and they cover S. �

The converse implication of this result is false. The counterexample is the same set of
Figure 1. As we mention above, this set S is the union of two starshaped sets, and it
admits a minimal covering by four convex components {K1 ; K2 ; K3 ; K4}, each of them
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a rectangle. Nevertheless, it is impossible to find a pair B = {b1 ; b2} of points that act as
S-gazebos of NKi

for i = 1, . . . , 4.
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