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Abstract. In this paper we study the strong solvability of the Navier—Stokes equations for rough
initial data. We prove that there exists essentially only one maximal strong solution and that
various concepts of generalized solutions coincide. We also apply our results to Leray—Hopf weak
solutions to get improvements over some known uniqueness and smoothness theorems. We deal
with rather general domains including, in particular, those having compact boundaries.
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0. Introduction

Throughout this paper m > 2 and either @ = R™ or € is a subdomain of R™ with
a smooth boundary 9€2. We consider the nonstationary Navier—Stokes equations

V-v=0 in Q,
ov+ (v-Vv—vAv=-Vp+ f in Q, 0.1)
v=20 on 0},
v(-,0) =° in Q,

describing the motion of a viscous incompressible Newtonian fluid with a non-
slip boundary condition (if m = 2 or m = 3, of course). Here f: Q x Rt — R™
is a given outer force field, v° : © — R™ is the prescribed initial velocity, and
v: QxR —-R™ and p: Q@ x Rt — R are the unknown velocity and pressure
field, respectively. Moreover, v is a given positive constant, the kinematic viscosity,
and the (constant) density has been normalized to 1.

Assuming that Q admits Helmholtz decompositions of L, := L4(£2, R™) for each
q € (1,00) we denote by P the projector onto the solenoidal vector fields. (We refer
to the main body of this paper for precise assumptions and definitions of all the
(more or less standard) concepts and function spaces of which we make free use
in this introduction.) Then we eliminate the pressure field p by applying P to the
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second equation of (0.1) and arrive at the reduced Navier—Stokes system

V-v=0 in §,
v+ Plv-V)v —vPAv=Pf in €, 02)
v=20 on 0f), )
v(-,0) = 2° in Q.

By a solution (in any sense) of the Navier—Stokes equations, that is, of system (0.1),
we mean a velocity field v satisfying (0.2). This is justified since any such solution v
determines the pressure field p up to an inessential constant (if v is regular enough).

In this paper we are mainly interested in strong solutions (in a sense made
precise below) for rough initial data, that is, if v belongs to an appropriately
wide class of functions.

In order to describe our main results and to compare them with the work of
other authors we restrict ourselves in this introduction to the case

m>3, f=0 (0.3)

(more precisely, to the case where f is a conservative force field so that Pf = 0).
The general situation is dealt with in the following sections.
First we consider the simplest case:

Q=R"™ (0.4)
Then (0.2) reduces to the system
V.-v=0,
Opw —vAv = —P(v-V)v, (0.5)
v(-,0) = °

in R™ since P commutes with the Laplace operator. This case has been widely
studied and there is an enormous amount of literature on this subject.

The first result on the solvability of (0.5), when v° belongs to L, is due to
Fabes, Jones, and Riviere [18]. These authors show that the Navier-Stokes equa-
tions possess a unique local solution v in the class L,,((O, T), LS) with ¢, r, and s
satisfying s > m and

m/q<2/r+m/s <1, (0.6)

provided v° € L, , := PL,. By a solution in LT((O,T),LS) they mean a very
weak solution in Lr((O,T),Ls,U), that is, a function v € LT((O,T),LS,U) satis-
fying
T
| 1@+ v)p.0) + (9008 0} dt = ~(e(0).0°) (0.7)

forall o € D([0,T),D,), where Dy := { ¢ € D:=D(Q,R™) ; V-9 =0}and (-, )
denotes the usual Ls-duality pairing (cf. Remark 7.1(a)). It is also shown in [18]
that T = oo, provided v° is sufficiently small in L, N L.
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If v° € L, , with ¢ > m then the existence of a unique very weak local solu-
tion v, being a weakly continuous function from [0,T) into L, ., has also been
shown, by different techniques, by Beirdo da Veiga [6]. Furthermore,

v € C([0,T),Lay N Lgo) NLa((0,T), Hy N Lyo) (0.8)

if v° € Lo, N Ly,». In addition, Beirdo da Veiga gives an estimate for the maximal
existence time (depending on [|v°[|,) and proves that the solution exists globally,
that is, for all time, if the norm of v° in Ly N L, is sufficiently small.

More recently, C.P. Calderdn (see [10], [11], [12]) obtained the existence of very
weak local solutions of (0.1) for ¢ = m also.

The case ¢ = m is critical since then the nonlinear term P(v - V)v has the ‘same
strength’ as the Laplace operator, that is, P(v - V)v is not subordinate to —Aw.
Thus one cannot take advantage of the regularizing effect of the heat semigroup
which is the basis of practically all known existence proofs. The criticality of L,
is also manifest in the scaling invariance || Au(A-)||L,, = ||u|lz,, for A > 0 (see [13]
for a detailed exposition of ‘critical spaces’ for Navier—Stokes equations).

The critical case ¢ = m has first been treated by Kato [45]. He showed, by using
some ideas developed earlier, jointly with Fujita ([23], [46]), that, given v° € L, ,
there exist T > 0 and a unique solution v of (0.1) in the class

C([O, T], Lm’g‘) N C(l_m/q)/g((o, T], Lq)o’), m < q < oQ. (09)
Here, given any Banach space E, any u € R, and any subinterval J of Rt con-
taining 0 such that J:= J\{0} # 0, we denote by C,(J,E) the Banach space
consisting of all v € C(J, E) such that (t — tru(t)) € BC(J,E) and t'u(t) — 0
as t — 0, equipped with the obvious norm.
A solution on [0,7] is in this case a function v in (0.9) satisfying

t
v(t) = e 50 —l—/ e~ =8y (v, v)(7) dr, 0<t<T, (0.10)

0
where S is the Stokes operator —vPA (hence S = —vA in the case under consid-

eration) and
b(u,v) == —P(u-V)v=—PV - (u®v)

on solenoidal vector fields. (In fact, this is a simplified version of Kato’s result (see
[13] and [85]), since in [45] class (0.9) is more restricted.) In [45] it is also shown
that v is global if |[0°||r,, is sufficiently small.

The case m = 3 has recently been extensively studied by Cannone and Mey-
er [15] and Cannone [13]. Motivated by a wavelet approach of Federbush [21],
in [15] there is proven an abstract local existence and uniqueness theorem for mild
solutions of (0.1). By a mild solution (in F) of (0.1) on J we mean a function
v € C(J, E) satisfying (0.10) on J, where E is a Banach space of distributions
on which the Stokes semigroup {e™*%; t >0} is strongly continuous and the
integral in (0.10) is well-defined. By means of Littlewood—Paley decompositions,
that is, techniques from harmonic analysis, these authors introduce the concept
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of a Banach space ‘well-suited for the Navier—Stokes equations’. Then they show
that their local existence and uniqueness result holds whenever F is well-suited.
In particular, in [15] (also see [13]) it is shown that L, is well-suited if ¢ > m = 3.
In the same paper it is also shown that the Sobolev spaces HS := Hj(Q,R™) are
well-suited for the Navier—Stokes equations if s > 1/2 (and, of course, m = 3 and
Q =R?). Thus, if m = 3, there exists for each s > 1/2 and each

vWeHs,,={ueH;; V-u=0}
a unique mild solution
vE C([OvT)v HQS,O,U)

of the Navier—Stokes equations. (The reason for the index 0 in HS , . will become
clear in (0.17).) Moreover, the existence time T depends on HU(SHIHg only. This
extends an earlier result of Kato [44] who had to suppose that s > 5/2.

The more general case where 1 belongs to a Bessel potential space

H = H3(Q,R™)

has been investigated by Kato and Ponce [47] for 1 < ¢ < oo and s > 1+ m/q if
m = 3, and, by different techniques, by Ribaud [66]. The last author assumes that

l<g<oo, —l4+m/g<s<(m/q)AN(1+m/q)/2
and
veEH ,={u€H;; V-u=0}.
Then he proves that (0.1) possesses a local mild solution
veC([0,T),H; ) (0.11)

It is unique if
s>m(l/q—1/2)4. (0.12)

Otherwise, it is the unique solution in L,,((O, ), qu), where
2/r+m/2q < 1. (0.13)

Moreover, u is smooth for ¢ > 0. This result generalizes, in particular, the one
of Kato and Ponce. (In [66] the case of certain parabolic equations is considered
as well, as is being done in many other works. Since here we are interested in
the Navier—Stokes equations we do not comment on those results.) Note that
Hj, , contains non-regular tempered distributions if s < 0, which is possible if
q>m.

The situation described so far is not very satisfactory. Indeed, uniqueness is al-
ways, except in Ribaud’s result (0.11), (0.12), proven under additional restrictions
(eg., (0.6) or (0.9)) which are artificial as far as the natural concepts of solutions
are concerned. Uniqueness is only guaranteed if specific classes of functions are
specified a priori, and there is no relation between the different uniqueness the-
orems. This amounts to the fact that ‘each author has his own solutions’ and,
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indeed, as many solutions as he can specify uniqueness classes. (We recall that in
the introduction to Chapter VI of her book [55] Ladyzenskaya already points out
the fact that there are infinitely many ‘generalized solutions’ due to the possible
choices of the underlying function spaces.) It is one of the purposes of this paper
to rectify this unpleasant situation.

In order to formulate our main results we introduce suitable subspaces of par-
ticular Besov spaces as follows: if 0 < |s| < 2 we set

nz := closure of H; in B

S
q,007

denoting by B; . := B; .(£2,R™) Besov spaces. Since
01— Hy — By l<g<oo, seR,

q,007

the ‘little Nikol’skii spaces’ ny are well-defined. We also set

Ngoo ={u€ng; V-u=0}, l<g<oo, 0<]s|<2,
(if @ =R™), and n) o , := Lg,o-

Now we can formulate a preliminary version of our main existence and unique-
ness result. It is implied by Theorem 6.1 and Proposition 6.5.

