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Abstract. We show that a smooth solution of the 3-D Euler equations in a bounded domain
breaks down, if and only if a certain norm of vorticity blows up at the same time. Here the norm
introduced by Yudovich, is weaker than L∞-norm and generates a Banach space including sin-
gularities of log log 1/|x|. Roughly speaking, when a smooth solution breaks down, the vorticity
has stronger singularities than log log 1/|x| or has infinite number of singularities.
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1. Introduction

In this note, we consider the Euler equations for ideal incompressible fluids in
a 3-dimensional bounded domain. Let Ω ⊂ R3 be a simply connected bounded
domain with smooth boundary ∂Ω: We study the break down condition for the
Euler equations in Ω:

(E)




∂tu + u · ∇u +∇p = 0, t ≥ 0, x ∈ Ω,

div u = 0, t ≥ 0, x ∈ Ω,

u · n = 0, t ≥ 0, x ∈ ∂Ω,

u(x, 0) = a(x),

where u = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote unknown velocity
vector field and pressure scalar of the fluid at the point (x, t) ∈ R3 × (0,∞), a =
(a1(x), a2(x), a3(x)) is a given initial velocity and n = n(x) = (n1(x), n2(x), n3(x))
is the unit outward normal at x ∈ ∂Ω.

It is proved by Kato–Lai [7] that for every a ∈ Hm(Ω) with div a = 0 where
m ≥ 3 is an integer, there exist T > 0 and a unique solution u of (E) on [0, T ) in
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the class

Cm(0, T ) = C([0, T );Hm(Ω)) ∩ C1([0, T );Hm−1(Ω)), (1.1)

where T is depending only on ‖a‖Hm(Ω) and m. In the celebrated paper [1], Beale–
Kato–Majda showed that the solution u breaks down at a finite time t = T if and
only if the maximum norm of vorticity rot u(t) blows up at t = T , when Ω is the
3-D entire space R3 (see also Kato–Ponce [8]). When Ω is a bounded domain,
Ferrari [6] and Shirota–Yanagisawa [13] proved an analogous result of break down
as in Beale–Kato–Majda [1]. Recently, these results were improved by Kozono–
Taniuchi [9] so that the blow-up phenomenon is controlled by the BMO-norm of
vorticity rot u(t) when Ω = RN . In [11], we observed a slightly improved condition
for the break down in case of Ω = RN (N ≥ 3).

In this note, we show that it is also possible to improve the result proved
by Ferrari and Shirota–Yanagisawa for 3-dimensional bounded domains. Namely
the condition on the vorticity for the break down is relaxed including logarithmic
singularities compared with the former condition of the boundedness of vorticity.
The main idea is based on the generalization of the critical Sobolev inequality of
logarithmic type which originated with Beale–Kato–Majda [1], Brezis–Gallouet [2]
and Brezis–Wainger [3]. This was developed by Taylor [14], Engler [5], Ozawa [12],
Yudovich [17], and Chemin [4]. See also [9], [10], and [11]. For uniqueness theorem
of weak solutions to the Euler equations, Yudovich [17] introduced some classes
((B)-spaces), which include log log(e + 1/|x|). We prove that the breakdown of
smooth solutions is controlled by the (B)-norm of vorticity. It is notable that
Vishik [15] showed the uniqueness and global existence of solutions to the Euler
equations in R2 with unbounded vorticity in spaces of Besov type, which include
log |x|, see also [16].

2. Preliminary and Main Results

In this section, we recall some function spaces following Yudovich [17].
Bα log α denotes the set of all functions f in

⋂
k=3,4,5,··· L

k(Ω) satisfying

‖f‖Bα log α
≡ sup

k=3,4,5,···

‖f‖Lk(Ω)

k log k
< ∞. (2.1)

Similarly Blog α, Blog α·log log α are introduced by

‖f‖Blog α
≡ sup

k=3,4,5,···

‖f‖Lk(Ω)

log k
< ∞,

‖f‖Blog α·log log α
≡ sup

k≥ee

‖f‖Lk(Ω)

log k · log log k
< ∞.

(2.2)

In a similar way, we may introduce the norm ‖f‖Blog α log2 α log3 α··· . It is worth to
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note that

log+ log+ 1
|x| ∈ Blog α, log+ 1

|x| · log+ log+ 1
|x| ∈ Bα log α,

(see [17]). Since Ω is a bounded domain, we see

‖f‖Bα log α
≤ C‖f‖Blog α

≤ C ′‖f‖L∞(Ω), L∞(Ω) ⊂ Blog α ⊂ Bα log α.

These norm induce Banach spaces and it holds that

‖f‖Bα log α
=̃ sup

p∈R+,p≥3

‖f‖Lp(Ω)

p log p
.

The following lemma obtained by a similar argument found in Engler [5] and
Ozawa [12].