Proposition 0.1. Suppose that m < g <r < oo and

—14+m/q

0
v nq,O,a

Then there exists a unique mazimal solution v :=v(-,v°) of the Navier-Stokes
equations such that

veC((0,t%),Hy,) NCH(0,t1), L) (0.14)
and
. 0 —14m/
%1_1)% v(t) =0 inngg "
as well as

tlir%t(lfm/q)/%(t) =0 in L.

Observe that, a priori, Proposition 0.1 guarantees for each r > ¢ a unique maxi-
mal solution v, on the maximal interval of existence [0, ¢;"). Since the spaces (0.14)
are not comparable for different values of r it is conceivable that v, # v, if r # s.
In Proposition 6.5 it is shown that vs D v, if s > . This means, in particular, that
t;F <t for r < s. Thus, although the solution v, ceases to exist in class (0.14)
at ¢, if £ < 0o, it can be continued to the possibly larger interval [0,¢F) in the
class which is obtained by replacing H?, and L, , in (0.14) by HZ, and L 5, re-
spectively. Thus we should obtain a unique maximal solution v, independently of
r > q, by letting r — oo. To give a precise formulation we need some preparation.
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Suppose that {FE, ; ap < a < oo} is a family of Banach spaces such that
E,— Egifa < 3. Then|J E,, := Ua>a0 E,, is a vector space with the obvious def-
inition of its linear structure. There exists a finest locally convex topology on |J E
such that each one of the natural inclusions

Eg—>UEa, T T

is continuous. The space | J E,, endowed with this topology, is said to be the direct
limit of the family { F,, ; a > g } and denoted by

lim E, or @Ea.
«

Clearly, Eg — limFE, for 8 > ag (cf. [17, Appendix Two], [42, Section 2, § 12]).

In Section 3 it is shown that

-1 -1
nr,oj;m/r — ns70;m/s, m/3<r<s<oo.
Thus the direct limit
_ BT —14+m/r
noo,O,a T th”r,o,a
i

is well-defined, and

—14+m/r -1

0.0 = Ng 0.0 m/3 < r < oo.

Now suppose that v € C([0,t"), th E,) for some ¢* € (0, oo]. Then we say that
u is well-adapted to lim F,, if there exist a; > ag and, for each o > «, a number
tr € (0,tT] such that
th =sup{te[0,t%); u(r) € Eo, 0< 7 <t}
and
ul0,tf) € C([0,t)), Ea).

Note that ¢t} < t; if @ < 8. We call ¢t} time of maximal existence of u in E,.
We say that v is a maximal strong solution of the Navier—Stokes equations
if there exists a maximal t* € (0, 0o], the maximal existence time, such that

veC([0,th),nly ).

) 1%00,0,0

v is well-adapted to ngol’o’a,

v e C((0,65), H?

r,0,0

)NCH((0,1), Lys)

for each sufficiently large r > m with ¢} being the maximal existence time of v

in n;é;m/r, and v satisfies (0.2).

If ¢ > m/3 then v is said to be a strong g-solution on J if
ve C(ng o™ NCWJ, HE o) N1 CH(J, Lyo)

1 '%q,0,0



22 H. Amann JMFM

and v satisfies (0.2). If 0 € ng o™ and v is a strong g-solution on J then it is

q,0,0
. . . -1 .
a strong r-solution on J for each r > ¢. In particular, if v° € n, Otm/q and v is a

maximal strong solution then v is a strong r-solution on [0, ¢;) for each r >q.
After these preparations we can formulate a simplified version of our main
existence and uniqueness theorems for strong solutions of (0.1).

Theorem 0.2. Suppose that m/3 < q < oo and v° € H;é;m/q,

(i) There exists a unique mazimal strong solution v := v(-,v°) of the Navier—
Stokes equations satisfying

: — 0 —14+m/q
}E%U(t) v in H,

and, if ¢ > m,

}ir% tA=m/D/2y(t) =0 in L.

It is smooth for t > 0, that is,
v e C™®(Qx(0,t1),R™),
where t+ := tT (1Y) is the mazimal existence time of v.
(i) 1f
VW EeF , €{H 05 B 00 M50 1<Tr <00}
for some s € ((—1+m/q)4,2] then
PL% v(t) =1 in Floo
(iii) If ¢ > m then
ve L ((0,T),Ls), 0<T<t),

for all r € [2,00] and s € [m,00) satisfying 2/r +m/s =m/q.
(iv) Given T > 0, there exists R > 0 such that

tt") >T  for ||v0||n;(1)+am/q <R

Proof. This is a consequence of Theorem 11.1, Corollary 11.2, and Remarks 9.5(a)
and 11.3(e). O

Of course,

s
q,7,0,0

(if @ =R™). Also note that

={ueB,; V-u=0}

q,r

S N H*1+m/q

q,0,0 q,0,0 ’ s> -1+ m/q- (0.15)
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Next we show that all solutions described above coincide on their intervals of
existence with the strong solution v(-,v%). This will be entailed by Theorem 0.2
and the following result.

Theorem 0.3. Suppose that ¢ > m and v° € L, .
(a) The following are equivalent:
(i) w is a very weak solution in C([0,T), Lq,s).
(i) w s a mild solution in Lq ., on [0,T).
(iii) w is a strong q-solution in C([O,T),Lqﬁ).
(b) v(-,0°) is a mild solution in Lq s on [0,t]).

Proof. (a) follows from Theorems 6.1 and 7.2 (also see Remark 5.7(a)), and (b) is
implied by (a) and Theorem 7.2. O

A result related to parts (i) and (ii) of this theorem has also been shown by
Fabes, Jones, and Riviére [18] using crucially the fact that the Stokes semigroup
as well as the Helmholtz projector possess rather explicit representations on R™.

Now it is easy to derive the desired uniqueness result guaranteeing that all
solutions described up to now coincide on their respective intervals of existence if
their initial values coincide.

Theorem 0.4. Suppose that ¢ > m/3. Then v(-,v°) D v whenever v is one of the
solutions described above and v° = v(0).

Proof. (i) Suppose that ¢ > m and v° € L, ,. It follows from Theorem 0.2(iii),
Holder’s inequality (see the proof of Remark 9.5(b)), and Theorem 0.3 that v(-, v°)
is a very weak solution in L, ((0, ), LS) for0 < T < t(‘;, where r and s satisfy (0.6).
Since the Fabes, Jones, and Riviere solution v is the only one in this class it follows
that v(-,v°) D v. The same argument applies to Calderén’s solution if ¢ = m.

(i) If ¢ > m then v(-,0°) is continuous from [0,¢F) into Ly .. Hence it is con-
tinuous from [0, t(‘;) into the weak topology of Ly ,. Theorem 0.3 guarantees that
v(-,1°) is a very weak solution on [0, ;). Since the solution v constructed by Beirdo
da Veiga is the only very weak solution in this class we infer that v(-,v%) D v.

(iii) Let v° € H , with s > (=1 +m/q)+. Then v € Ly 5 if ¢ > m, and Theo-
rem 3.10 guarantees that v° € Ly, , if ¢ < m. Thus v(-,2°) € C([O, t;), LQVm) and
is the only mild solution in this class by Theorem 0.2(i) and Theorem 0.3. Hence,
if v is any one of the solutions obtained by Kato [44], [45], Kato and Ponce [47],
Ribaud [66], Cannone and Meyer [15], and Cannone [13], it follows from

HS o, H(*1+m/11)+ N

q,0,0 q,0,0 qVm,o

and the continuity of v as a map into H  , that v(-,v°) D v. O
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The following remark implies that, in a suitable sense, v(-,v°) is also indepen-
dent of q.

Remark 0.5. Let the hypotheses of Theorem 0.2 be satisfied and fix any p > q.
Then
H—1+m/q N H—1+m/p

q,0,0 p,0,0

by Theorem 3.10. Hence we obtain unique maximal strong solutions v, (-, v°) and

vp(+,v?) if we apply Theorem 0.2 to v° € H;é:;m/q or to v0 € H;é;m/p, respec-
tively. However, v, (-,v°) C v,(-,v°).
Proof. This follows from Proposition 6.5. |

The following theorem, combined with (0.15), shows that v(-,2°) blows up
near ¢ in each norm which is stronger than the Hq_1+m/q—norm if v(-,v°) does

not exist globally. In addition, it contains an estimate for the blow-up rate.

Theorem 0.6. Suppose that m/3 < q < oo and V" € H;é:;m/q. Put v :=v(-,2°).
(i) If t* < oo then
i ot = o

for every r > m with r > q and every s > —1+m/r.
(ii) Suppose that r > m with r > q and —1+m/r < s <0. Then

o)z, =/ =)0 <t — <,

0,0

where ¢ > 0 is independent of v°.
Proof. This follows from Remarks 11.3(a) and (b). O

Now we turn to the much more complicated case €2 # R™. For simplicity, we
assume, in addition to (0.3), that
either € has a compact boundary

0.16
or § is a half-space in R™. ( )

Many of the results described below hold for more general domains. For this we
refer to the main body of this paper.

First we have to give a meaning to H; , , := Hj (€, R™) in this case. We set
70,0 {ueH, ; V.u=0, u-7=0}, 0<s<1/q,

where 7 is the outer unit-normal field on 99Q. Of course, u - 77 and u|9< are to be
understood in the sense of traces (see Sections 2 and 3). It follows that

0 —
Hq,O,a - L(I»U'
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We also put

H;,/(fa ={ue H;/Q(Rm,Rm) ; supp(u) CQ, V-u=0, u-7=0}. (0.18)

Of particular interest is the case ¢ = 2 where Remark 2.5(a) implies
Hyyy ={ueHy*; V ou=0u-ii=0, d?ue Ly}

with d(z) := 1 A dist(z, Q) for x € Q, and where H21,/027a is given the norm

_ 1/2
u— (IIUIIZZ;/z + [l dPull7,)

Similarly, we define By, ; ,, 1 <r < oo, and ny ( , for 0 < s < 2 by replacing H;
in (0.17) and (0.18) by By ,. and nj, respectively.

q,r
Next we set

.PIi'5 = (H(}S',O,U)/’ 0<s S 2,

q,0,0

by means of the L, ,-duality pairing, where ¢’ := ¢/(¢ — 1) is the dual exponent
of g € (1,00). Due to the presence of a nonempty boundary these ‘negative’ spaces
do not allow an easy characterization similar to the one for the case Q = R™.
In fact, it follows from Proposition 2.4 and Theorem 3.5 that in the presently
most interesting case where s <1, the elements of H, g , can be identified with
equivalence classes of distributions in H_°, where two distributions in H * are
equivalent if they differ by the gradient of an appropriately smooth function only.
For a useful characterization of the distributions belonging to H, * for 0 < s <1
we refer to Theorem 2.1.

We also put
Blios=By,0,), 1<r<oo, 0<s<2,
by means of the Ly ,-duality pairing, and
n;‘aa := closure of L, , in B;;OW 0<s<2,

(see Sections 2 and 3 for more details).

Lastly, we have to redefine the concept of a very weak solution by taking into
account the presence of the boundary. For simplicity, we restrict ourselves here to
the case ¢ > m. Then a very weak g-solution on J of (0.1) (with f=0) is a
function v € C(J, Ly,») satisfying (0.7) for all

v € L1(J, H(?’,O,o’) n Wll(Ja Ly o)
having compact support in J* := J\sup(J). (In Remark 7.1(c) it is shown that
this definition coincides with the earlier one if Q@ =R™.)

With these definitions Proposition 0.1 remains true if assumption (0.4) is re-
placed by (0.16). Hence the concept of a maximal strong solution of the Navier—
Stokes equations is well-defined in this case also.

Theorem 0.7. Let condition (0.16) be satisfied. Then Theorems 0.2, 0.3, 0.6, and
Remark 0.5 are true.
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Proof. This follows from the fact that all theorems from the main body of this
paper, referred to so far, are also valid if (0.16) is satisfied. g

In the remainder, €2 is said to be a standard domain if either 2 = R™ or
Q satisfies (0.16).

The most important concept of a solution in the theory of the Navier—Stokes
equations is probably the one of a weak solution. If v € La , then

U € Loo(J, L2,s) N La(J, Hy)
is a weak solution on J of (0.1) (with f = 0), provided

/J{—(gb,u) + (Ve Vu) + (o, (u- V)u)} dt = (¢(0),u°)

for all ¢ € D(J*, D). It is a global weak solution if it is a weak solution on [0, 7]
for every T > 0. As is well-known, thanks to Leray [57] and Hopf [41], there ex-
ists for each v° € Ly, at least one global weak solution v satisfying the energy
inequality

t
lv(®)1Z, + 21//0 IVo(r)l, dr < |1°lIZ,,  t>0, (0.19)

a Leray—Hopf weak solution. Uniqueness and smoothness are open problems.
(We refer to the surveys by Galdi [27] and Wiegner [85] for more details, as well
as to [27], Lions [58], and Temam [75] for (modernized versions of) the existence
proofs.)

The following theorem guarantees uniqueness and smoothness on the maximal
existence interval of the strong solution v(-,v°).

Theorem 0.8. Suppose that Q is a standard domain and v° € Ly s N Ly, for
some q > m. Then
(i) v :=v(-,vY) is a weak solution on [0,T] for every T € (0,tT). It belongs to
C([O,t+),L2) and satisfies the strong energy equality

t
lv(®11Z, + 21// IVo(n)lL, dr =llv(s)Z,, 0<s<t<tl

(ii) If u is any Leray—Hopf weak solution then u D v(-,v°). In particular, u is
smooth on (0,tT).

Proof. (i) follows from Remarks 10.2(a) and 11.3(d), and (ii) is a special case of
Theorem 11.4. O

Given the postulated hypotheses, Theorem 0.8 guarantees local uniqueness and
smoothness for Leray—Hopf weak solutions without further restrictions. In partic-
ular, if v(-,v°) exists globally then there is a unique Leray—Hopf weak solution and
it is smooth for ¢ > 0. This is in contrast to the known uniqueness theorems of
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Foias [22], Prodi [64], Serrin [68], Fabes, Jones, and Riviere [18], Masuda [60], Sohr
and von Wahl [73], von Wahl [80], Kozono and Sohr [51] which are conditional in
the sense that they require the solution to belong to more restricted classes.

It is well-known that Leray-Hopf weak solutions with appropriately regular
initial values are smooth as long as there exist strong solutions with the same initial
values (e.g., [31], [45] and others; see the surveys by Galdi [27] and Wiegner [85]).
The new fact is the (unconditional) uniqueness assertion.

The first local regularity results for weak solutions of the Navier—Stokes equa-
tions are due to Kiselev and Ladyzenskaya [48] (also see the exposition in [55]
and related work of Sobolevskii [70], [71]). This research has been considerably
improved by Solonnikov [74] who, by means of potential theoretic estimates, es-
tablished the local existence of strong g-solutions in Sobolev and Hélder spaces
under the assumption that m = 3 and € has a compact boundary, provided v° is
sufficiently regular. Using those results which, by the way, are optimal as far as
regularity in the classes under consideration goes, Solonnikov could also prove
existence, but not uniqueness, of a local solution for v° € L ,.

Temporarily, we now suppose that

€ is bounded.

Given this assumption, Sobolevskii and, independently, Kato and Fujita [23], [46]
were the first to employ semigroup theory and, in particular, the technique of
fractional powers in the study of the Navier—Stokes equations. In [23], improving
the results of [46], it is shown that, if m =3 and v° € H217/02,U, there exist 7' >0
and a unique strong 2-solution v in C' ([O, T, LQ,O-) satisfying

s L1/4 _
tim 214 o(t)]] 1y = 0.

Extending the Kato-Fujita approach from the Hilbert to a Banach space setting,
Miyakawa [61] assumed that ¢ > m and v° € L,, and proved the existence of
T > 0 and of a unique mild solution v in

C([0,T], Lg,s) N Cyy2((0,T), HY )

for some s € (1,3/2). Miyakawa also showed that v is a weak solution on [0, 7]
satisfying the energy inequality.

Semigroup theory and fractional powers have also been used by v. Wahl [80] to
get local strong solutions. He assumes that v° € L, , with ¢ > m and establishes
the existence of r € (0,1) and of a unique maximal mild solution v of (0.1) in

C([0,t5), Lgo) NCyya((0,85), HY ).

In addition, v. Wahl proves higher regularity results and studies also the case
m/3 < q<m with o* € HZ .

Those results have been considerably improved by Giga and Miyakawa [32]:
suppose that

g>m/3, —14+m/q<s<2, " €H,,.
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Then, given any 7 € (s,2 A (2+s)), in [32] it is shown that there exists a mild
solution

v e C([0,T),H o.5) NClres)2(0,T), Hy o 5)- (0.20)

q q

Moreover, any mild solution satisfying (0.20) for some 7 > |s| is unique. In [32] it
is also shown that v is smooth for ¢ > 0.

The results of Giga and Miyakawa also extend earlier results of Weissler [82].
Similar results involving other restrictions on r are contained in Grubb [37] who,
however, treats other boundary conditions also.

Remarks 0.9. (a) In none of the papers of Kato and Fujita [23], [46], Miyaka-
wa [61], v. Wahl [80], and Giga and Miyakawa [32] do the spaces H, , occur
explicitly. Indeed, all results in those works are formulated in terms of fractional
powers of the Stokes operator S, on L, , (as is the case in many other papers).
However, it follows from a result of Giga [30] on the boundedness of the imaginary

powers of S, that
D(SY) = (Lo, H2 o o,  0<0<1,

where [-,-],, 0 <6 <1, are the complex interpolation functors. Using this,
[Lg,0 qu,o,a]e = qu,%ﬁ, 0<b<1,

(see Theorem 2.2) and Theorem 3.4, we obtain the statements given above.

(b) In all of the above work it is also shown that the respective solutions are global
if 10 is sufficiently small in the respective norm. Furthermore, a non-vanishing
force f is admitted too. O

Kobayashi and Muramatu [49] have presented a variant of the work of Giga and
Miyakawa by introducing a class of abstract Besov spaces constructed by means
of fractional powers of the Stokes operator. Their results amount essentially to
replacing H; , , by n; ; ,, although this is shown nowhere. In particular, in [49]
there is given no concrete characterization of these abstract Besov spaces.

Giga [31] and, more recently, Wiegner [85] present existence proofs using Kato’s
ideas [45]. (Also see the work of Weissler [81], [82], [83].) This approach is not based
on fractional powers but on L,-L,-estimates for the Stokes semigroup (cf. [85], for
example, for definitions). The required L,-Lg-estimates are known to hold if €2 is
a standard domain (e.g., see [45] if @ = R™, [7] and [78] if Q is a half-space, [31] if
Q is bounded, and [43] if © is an exterior domain). Thus we assume that

) is a standard domain.

Then Giga’s [31] results imply that, given v° € L, , with ¢ > m, there exist T' > 0
and a unique mild solution v in

C([0,T), Lg,s) N C1,-((0,T], Ls,s) N Ly-((0,T), Ly, o)
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where 7, s € (q,00) satisfy 2/r +m/s = m/q. If v° is sufficiently small in L,, then
T =o0.If ue C([0,t*),L,,) is a maximal mild solution for some r > m then

lu(®)lL, = ¢/ (t; =)=/, (0.21)

Furthermore, if v € Ly, N Ly, then v is a weak solution satisfying the energy
inequality. (To be more precise: assumption (A) in [31] is covered by the L,-L,-
estimates. For condition (NI) one has to invoke Theorem 4.2 of this paper.)