Lemma 2.1. Let s > N/q, 1 < q < ∞ and let Ω ⊂ RN be a bounded, simply
connected domain with smooth boundary ∂Ω. Then there exists a constant C =
C(N, q, s) > 0 such that for all f ∈ Bα log α

‖f‖L∞(Ω) ≤ C(1+ ‖f‖Bα log α
log(e+ ‖f‖W s,q(Ω)) · log log(ee + ‖f‖W s,q(Ω))). (2.3)

Remark. We may also obtain a general version of the above type inequality:

‖f‖L∞(Ω) ≤ C(1 + ‖f‖BΦ(α)Φ(log(eM + ‖f‖W s,q(Ω)))), (2.4)

where Φ(α) ≥ 1 is a nondecreasing function on [M,∞) for some large integer M .
The proof of (2.4) is parallel to that of (2.3).

Thanks to Lemma 2.1, we have the following criterion:

Theorem 2.2. Let Ω be a bounded, simply connected domain with ∂Ω ∈ C∞ and
let u be a solution to the Euler equations in the class Cm(0, T ) for some integer
m ≥ 3. Assume that T is maximal, i.e., u cannot be continued to the solution in
the class Cm(0, T ′) for any T ′ > T . Then∫ T

0

‖rot u(τ)‖Blog α
dτ = ∞

holds. In particular, we have

lim sup
t↑T

‖rot u(t)‖Blog α
= ∞.

Remarks. (i) Ferrari [6] and Shirota–Yanagisawa [13] proved that∫ T

0

‖rot u(τ)‖L∞(Ω)dτ = ∞

under the same assumptions of Theorem 2.2. Since ‖rot u‖Blog α
≤ C‖rot u‖L∞(Ω),

Theorem 2.2 covers the result of Ferrari and Shirota–Yanagisawa if Ω is a simply
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connected bounded domain. We should notice that in [13], Shirota–Yanagisawa
dealt with more general domains.

(ii) Making use of (2.4) instead of (2.3), one can replace the consequence of
Theorem 2.2 with Blog α by BΦ(α), where

Φ(α) = log α · log log α · log log log α · · ·︸ ︷︷ ︸
finite times iterated

.

3. Proof of Lemma 2.1

In this section, we give the proof of Lemma 2.1, using the similar argument as in
Engler [5] and Ozawa [12].

Proof of Lemma 2.1. Since the boundary of Ω is smooth, it satisfies the interior
corn property. Namely there are δ > 0 and π/2 < θ < π depending only on Ω
with the following property: For any point x ∈ Ω, there exists a spherical sector
Cθ

δ (x) = {x + ξ ∈ Rn : 0 < |ξ| ≤ δ, −|ξ| ≤ κ(x) · ξ ≤ |ξ| cos θ} which has a
vertex at x and Cθ

δ (x) ⊂ Ω, where κ(x) is appropriate unit vector from x. We
note that for each x ∈ Ω, Cθ

δ (x) is congruent to Cθ
δ = {x + ξ ∈ Rn : 0 < |ξ| ≤

δ, −|ξ| ≤ ξn ≤ |ξ| cos θ}. In particular, for any boundary point x ∈ ∂Ω, Cθ
δ (x)

can be expressed as Cθ
δ (x) ≡ {x + ξ ∈ Ω; 0 < |ξ| ≤ δ, −|ξ| ≤ ξ · n(x) ≤ |ξ| cos θ},

where n(x) denotes the outer normal at x.
Now it suffices to prove (2.3) for the only case 0 < γ = s−N/q < 1.
For any fixed x ∈ Ω and y ∈ Cθ

δ (x) ⊂ Ω, we begin by Morrey’s inequality that

|f(x)− f(y)| ≤ C‖f‖W s,q(Ω)|x− y|γ . (3.1)

For |ξ| ≤ 1, 0 < ε < δ and x + εξ ∈ Cθ
δ (x), it follows from (3.1) that

|f(x)| ≤|f(x)− f(x + εξ)|+ |f(x + εξ)|
≤Cεγ‖f‖W s,q(Ω) + |f(x + εξ)|. (3.2)

Integrating both side of (3.2) with respect to ξ over S ≡ {ξ; |ξ| ≤ 1, x + εξ ∈
Cθ