Suppose that v° € L,, ,. Then Wiegner’s [85] theorem implies the existence of
a unique maximal mild solution v € C([0,},), Lm,) satisfying

sup Y2 ||Vo()],, + sup 17O u()] < oo
o<t<T o<t<T

for 0 < T < t}, and s > m. Moreover,
ve L ((0,T),Ls), 0<T<th,

provided s >m and 2/r + s/m = 1. Finally, t* = oo if v° is sufficiently small
in L,,.

Kozono and Nakao [50] assume that m > 4 and either Q = R™, a half-space, or
an exterior domain, and that v° € Lp,o N Ly » with 7 > m. Then they prove the ex-
istence of a unique local strong m-solution v. They also show that v € C ([O, T}, LT)
and establish estimate (0.21).

Similarly as in the case where 2 = R™, we can show that all solutions described
above are restrictions of the maximal strong solution v(-,v%) of Theorem 0.2.

Theorem 0.10. Let Q be a standard domain. If v is any one of the solutions
described above then v(-,v%) D v, provided v = v(0).

Proof. (a) Assume that v = v(0) € H?, , with s > (=1+m/q);. Then Theo-
rem 0.2 guarantees that v(-,v%) is the unique maximal strong solution u satisfying
u(t) — ¥ in Hj, , ast — 0. In particular, v(-, vY) is the only strong g-solution in
C([0,tF), HS ). By Theorem 0.3 and the cited results, v belongs to (a proper
subclass of) C([0,t)), H ). Hence v(t) = v(t,0") for 0 <t < ¢F.

(b) It remains to consider the case v € Hf , with —1+m/q < s < 0 which is
admissible — under some restrictions — in the results of Giga and Miyakawa [32]
and Grubb [37]. But in this case the assertion is a consequence of Theorem 6.1,

Proposition 6.4, and the construction of v(,2°) in the proof of Theorem 11.1. [

We point out that Kozono and Yamazaki [52] study the well-posedness of the
Navier—Stokes equations on R” by assuming that v° belongs to certain spaces of
Besov type which are constructed by means of Morrey instead of Lebesgue spaces.
The same authors consider in [53] initial data in Ly, oo + Lq for some ¢ > m, where
L, is a Lorentz space and € is an exterior domain. Those results do not seem
to be comparable to the ones of this paper.
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Now we can comment on some of the improvements of our results over the
existing ones.

e Our theorems generalize and improve almost all of the previous existence and
uniqueness results (known to us).

e We give rather precise descriptions of the spaces of initial values, in contrast
to abstract statements to the effect that v° belongs to some fractional power space.

o If 0% € Hi , with s > (=14 m/q); then Theorem 0.2 guarantees existence
and uniqueness under the sole (natural) assumption that the solution be continuous
att =0in HJ ; ,. Almost all of the existence results known so far require additional

restrictions.
—14m/q

e We can admit initial values in the negative space H ,, ', or even in the
space n;(l)j;m/ 1. with arbitrarily large ¢ > m. This is the first result of this type if

Q) is an exterior domain.

e The blow-up results given in Theorem 0.6 generalize (0.21) by showing that
already weaker norms than the L,-norm blow up if ¢* is finite.

e The equivalences given in Theorem 0.3(a) are of independent interest.

It follows from the results of Kato [45], Giga [31], and Wiegner [85], for example,
and from Theorems 0.4 and 0.10 that v(-,v°) exists globally if v° € L,, , and
[0°]|1,, is sufficiently small. Recently, this has been considerably improved by
Cannone [13], [14] if Q = R3. Under this assumption he shows that, given g € (3, 6],
the Navier—Stokes equations (with f = 0) possess a unique global mild solution

v e BC(RY, L3 ») N C((0,00), Lq)
satisfying
o), <ct™ 37 t>o0,

whenever 1Y € L3 , and the norm of v° is sufficiently small in the homogeneous
Besov space B(;é:ﬁ/ql To be small in B(;é:ﬁ/q is a much weaker condition than to
be small in Ls. Cannone’s proof rests heavily on the fact that the boundary of €
is empty since he uses that the Stokes semigroup reduces to the heat semigroup
and the Helmholtz projector has a rather explicit representation by means of Riesz
operators. In addition, essential use is made of the representations of Besov spaces
by means of Littlewood—Paley decompositions on the Fourier side.

Using the particularly simple geometry of a half-space in R3, allowing a re-
flection argument, together with Ukai’s representation formula for the Stokes op-
erator [78] Cannone, Planchon, and Schonbek [16] extended this global existence
theorem to the case where ) is a half-space in R3.

The starting point for our paper was the question whether Cannone’s result
could be proven for other domains as well; for example, if  is bounded. In this
case homogeneous Besov spaces are not meaningful anymore since they are not
invariant under local diffeomorphisms and since they involve conditions on the be-
havior of their members at infinity. Natural substitutes are the (nonhomogeneous)

spaces By, éj m/q However, due to the presence of a nonempty boundary, the situ-
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ation is more complicated. Moreover, Fourier analysis is no longer useful directly.
Thus we use semigroup theory to prove the following result.

Theorem 0.11. Suppose that  is bounded, ¢ >m/3, and 0 < w < X9, where
Ao is the smallest eigenvalue of the Stokes operator. Then, given any r > m with

r>qand v’ € H71+m/q, the solution v(-,v°) exists globally and satisfies

q,0,0
lv(t, o)z, < et 1Fm/Te=wt, t>0, (0.22)
. . . . —14
provided the norm of v° is sufficiently small in nr’o,gm/T.
Proof. This is a special case of Theorem 11.6. |

Remarks 0.12. (a) Suppose that v° € Hé;),l;m/q”. Then

0 —14m/q —14m/q —14+m/r
vV EH 00 T g0 T e s T

by Corollary 3.11. Moreover, Proposition 2.4 and Remark 3.6 imply

|\v0|\n;é:,n,/r <c IIUOHB;i:m/T.

Hence in this case (in particular, if v° € L, ) it follows that v(-,v°) exists globally
and satisfies (0.22) whenever the norm of 1Y is sufficiently small in B, LT for
some r > m with r > ¢q. Thus Theorem 0.11 is indeed the analogue to Cannone’s
result for the case where €2 is bounded. Note, however, that we can allow rather
rough initial values.

(b) Theorem 0.11 remains true if the assumption that 2 be bounded is replaced by
the hypothesis that the Stokes operator is well-defined and the Stokes semigroup

is exponentially decaying.

(c) Suppose that v° € Ly , N Ly, for some ¢ > m. Also suppose that either

(i) v° is small in n;é:_m/r for some r > m with r > ¢ and  is bounded,
or
(ii) v° is small in L,
or .
(iii) Q equals either R? or a half-space in R3, ¢ = m, and v is small in B(;;/)Q.

Then there exists exactly one Leray—Hopf weak solution and it is smooth for ¢ > 0.

Proof. This follows from Theorems 0.8(ii) and 0.2(i) since v(-,v°) exists globally.
Indeed, in case (i) this is guaranteed by Theorem 0.11. If 0¥ is small in L, then
tT = oo is a consequence of the results cited above and of Theorems 0.7 and 0.10.
Lastly, if (iii) is satisfied then ¢ = oo is implied by the results of Cannone [13] and
Cannone, Planchon, and Schonbek [16], respectively, since their solutions coincide
with v(-,v%) thanks to the fact that they belong to C(RT, L3 ). O
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Note that BE;OJFB/T < Bg,iop for 3 <r<6.

Finally, we give a brief outline of the contents of the following sections. In
Section 1 we collect the basic facts on the interpolation-extrapolation theory which
are fundamental for our approach. In contrast to all the other work, our results are
neither based on fractional powers nor on L,- L ;-estimates. In fact, it does not seem
to be possible to obtain sharp results without using interpolation-extrapolation
techniques.

In Section 2 we introduce the underlying function spaces which are related to
the Dirichlet problem for the Laplace operator. These results are then used in
Section 3 to find concrete realizations of the interpolation-extrapolation spaces for
the Stokes operator. In the presence of a boundary this is rather complicated. We
also prove natural extensions of Sobolev type embedding theorems for the spaces
Hj ., and ng , ,, being by no means obvious. This rather long section is basic for
a good understanding of the occurring spaces of distributions.

In Section 4 we study continuity properties of the nonlinear convection term.
In this investigation — as in other places also — Lemma 3.3 plays a crucial role
since it allows to get rid of the non-local Helmholtz projection. By this way we
obtain sharp results which improve on all continuity estimates known so far.

In Section 5 we develop a complete and self-contained existence, uniqueness,
and regularity theory for abstract parabolic evolution equations with quadratic
nonlinearities. By means of interpolation theory we get optimal results which can-
not be obtained by the theory of fractional powers. Of course, the existence part
rests on the contraction mapping principle and is, in this respect, close to but dif-
ferent from the work of von Wahl (see Theorem I1.3.3 in [80]) and also Kato [45].

The basic existence, uniqueness and regularity result for strong g-solutions of
the Navier-Stokes equations under minimal requirements on v° and f is Theo-
rem 6.1. It is more or less a straightforward application of the results in Section 5,
except for the regularity assertions. For those we rely on some general results of
the author [5]. Theorem 6.2 guarantees global existence for small data and under
appropriate assumptions on the Stokes operator. In the remainder of Section 6
it is shown that the maximal strong g-solution is essentially independent of the
occurring parameters.

In Section 7 we discuss very weak ¢-solutions and show that they are the same
as mild solutions. In the next section we prove a uniqueness theorem for very weak
g-solutions (Theorem 8.2). Our proof is rather simple and different from related
ones of Lions and Masmoudi [59] and Monniaux [63]. Whereas, up to this point,
we only had to assume that the Stokes operator is well-defined and generates an
analytic semigroup, now we have to rely on maximal regularity in L,, , if ¢ = m.
For this it is sufficient to know that S, has bounded imaginary powers. This
assumption imposes (at our present state of knowledge) restrictions on Q (which
are met if 2 is a standard domain).

Section 9 is devoted to integrability properties of very weak g-solutions, and in
Section 10 we study weak solutions. In particular, we show — given rather general
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hypotheses on 2 — that very weak g-solutions are weak solutions satisfying the
strong energy equality. From this we obtain a (local) uniqueness theorem for Leray—
Hopf weak solutions under rather general conditions (Theorem 10.3).

Finally, in the last section we prove the existence of a unique maximal strong
solution and show that it possesses all the properties described in the theorems of
this introduction. This is true for nonvanishing outer forces also. For simplicity, we
do not give the most general hypotheses on f but restrict ourselves to relatively
simple ones. Obvious generalizations are left to interested readers.

1. Interpolation—extrapolation scales

Throughout this paper all vector spaces are over the reals. If there occur, explicitly
or implicitly, complex numbers then the corresponding statements always refer to
the respective complexifications. Furthermore, ¢ stands for various positive con-
stants which may differ from occurrence to occurrence but are always independent
of the free variables in a given equation. For &,n € R we set £V := max{&,n}
and £ A n:=min{, n}, as well as &4 := & V0.

Let E and F be Banach spaces. We write F — F'if E is continuously injected
in F, that is, F is a linear subspace of F' and the natural injection = +— z from E

into F'is continuous. If F is also dense in F' then we express this by £ 4 F. In this
case (F, E) is said to be a densely injected Banach couple. We also write £ = F if
E — F and F — FE, that is, if E equals F' except for equivalent norms.

By L(E, F) we mean the Banach space of all bounded linear operators from E
into F, and L(F):= L(E,E). If G is a third Banach space then L(E,F;QG) is
the Banach space of all continuous bilinear maps from E x F into G. We also set
L?(E,F):=L(E,E;F).

We denote by E' := L(E,R) the dual of E and by (-, ), the duality pairing
between E’ and E, so that (2/,z)g is the value of 2’ € E' at z € E.

Given w € R, we write A € G(E,w) if —A generates a strongly continuous
semigroup {e *; t >0} on E, that is, in £(F), such that there exists M > 1
satisfying

||e*tAH < Me*t, t> 0.

The infimum of all such w is the growth bound or the type, type(—A), of —A.

Let (Eo, E1) be a densely injected Banach couple. Then H(E1, Ey) is the set
of all A € L(E1, Ep) such that —A, considered as a linear operator in Fy with
domain FE7, generates a strongly continuous analytic semigroup on Ej.

In the following we make free use of interpolation theory and refer to Sec-
tion 1.2 of [5] for a summary. As usual, we denote by [-, -], the complex, by (-,)a,r,
1 <r < o0, the real, and by (-, ~)27oo the continuous interpolation functors of ex-
ponent 6 € (0,1).
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For convenience, we recall that
(Eo,El)gm is the closure of Ey in (Eo, F1)g,00- (1.1)
We set Ey, := (Eo, E1)g,r and Ej _ := (Eo, E1)j - Then

By Epy S Bpp S B Epoo s gy <5 By (1.2)
for0<d<f<landl<r<oo,and

Eo1 <% By = [Fo, Bro <> E) ., 0<6<1. (1.3)

Now we collect some basic facts about interpolation-extrapolation scales. Proofs
and many more details are contained in [5, Chapter V].

Let (Ey, E1) be a densely injected Banach couple such that E := Ej is reflexive.
Suppose that A € H(E1, Ey). Then E; = D(A), where D(A) is the domain of A
endowed with its graph norm. Set Ej, := D(AF) for k € N with k > 2. Also set
E%:= E’ and A := A’, where A’ is the dual of A in E in the sense of unbounded
linear operators. Finally, let E}i = D((Aﬁ)k) for k € N. Then we define F_j, for

ke N*:=N\{0} by E_; := (E,E)’ with respect to the duality pairing (induced
by) (-, ). This means the following: E_j, is the dual space of E,E and

(2, 2)p_, = (%, 2)p, re By afeFEF (1.4)

Since E,’i <, E*, it follows that (E¥) = E <4 (E,’i)’ by reflexivity and the Hahn-
Banach theorem. Thus, by density, (-, -) g_,» and hence E_j, is uniquely deter-
mined by (1.4).

For each 0 € (0,1) we fix

(o € {5 1gr ()0 (5 )poo s 1< T <00} (1.5)

and put Fyi := (Ek, Exy1)e for k € Z. Tt follows that

Bot By —co<f<a< oo (1.6)

If @ > 0 then we denote by A, the maximal restriction of A to E, whose do-
main equals {z € E,NE; ; Az € E, }. If a <0 then A, is the closure of A
in F,. It follows that A, is well-defined for o € R, and Ag = A. The family
[(EQ,AQ) o€ R] is said to be the interpolation-extrapolation scale gen-
erated by (E,A) and (-,-)g, 0 <0 < 1.

One shows that Ag is the closure of A, in Eg if 8 < a. Furthermore,

Ay € H(Eot1, Ea), a € R, (1.7)
and A € G(F,w) implies A, € G(E,,w) for a € R. In addition,

e tA8 5 g ta, t>0, [B<a. (1.8)
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Now we define the dual interpolation functor (-, )g of (+,-)g by

o if (-0 = [ 1>
()5 =4 (oden i (e = ()9 e (1.9)
(', ')g,w if (-, -)9 = (-, -)g,r, 1<r<oo,

where 7’ :=r/(r —1). Then we abbreviate the interpolation-extrapolation scale
generated by (E*, A%) and (-, ')g, 0<6<1, by [(Eg,Ag) ;o€ R] and call it
interpolation-extrapolation scale dual to [(Ea,Aa) ;a € R].

If (-,-) # (+,)o,1 for 0 < 6 < 1 then

(B_o) = EL, (Aa) =4, acR, (1.10)

with respect to the duality pairing (-, ) induced by (-, -) .
We denote by

[(Ba,Aan) s « €R] and [(E0 Agm) ; a €R]

a,00

the interpolation-extrapolation scales generated by (E, A) and the functors (-, -)g1
and (-, ')8,00, respectively, for 0 < 6 < 1. (This notation is consistent with the one
used in (1.2).)

Lemma 1.1. Suppose that 0 < o < 1. Then

(EafhEoz)G,l = Ea71+9,17 (Eozflv Ea)g,oo = nglJrG,oo (]-]-]-)

for 0 < 0 <1 with a+ 6 # 1. Furthermore,

(Ba1,Fo)o1 > Ba 110> (Ba1,Ea))oey  0<0<1. (1.12)

Proof. It follows from Theorem V.1.5.7 and Corollary V.1.5.8 of [5] (if one sets
(.7 .)0 = {.7 .}9 = (.7 .)0’1) that

(Ea_Ll,Eoé,l)gJ = Ea_1+971, 0<0< 1, a+ 0 7é 1. (113)
Since

(Ej-1,Ej)aq — Eatj1 < (Ej_1, E;)}

«,00)

0<a<l, (1.14)

for j = 0,1, the reiteration theorem (cf. (I.2.8.7) in [5]) and (1.13) imply the first
assertion in (1.11). The second one follows by replacing (-,-)s,1 by (-, -)8’00 in this
argument.

Fix p > type(—A) and note that E; = D((u+ A_1)7*!) for j € {0,1}. Thus
(cf. (1.2.9.6) in [5])

d d
(E—17E1)1/2,1 — EO — (E—17E1)(1)/2,oo' (115)
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If 0 < o < 1 then, by (1.14), (1.15), and the reiteration theorem,
. 0
(Ba-1,Ba)} 000 = (B-1,E0)Q oos (B0, E1)0 o)

1—a,00

. 0
= ((B-1, E1)a/2,000 (B=1, B1) {14 0)/2:00) 100 (1.16)
= (E_1,E1)} g 00

By replacing in (1.16) the continuous interpolation functor everywhere by the
functor (-,-)g,1, we find that (Ey—1,Eq)1-a,1 = (E_1,E1)1/2,1. This, combined
with (1.15) and (1.16), implies (1.12) for § := 1 — a. If § # 1 — a then (1.12) is an
immediate consequence of (1.2), (1.3), and (1.11). O

2. Dirichlet scales

If Q # R™ then we assume throughout that 9Q is uniformly regular of class C?
(in the sense of [9]). This guarantees the existence of suitable extension operators,
so that all results on function spaces which we use below, and which are proven in
Triebel’s book [77] for bounded smooth domains, hold in this case also, provided
the regularity indices are restricted to belong to [—2,2] (cf. Section II of [3]). Of
course, the extension of the results in [77] to the case of R™-valued distributions
is trivial. Thus we simply refer to [77] and related work without further mention
of this fact.
Throughout this paper

1<g<oo and —2<s<2;

unless further restrictions are explicitly mentioned.
We denote by

Wy = (W . R™), | lwy)

q
the usual Sobolev—Slobodeckii spaces. Recall that W, = L, := Ly(Q,R™) and

1/q
HuHqu = (Z Hc?%Hqu) , k=1,2,

lo| <k

whereas

_ g |0%u(x) — 0%u(y)|? 1a
||u||qu+e = (||u||qu + |az_:k/ﬂxﬂ o — g d(ﬂ:,y)) (2.1)
for k € {0,1} and 0 < 0 < 1.

We write D := D(Q, R™) for the space of R"-valued smooth functions having
compact supports in €2, that is, D is the space of R™-valued test functions on £2,
and D’ is its dual, the space of R™-valued distributions on ). Then I/f/p 5 is the
closure of D in W}, and

W= =Wy ), 0<s<2, (2.2)

q
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with respect to the L,-duality pairing
(v,u) := / v-udz, (v,u) € Ly x Ly, (2.3)
Q

where ¢’ :=¢q/(qg —1).