δ (x)},

|f(x)||S| ≤ Cεγ‖f‖W s,q(Ω)|S|+
∫

ξ∈S

|f(x + εξ)|dξ

≤ Cεγ‖f‖W s,q(Ω)|S|+ |S|1−1/p

{∫
ξ∈S

|f(x + εξ)|pdξ

}1/p

≤ Cεγ‖f‖W s,q(Ω)|S|+ |S|1−1/p

{∫
M

|f(y)|pdy

}1/p

ε−N/p

≤ Cεγ‖f‖W s,q(Ω)|S|+ |S|1−1/p‖f‖Lp(M)ε
−N/p,

(3.3)
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where M ≡ Cθ
ε (x) ⊂ Ω ∩ {y; |y − x| < ε}. Since ‖f‖Lp(Ω) ≤ p log p · ‖f‖Bα log α

for
all p ≥ 3 and since |S| is only depending on θ and N , we have

|f(x)| ≤ C(εγ‖f‖W s,q(Ω) + ε−N/pp log p · ‖f‖Bα log α
) (3.4)

for all 0 < ε < δ and all p ≥ 3. Setting p = log 1
ε so that ε−N/p = eN (under

ε ≤ e−3), we have

|f(x)| ≤ C
(
εγ‖f‖W s,q(Ω) + log

1
ε
· log log

1
ε
· ‖f‖Bα log α

)
(3.5)

for all 0 < ε ≤ Min{δ, e−3} ≡ κ. Then we optimize ε by letting ε =
(1/‖f‖W s,q(Ω))1/γ if ‖f‖W s,q(Ω) ≥ κ−γ and letting ε = κ if ‖f‖W s,q(Ω) ≤ κ−γ

to obtain (2.3). ¤

4. Proof of Theorem 2.2

Proof of Theorem 2.2. According to Yudovich [17, Lemma 4.1], we have

‖∇u‖Bα log α
≤ C‖rot u‖Blog α

. (4.1)

It follows from Lemma 2.1 (2.3) and (4.1) that

‖∇u‖L∞(Ω) ≤ C(1+‖rot u‖Blog α
) log(e+‖u‖Hm(Ω))·log log(ee+‖u‖Hm(Ω)). (4.2)

(In Section 5, we shall give an alternative proof for (4.2).)
Taking a L2 inner product of (E) and u, we see

d

dt
‖u(t)‖2L2(Ω) = 0,

which implies
‖u(t)‖L2(Ω) ≤ ‖a‖L2(Ω) for all 0 < t < T. (4.3)

Since ‖u‖L∞(Ω) ≤ C(‖u‖L2(Ω) + ‖∇u‖L∞(Ω)), we obtain from (4.2) and (4.3) that

‖u(t)‖W 1,∞(Ω) ≤C(1 + ‖a‖L2(Ω))(1 + ‖rot u(t)‖Blog α
) log(e + ‖u(t)‖Hm(Ω))

× log log(ee + ‖u(t)‖Hm(Ω)).
(4.4)

On the other hand, it is known that the smooth solution of the Euler equations
satisfies that

‖u(t)‖2Hm(Ω) ≤ ‖a‖2Hm(Ω) + C

∫ t

0

‖u(τ)‖2Hm(Ω)‖u(τ)‖W 1,∞(Ω)dτ (4.5)

for all 0 < t < T (cf., Ferrari [6] and Shirota–Yanagisawa [13]). By Gronwall’s
inequality we have that

‖u(t)‖Hm(Ω) ≤ ‖a‖Hm(Ω) exp
(

C

∫ t

0

‖u(τ)‖W 1,∞(Ω)dτ

)
, (4.6)
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which yields

log(‖u(t)‖Hm(Ω) + ee) ≤ log(‖a‖Hm(Ω) + ee) + C

∫ t

0

‖u(τ)‖W 1,∞(Ω)dτ. (4.7)

Letting z(t) = log(‖u(t)‖Hm(Ω) + ee) and using (4.4), we have

z(t) ≤ z(0) + CT + C

∫ t

0

(1 + ‖rot u(τ)‖Blog α
)z(τ) log z(τ)dτ. (4.8)

Again by applying Gronwall’s inequality, we obtain

z(t) ≤ (z(0) + CT ) exp
(

C

∫ t

0

(1 + ‖rot u(τ)‖Blog α
) log z(τ)dτ

)
. (4.9)

Repeating this procedure once more, we get

log log(‖u(t)‖Hm(Ω) + ee) ≤ log(z(0) + CT ) exp
(

C

∫ t

0

(1 + ‖rot u(τ)‖Blog α
)dτ

)
,

for all t ∈ (0, T ), which competes the proof of Theorem 2.2. ¤

5. Another proof of (4.2)

Here we give another proof of (4.2), without using (4.1). Ferrari [6] and Shirota–
Yanagisawa [13] proved the following inequality:

‖∇u‖L∞(Ω) ≤ C(1 + ‖rot u‖L∞(Ω) log(e + ‖u‖H3(Ω))). (5.1)

On the other hand, by (2.4) with Φ(α) = log α and M = e we have

‖rot u‖L∞(Ω) ≤ C(1 + ‖rot u‖Blog α
log log(ee + ‖u‖H3(Ω))). (5.2)

The combination of (5.2) with (5.1) yields

‖∇u‖L∞(Ω) ≤ C(1+‖rot u‖Blog α
) log(e+‖u‖H3(Ω)) · log log(ee +‖u‖H3(Ω)). (5.3)

Then we get the desired estimate (4.2).
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