We also put A(€) := (1 + |£[*)'/2 for € € R™ and denote by F the Fourier
transform on &' := & (R™,R™), the space of R™-valued temperate distributions
on R™. Then

(1—A)*/2:= A%(D) := FIA°F,

where A acts as a multiplication operator.
For 2 = R™ the Bessel potential spaces are the Banach spaces defined by
T o —s/2
H = H;(R™R™) = (1-A)"*/?L,.

Fix any smooth ¢ on R™ such that ¢(§) = 1 for || < 1 and ¥(§) = 0 for |¢] > 2.
Put ¢y := ¢ and

Ur(€) = (275 —p(27F),  CeR™, keN:=N\{0}.  (24)
Then
supp(¢) C {&€ € R™ ; 281 < |¢] < 2k+1 k e N*,

and
k() =1, £eR™
k=0

Thus (1)) is a smooth dyadic resolution of the identity on R™.
The Besov spaces, B; . := B (R™,R™), are the Banach spaces defined by

B, = ({u €S |lu

B;, <o}, [ B;,,.)v

where

s 1=
BQvT

o 1/r
(Z okst ||¢k(D)u||Eq) , 1<r<oo,
k=0

sup 2% [|yx (D)ull ri= o0,
k>0

[l

(2.5)

with 9y (D) := F 14, F. These spaces are independent of the particular dyadic
resolution of the identity, except for equivalent norms.
We denote by

rg: D'(R™,R™) — D'(Q,R™)
the operator of restriction to € in the sense of distributions. If  # R™ we set

HE = HE(Q,R™) := rq H (R™, R™)
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and
B;,T = B;’T(Q,Rm) = TQBZ’T(R"L,RM), 1<r <o,

where these spaces are given the obvious quotient norms. Hence they are Banach
spaces as well. It is known that

R t : — _ — —
Hy=B,, iff s=tandp=qg=r=2, (2.6)

and that
we =

q

{ H:,  sel-2,2nZ, o

B, se(=2,2)\Z

a9
It is also known that Bj ., coincides for s > 0, except for equivalent norms, with
the Nikol’skii space N; := N7(€2,R™) (cf. [54], [77]).
For the reader’s convenience, we recall the definition of the norm of N7 for
0 < s < 2. We denote by [s]~ the largest integer strictly smaller than s and put

(o o0 = { SUPo |h|:9 lu(-+h) —ullL, @) 0<d <1,
suppzo || [[u(-+ ) = 2u+u(- = AL, o) J=1,
where Q) = {x € Q; dist(z,09) > |h| } and Ly(Q)) := Lg(Qn, R™). Then
g 2= el + mas [07udg- g (23)
For convenience, we set
N):=L, N;®:=B;%, 0<s<2. (2.9)

We refer to [77] for equivalent intrinsic norms for Bj . with 1 <r < ooc.
The following theorem gives another useful characterization (not contained
in [77]) of the ‘negative spaces’ H,* and B, for 0 < s < 2.

Theorem 2.1. Suppose that —1 < s <2 and k € {1,2} with s —k > —2. Also
suppose that B* € { H3, By . ; 1 <r < oc}. Then u belongs to Bk iff there exist

Uq € B® for |a| <k such that

u=> 0"uq. (2.10)

|| <k

U — inf( Z ltal

lo| <k

Moreover,

BS> (2.11)

is an equivalent norm for BS~F, where the infimum is taken over all representa-
tions (2.10).

Proof. By the usual extension and restriction procedure we can assume §2 = R™.
In this case the restriction |s| < 2 is not necessary.
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Since
0% e L(B,B°7lel),  aeN™, (2.12)

it follows that u € B*~* if it is defined by the right-hand side of (2.10). Conversely,
given u € B*7F it is known that v := A=2*(D)u € B***. Hence

u=A*(D) = (—1)le ) ey — 0%V,
3 ()= 5

where v, 1= (—1)‘a|(k)8“v € B* for |af < k. Thus, putting M(k) := 3", <, 1, it

(6%
follows that the linear map

Ty, : (BHYM®) — sk, (Ua)|al<k — Z 0% Uq
la <k

is well-defined and surjective. Consequently, thanks to (2.12), it is a continuous
linear surjection. Define T} by the commutativity of the diagram

(B#)M®) (B°)M®) [ ker(Ty)

N 7

Bs—k

where the horizontal arrow denotes the canonical projection. Then fk is a toplinear
isomorphism (that is, an isomorphism in the category of Banach spaces) by the
open mapping theorem. This implies the assertion since (2.11) is the quotient norm
of (B*)M(K) / ker(Ty,). O

It should be remarked that Theorem 2.1 and (2.7) imply that definition (2.2)
for s € {1,2} is equivalent to the usual definition of the Sobolev spaces of negative
orders (e.g., [1]).

Lastly, we define the little Nikol’skii spaces by

5 los 2
ny = closure of H, in N. (2.13)

Since
Dg :=D(Q,R") := {u|Q; ue DR™ R™)}
is dense in W' it follows that
ny = closure of Dg in N, (2.14)
We denote by 7s the trace operator on 99 if 9Q # () and put
, H? it Q =R,
H 0= 2 .
G {ue H; ; vou=0} otherwise.

Then (Eo,Ey) := (Lg, HZ ) is a densely injected Banach couple.
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We write Ap := Ap 4 for the Lg-realization of the Dirichlet-Laplace operator
defined by
dom(Ap) := H;O, Apu := Au.

It is well-known that
—Ap € H(H , Ly). (2.15)

Thus the interpolation-extrapolation scale
[(Ea,As) 5 a €R],

the Dirichlet scale, generated by (E,A) := (L, —Ap) and (-,-)g, 0<6 <1,
where (-, )y satisfies (1.5), is well-defined.
In order to characterize this scale we set

2% . 72 .
F¥:=HY,  je{0,+1}, (2.16)
and, for s =2j 4 20 with j € {—1,0} and 0 < 0 < 1,
H(‘; if ('7')9 = ['7']97
Fq5 =< B, if () =0()or 1<r<oo, (2.17)
nf; if ('7 ')9 - ('7 ')g,oo'

We also set Fq#Qj = Hj,j for j € {0,1} and

H‘?/G if ('7 ')9 = ['7 ']07
FP?0 =0 BY ., if (,)o = (- )or, 1<7 <00, (2.18)
By, i ()0 = ()f .0

for 0 <@ < 1. If Q=R™ then F;,:=F; and Fq#% = Fjs. Otherwise, we put
F? = F3(R™,R™) and

u € ; You = ) <s<
{ue kg 0} 1/q 2,
Fio=14 {uecFE}M; supp(u) c 0}, s =1/q, (2.19)
F;, 0<s<1/q.
We also define Ff’% for s >0 by replacing Fy, resp. ﬁql/q, in (2.19) by Fjs,
resp. Fq#l/q )
Now we define negative spaces
Fod=(Foo) =(H) o) = H] (2.20)
by means of the duality pairing induced by (2.3), and
Fogt = (F, 5, Fo)o = (Hy g, Ly)s, 0<6<L (2.21)

Theorem 2.2. E, = F2{ for |a| < 1.
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Proof. Suppose that 0 < a < 1. If @ = R™ then the results of Section 2.4 in [77]
imply

Eo = (Eo, Ex)a = (Lg Hy)o = F}" = FJ§.

If Q #R™ then F, = Fq%%‘ is a consequence of interpolation results due to Gris-
vard [36], Seeley [67], and Guidetti [39].
It is well-known that (E#, A#) = (Ly, —Ap ). Hence

E = (E]) = (Hy,) = Hyf = F5

by (1.10) and reflexivity. Hence (2.21) and known duality properties of the used
interpolation functors imply E,_1 = F;%‘fz. O

Corollary 2.3. Suppose that (-,-)o # (-,-)o,1 for 0 < 6 < 1. Then

(F,g) =Fiy, 0<s<z2, (2.22)
with respect to the duality pairing (2.3). Hence

F 3 =(Fl), 0<s<2 (2.23)
provided (-,-)o # (-, ')2,00 for 0 <6< 1.

Proof. The first assertion follows from Theorem 2.2 and (1.10). The second one is
now a consequence of reflexivity. |

The next proposition shows that F;, coincides with the simpler space Fp,
provided s is suitably restricted.

Proposition 2.4. If =2+ 1/q < s <1/q then F;, = F;.

Proof. It follows from Theorems 4.3.2.1 and 4.7.1 in [77], the definition of the little
Nikol’skii spaces, and (1.2) that D is dense in F,J, for 0 < s < 1+ 1/q and in F
for0<t<141/¢d=2- 1/q Hence the abbertlon is entailed by (2.19) and (2. 23)
if either s > 0 or if s < 0 and ( gé{ Yo, (- eoo}for0<9<1

Suppose that —2 +1/g< so < s<s81=0.8Set :=(sg—s1)/so and suppose
that (+,-)g € { Jo,1, (- 2’00}. Then it follows from what has already been shown
and from Lemma 1.1 that

Fio=(H* Hi")g = Fy.
This covers the remaining cases. O

Recall that D is not dense in F#% if Q#R™ and 1+ 1/¢ <s<2. Thus,

since F, § = (Ff’%)’ for (-,-)s ¢ { 90,15 ()90 }» it follows that F, 5 cannot be
identified with a subspace of D’ in thlb case.
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We define H; , etc. for [s| <2 by

S S
Hq,O Hq’
S . S : s __ S
Foo=:q Biro it Fj=q B
S S
Ng,0 Ny

respectively, and

s se[-2,2]nZ,
WS,O.:{ q,O [ ]

4 0q00  SE€(=2,2)\Z.

Remarks 2.5. (a) If 9Q # () then we put
d(x) := 1 A dist(z, 09), x € Q.
Then
wr fullyare + 1d= 4], (2.24)

is an equivalent norm for VV;éq. Similarly, set f := {:10 €N; dx) < t} for ¢t > 0.
Then

1/q
u (HuH?V;/q +0§£1 =1/ /Qt |u|qdm) (2.25)

. : 1 1
is an equivalent norm for N, {)q, hence for nq/(;l i

Proof. See Remark 4.3.2.2 in [77]. O
(b) Suppose that 0 < s <2 —1/q. Then (B}, ; ;) = N, °.

Proof. Since D is dense in By, 1, for 0 <s <1+ 1/¢' = 2 — 1/q this follows from
Theorem 4.8.1 in [77] and from (2.9). O

(c) Ifm<q<r<oothenN(;1+m/q‘—>Nfl+m/T.

Proof. This is a consequence of (2.9) and the known embedding theorems for Besov
spaces (e.g., [77]). O
3. Stokes scales

We put Dy :={ueD; V-u=0} and let L, be the closure of D, in L,. We
also set

Loz ={v€Lg; Ip€ Lgioc(QR): v=Vp}.
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Then we assume that the topological direct sum decomposition, the Helmholtz
decomposition,
Ly=1Lgo® Lgx (3.1)

is valid for each q € (1, c0). Thus the Helmholtz projector Py, that is, the projection
of Ly onto Ly, parallel to Ly, is well-defined for 1 < ¢ < oo.

We also assume that
(Py) =Py, 1<g< oo (3.2)
We define the Stokes operator S; in L, , by
dom(S,) := Hio NLge, Squ:=—vPAu,
and assume that

—S54 generates a strongly continuous (3.3)
analytic semigroup on Ly, for 1 < g < oo. ’

Remark 3.1. Assumptions (3.1)—(3.3) are additional hypotheses on €2, which are
known to hold in a variety of situations, but not always (e.g., Remark III.1.3
in [28]). To be more precise, they are satisfied if €2 is

(1) R™;

(ii) a half-space [7];
(ili) an exterior domain ([8], [69], [79], also see [62], [T4]);
(iv) a bounded domain ([25], [29], also see [61], [74], [80]);
(v) an aperture domain [20];
(vi) an infinite layer domain [84];
(vii) a compact perturbation of a half-space [19];
We also note that the Stokes semigroup is known to be bounded in each one of
the cases (i)—(vi), as is shown in the above references. If  is bounded then this
semigroup is even exponentially decaying, independently of ¢, that is, there exists
w > 0 such that

type(—9¢) < —w, 1<g¢< 0. (3.4)

Proof. If  is bounded then S, has a compact resolvent. Using this fact it is not
difficult to see that the spectrum and the eigenfunctions of S, are independent
of ¢ € (1,00). Since type(—S;) equals the real part of the least eigenvalue of Sg,
assertion (3.4) easily follows from the case ¢ = 2 and Poincaré’s inequality. O

Henceforth € is said to be a standard domain if one of the following condi-
tions is satisfied: €2 is
(i) R™;
(ii) a half-space;
(iii) an exterior domain and m > 3;
(iv) bounded.
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(The reason for imposing the restriction m > 3 in case of an exterior domain will
become clear in Remark 8.1).

Now we fix ¢ and set P := P, and S := S,. It is a consequence of (3.3) that the
interpolation-extrapolation scale

[(EQ,AQ) o€ R}, generated by (E, A) := (Lg.,S) and (-,-)s, 0 <0 <1,

where (-, -)p satisfies (1.5), the Stokes scale, is well-defined. The following lemma
will be used to characterize E,, for 0 < a < 1.

Lemma 3.2. Given any interpolation functor §,

§(Eo, E1) = F(Eo, E1) NEo.

Proof. Fix p > 0 with p > type(—S) and recall that type(—Ap) = 0. Define the
map Q1 € L(E;1,E;) by the commutativity of the diagram

o

E1 IE1

p+ A | =~ | u4A (3.5)
P

Eo Eq

so that Q1 = (u+ A)"'P(u+ A). Denote by PT the dual of P € L(Eg, Eg). Then
PT equals the injection i : Eg — Eg. Write @ if @1 is being considered as a
densely defined linear operator from Eg into Eg with domain E;. Then, since
im(p+ AN~ = Ef ¢ Ef = dom(p + AY), it follows that

Q' =(u+ AP [(n+8)"") = (u+ A¥)(u+ A"~ € L(E], EY).

Hence Q" € L(Eg, Ep) which, thanks to Q" O @ and the density of E; in Eg, shows
that (1 has a unique continuous extension Qo € L(Eg, Ep). In other words: there
exists a unique Qo € L(Eg, Eg) for which the diagram

Q1
E1 IE41
{ p d1 (3.6)
Qo
EO Eo

is commutative.
Owing to E; — E;, we can consider (); as a bounded linear map in E;. Then

Qi =(+A)"Plu+A)(u+A)"P(u+A)=(p+A)'P(u+A)=Q,
thanks to P2 = P, which entails
P(u+A)(p+A)"'P=Pu+PA)(u+A)"'P=P
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as a consequence of PA|E; = A. Thus @ is a continuous projection from E;
onto Eq. From this and from (3.6) it follows that Qo € L(E¢) is also a projec-
tion from Eg onto Ey. Now the assertion is a consequence of interpolation theory
(e.g., Theorem 1.17.1 in [77]). O

The main idea of the preceding proof, namely the construction of projections
Qo and @1, is due to Fujita and Morimoto [24] and has also been used by Giga
(see Lemma 6 in [30]).

The next lemma, guaranteeing the existence of a unique extension of the Helm-
holtz projector to negative spaces, will be of fundamental importance for the proof
of Theorem 4.2.

Lemma 3.3. For 0 < a <1 there exists a unique P_, € L(E_o,E_,) satisfying
P_,.DP.

Proof. Define P_; € L(E_1,E_;) by the commutativity of the diagram

Qo
Eo

Eo

w+A_ | = = u+A
P_y

E_,
Then, thanks to (3.5) and (3.6),

Poi=W+A)Qo(u+A 1) ' D(u+A)Qi(u+A)t =P
Thus the diagram

E_q

P
Eo Eq
£ d
P_y
E_; E_4

is commutative. Now the assertion follows by interpolation and the density of Eg
inE_;. O

It is the purpose of the following considerations to characterize the negative
spaces E_, for 0 < a < 2. For this we need some preparation.
Let M be a vector subspace of some Banach space F. Then its annihilator

M+ ::{e'eE’; <e’,m>:OVmEM}
is a closed linear subspace of E’. It is a well-known consequence of the Hahn-
Banach theorem (e.g., Theorem 1.6.4 in [35]) that the restriction map

E'/M*+ = M, []—€|M (3.7)
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is an isometric isomorphism.

Suppose that £ = M & N and denote by @ the projection of E onto M par-
allel to N. Then M =im(Q) = ker(1 — @) and N = ker(Q) = im(1 — Q). Since
Q' € L(F') is a projection as well,

E' =ker(1 - Q") @ ker(Q') = [im(1 — Q)] T o [im(Q)]L =Nto Mt

since im(7T)* = ker(T") for each T € L(E). Thus it follows from (3.1) and (3.2)
that
Ly o= (L;Uﬂf)lv Ly »= (L;U#T)Lv 1 <p<oo. (3'8)

We define a continuous bilinear form (-, -)  on Ly o X Lg o by restriction of (-, -),
that is,

(u,v)5 := (u,v), (u,v) € Ly o X Ly o.

It follows from (3.1) and (3.8) that (-,-)
consequence of (3.1) and (3.8) that

, is non-degenerate. Moreover, it is a

(Lg,s)" = Lg,o by means of the duality pairing (-, -),. (3.9)
Now we put
foe=Fi0NLee, FI3 =FiiNLy,  0<s<2.
Of course, F, , is called H;, , if F;/q = H, etc.
We also set
Fod = (FER,),  0<0<1 ()0 ¢ {()on, (5w
by means of the duality pairing (-, -)_. This defines
[H;,o,a i |s] <2] and [B;,r,o,a pls] <27, 1<r<oo.
We put
N, oo = By10s)> 0<s<2,
by means of (-, ), and
N, 0.0 = closure of Hl,, in NyGos 0<s<2. (3.10)
Finally,
B e =(H], Lao)os, 0<0<1. (3.11)
Then the scales of Banach spaces
[Bi10o; 151 <2], [ngoo; sl <2], [Wioe; I8] <2]

have also been well-defined, where

. ;{H;,OJ, s€e[-2,2]nZ,

q,0,0 — s
4,9,0,0°
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The following theorem justifies the introduction of these spaces.

Theorem 3.4. E, = F}¢ , for |a| <1.
Proof. (a) If 0 < a < 1 then this is an immediate consequence of Theorem 2.2 and
Lemma 3.2.

(b) Tt follows from (3.9) that E# = L, ,. Denote by PT € L(Ly ., Ly) the
dual of P € L(Ly, Ly ). Then it is easily verified that PT =i# : Ly , < L.

- 2 2
Thus, given (v,u) € Hy o, X H o o

(v, Au)o = —v(v, PyApu), = —v(i% (v), Apu)
= —v{Apv,i(u)) = (—vPy Apv,u)e = (Sqv, u)s.

This shows that A’ D Sg/. Since the resolvent set of A’ and the one of Sy have a
nonempty intersection, it follows that A’ = S/, that is, A# = S,/. Hence (a) im-
plies Eff = Fﬁ%‘?‘a for 0 < a <1.

(c) Suppose that (-,-)o & {(-,")e,1 (-, ')2,00}' Then the reflexivity of E = L ,,
which holds since L, , is a closed linear subspace of the reflexive space L,, implies
the reflexivity of E, for each o € R (cf. Theorem V.1.5.12 in [5]). Thus we infer
E_, = (EF) = F(;(ii for 0 < a <1 from (b) and (1.10).

(d) Suppose that (-,-)g = (-,-)§ o, for 0 < 6 < 1. Then, thanks to (1.9), (1.10),
and (a),

(E_o) =Ef =B\, 0<a<l
Consequently,
E_o = (B_o)’=(BX0,) =N, %, 0<a<l,

where the first injection is the canonical injection of a Banach space into its bidual.
Since E_o = (E—1,Eo)]_, 4, the assertion follows from the density of E; = HZ, ,
in E_, and from (3.10).
(e) If (-,-)o = (+,-)o,1 then the assertion concerning E_, follows immediately
from (b), which gives E_; = H;g,a, and from (3.11). O
The next theorem shows that, in the reflexive case, the negative spaces F, ;
possess further useful characterizations.

Theorem 3.5. Suppose that (-,)o ¢ {(, Yo, (- -)8’00}. Then, given s € (0,2],

F(I_,(f/Lq77 _)Fq_,(ia7 [U‘] Hu|Fq#/é,%,a

is an isometric isomorphism, where Lq r is the closure of L in F .

Proof. Note that

Loz — Lqg— F g5, (3.12)
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where the last injection follows from Theorem 2.2. Hence L, . is well-defined.
Thanks to (3.8),

Lor = (Lyo)t C(Fl N Ly o)t = (G ,)" (3.13)

q',0,0

The assumption implies that F f’% is reflexive. Thus we infer from (3.7) that
s !~ s s s s
((Ff,o,a)l) = (17;?&,0)”/(Fq#zé,o,a)ll = Fj,o/Fj,o,w (3.14)

Suppose that f € F;f% = (F;¢) and f|Lg~ = 0. Then f € (Lgx)" = Ly .o, which

shows that f € Ff’% NLyo,=F#

7 0.0~ Hence we infer from (3.14) that there is

. . #s 1 . . .
no continuous linear form on (F] )~ vanishing on Lg . Thus Ly is dense

in (Ff’%’U)J- by (3.13) and the Hahn-Banach theorem. Since (Fjﬁ%’a)l- is closed
in (Ff’f)’a)’ =F_;, it follows that L, = (Fq#’%’U)J-. This implies, together with

— 74q,0,00
Corollary 2.3, that

Fod/ Tam = (FF3) /(Fl 500"

Now the assertion is entailed by (3.7). O

Remark 3.6. Suppose that 0 < s < 2. Then n;aa is isometrically isomorphic to
the closure of Lg/Lgx in Ny 5/(Bf 1 4)"

Proof. From (3.7) we deduce that N, ¢/(B% )" is isometrically isomorphic
to (B 1.0.0) = Nyo..- Again by (3.7), this isomorphism restricts to an isometric
isomorphism

Lq/Lqﬂr = (Lq’),/(Lq/,a)L = (Lq’,a), = L4 = Eo.

d
Since E; = H? — Eq the assertion follows from the definition of n;é,a. O

q,0,0

The difficulty in treating the Navier—Stokes equations in a weak setting, which
forces us to employ the somewhat complicated setting introduced above, stems
from the fact that we have to characterize the negative spaces by duality. This is
due to the fact that, in the presence of a boundary, we have no explicit representa-
tion either of —Ap or of the Helmholtz projection P. The situation is considerably
simpler if Q@ =R™ (or if Q is a torus, a case we do not consider here) as is ex-
plained below. In the full-space problem we have an explicit representation of P
which commutes with A so that the Stokes operator reduces to —vA|HZ N Lg,o.

Remarks 3.7. (a) Suppose that Q& = R™. Then
- 2c _ 2a . —
Eo = F/*Nker(V-) ={ue F;*; V-v=0}, la] <1,

where V- denotes the divergence operator on D', of course.
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Proof. Tt is well-known (and by means of the Fourier transform not difficult to
verify) that

P =1—[R;Ri]i<jk<m:

where R;j := F~1(¢7/[€])F are the Riesz transforms for 1 < j < m. Since R; be-
longs to L(H,) for s € R, as is a well-known consequence of Mikhlin’s multiplier
theorem, it follows that P € L(H}) with P? = P and P(H}) = H; Nker(V:). Of
course, P commutes with A. From this we infer that 14 S, is an isomorphism
from H§+2 Nker(V-) onto H; Nker(V-) for s € R. Consequently, if (-,-)g equals
[-,-]p for 0 < @ <1 then

2
E, = H;* Nker(V:), aeR.

Indeed, this follows from the general definition of interpolation-extrapolation scales
given in Chapter V of [5], from Lemma 3.2, the fact that the Bessel potential spaces
are invariant under complex interpolation, and from Theorem V.1.5.12 in [5].
Now the assertions for the other choices of (-,-)s follows by interpolation and
by applying Lemma 3.2 once more. g

(b) Let €2 be a standard domain with nonempty boundary. Then

{ueF;; V-u=0, you=0}, 1/g<s<2,
Foo=4 {ueFi"; V-u=0, ysu=0}, s=1/q,
{ueF;; V-u=0, vju=0}, 0<s<1/qg,
where 7; denotes the normal trace operator defined by yzu := (vou) - 7t for u € L,
with V- u € Ly(©, R).
Proof. This follows from F , = F;q N Ly, for 0 < s <2, the definition of F,
and the fact that
Lq,a:{UELq s Veu=0, yyu=0}
(see [25] if Q is bounded and [69] if © is unbounded; also cf. Section 5 in [19]). O

Having found explicit representations for the Banach spaces E,, for || < 1, we
now turn to characterizations of the extrapolated Stokes operator.

Theorem 3.8. Suppose that 0 < a < 1. Then

Hg’,O,a X Hzio,a - R? (’U,u) = <AU7U>

, - #2-20 ., 20
extends to a continuous bilinear form over FJ ™= X F G .,
same symbol, that is,

((v,u) — (Av,u)) € L(FH22x p2a R,

q',0,0 q,0,0°

again denoted by the
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Moreover,

<’U, A0471'U/>IE

a—1

= —v{Av,u), (v,u) € Ff’%;fo‘ x F2a (3.15)

q,0,0°

Proof. From the proof of Theorem 3.4 we know that (E#, A#) = (L, ,,S,) with
respect to (-,-),. Note that A,_1 € L(Eq,Eq—1) and (1.10) imply

((v,u) = (v, A, ) € L(EL_,
Hence, by Proposition V.1.5.14 in [5],
(U, Aq1u)E,_, = <Aﬁ_av,u)mu, (v,u) € E!

11—«

Eq;R). (3.16)

X E,.
Given (v,u) € B} x E,,
(A" v, u)g, = (Afo,u) = —v(Av,u). (3.17)

Now the assertion follows from (3.16), (3.17), from IE% x E4 4 ELQ x E,, and
from Theorem 3.4. g

Suppose that 2 #R™ and 0 < 2a < 1/¢. Then F;‘g‘fz is not a space of distri-
butions (since D is not dense in F, (ZQ,TOQO‘). Thus Theorem 3.4 shows that F| 112’%‘;,2 is
not a (quotient) space of distributions either. Hence (3.17) is in this case not a
distributional relation.

The following proposition gives distributional characterizations of A,_1. Given

(A,B) € Ly (Q,R™*™) x L, (£, R™*™), we set
(A, B) ::/A: Bdx,
Q
where A: B := trace(BTA).

Proposition 3.9. Suppose that 0 < a < 1 and either Q@ =R™ or 2a > 1/q. Then

Aa1 = —vPa 1A|FS . (3.18)
If 1/q <2a <141/q then A,_1 is also characterized by
(v,Aq1u)g,_, = v(Vv,Vu), (v,u) € Fj%:fo‘ x F20 . (3.19)

Proof. It is a consequence of Proposition 2.4 that A € L:(Fq%%‘, F 112,%‘72), provided
either Q@ = R™ or 2a > 1/¢. Hence Lemma 3.3 and Theorem 3.4 imply

A=-—vPA|H},, C VP, 1A|F}} , € L(Eq,Eq_1).
Since
Ay € L(Ey,Eqy) (3.20)

is the unique continuous extension of A € L(Eq,Ey), assertion (3.18) follows.
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Now suppose that 1/¢ < 2ac < 1+ 1/¢. Then we infer from Proposition 2.4 that
((v,u) = (Vv, Vau)) € LIFF 2 F2% LR).

q',0,0 q,0,0°

If (v,u) € Hg/,o,a x HZ, , then it is clear that (v, Au) = v(Vv, Vu). Hence a den-
sity argument and (3.20) prove (3.19). O

We close this section by proving some important embedding theorems. For this
we recall that, given —2 <t <s<2and 1 <r < oo,

S HL /g 1r>1/q— (s —t)/m. (3.21)

The following proposition shows that a similar result is true for H; , ,-spaces, at
least if 2 is a standard domain.

Theorem 3.10. Let Q be a standard domain. Suppose that s,t € [—2,2] and that
q,r € (1,00) satisfy

1/¢g>1/r>1/q—(s—1t)/m. (3.22)
Then
s d
Hq,O,a — H;,O,a'

Proof. (a) First suppose that ¢t > 0 and

s#£1/q, t#1/r. (3.23)
Then, by (3.21) and the definition of Hj ; (see (2.17) and (2.19)),
HS o — Hy,. (3.24)
From this we obtain
Hioo— Hﬁ,o,m (3.25)

thanks to Remark 3.7(b).
(b) Now suppose that s < 0 and

—s#1/q, —t#1)r. (3.26)
Then the arguments leading to (3.24) show that
Hyly = Hy%. (3.27)

Suppose that 1 < p < co and 7 € [0,2]/{1/p}. Then
CZo:={ueC*(,R™); supp(u) CCQ, uldQ =0}

is dense in H . Indeed, if 7 < 1/p then this follows from D C C’CQ}O and the density
of Din Hj = HJ, (cf. Propostion 2.4). If 1/p < 7 < 2 