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Abstract. In this paper we study the strong solvability of the Navier–Stokes equations for rough
initial data. We prove that there exists essentially only one maximal strong solution and that
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with rather general domains including, in particular, those having compact boundaries.
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0. Introduction

Throughout this paper m ≥ 2 and either Ω = Rm or Ω is a subdomain of Rm with
a smooth boundary ∂Ω. We consider the nonstationary Navier–Stokes equations

∇ · v = 0
∂tv + (v · ∇)v − ν∆v = −∇p+ f

v = 0

v(·, 0) = v0

in Ω,
in Ω,
on ∂Ω,
in Ω,

(0.1)

describing the motion of a viscous incompressible Newtonian fluid with a non-
slip boundary condition (if m = 2 or m = 3, of course). Here f : Ω× R+ → Rm
is a given outer force field, v0 : Ω→ Rm is the prescribed initial velocity, and
v : Ω× R+ → Rm and p : Ω× R+ → R are the unknown velocity and pressure
field, respectively. Moreover, ν is a given positive constant, the kinematic viscosity,
and the (constant) density has been normalized to 1.

Assuming that Ω admits Helmholtz decompositions of Lq := Lq(Ω,Rm) for each
q ∈ (1,∞) we denote by P the projector onto the solenoidal vector fields. (We refer
to the main body of this paper for precise assumptions and definitions of all the
(more or less standard) concepts and function spaces of which we make free use
in this introduction.) Then we eliminate the pressure field p by applying P to the
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second equation of (0.1) and arrive at the reduced Navier–Stokes system

∇ · v = 0
∂tv + P (v · ∇)v − νP∆v = Pf

v = 0

v(·, 0) = v0

in Ω,
in Ω,
on ∂Ω,
in Ω.

(0.2)

By a solution (in any sense) of the Navier–Stokes equations, that is, of system (0.1),
we mean a velocity field v satisfying (0.2). This is justified since any such solution v
determines the pressure field p up to an inessential constant (if v is regular enough).

In this paper we are mainly interested in strong solutions (in a sense made
precise below) for rough initial data, that is, if v0 belongs to an appropriately
wide class of functions.

In order to describe our main results and to compare them with the work of
other authors we restrict ourselves in this introduction to the case

m ≥ 3, f = 0 (0.3)

(more precisely, to the case where f is a conservative force field so that Pf = 0).
The general situation is dealt with in the following sections.

First we consider the simplest case:

Ω = Rm. (0.4)

Then (0.2) reduces to the system

∇ · v = 0,
∂tv − ν∆v = −P (v · ∇)v,

v(·, 0) = v0

(0.5)

in Rm since P commutes with the Laplace operator. This case has been widely
studied and there is an enormous amount of literature on this subject.

The first result on the solvability of (0.5), when v0 belongs to Lq, is due to
Fabes, Jones, and Rivière [18]. These authors show that the Navier–Stokes equa-
tions possess a unique local solution v in the class Lr

(
(0, T ), Ls

)
with q, r, and s

satisfying s > m and
m/q < 2/r +m/s ≤ 1, (0.6)

provided v0 ∈ Lq,σ := PLq. By a solution in Lr
(
(0, T ), Ls

)
they mean a very

weak solution in Lr
(
(0, T ), Ls,σ

)
, that is, a function v ∈ Lr

(
(0, T ), Ls,σ

)
satis-

fying ∫ T

0

{〈
(∂t + ν∆)ϕ, v

〉
+ 〈∇ϕ, v ⊗ v〉

}
dt = −

〈
ϕ(0), v0〉 (0.7)

for all ϕ ∈ D
(
[0, T ),Dσ

)
, whereDσ :=

{
ϕ ∈ D := D(Ω,Rm) ; ∇ · ϕ = 0

}
and 〈·, ·〉

denotes the usual Ls-duality pairing (cf. Remark 7.1(a)). It is also shown in [18]
that T =∞, provided v0 is sufficiently small in Lq ∩ Lq′ .
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If v0 ∈ Lq,σ with q > m then the existence of a unique very weak local solu-
tion v, being a weakly continuous function from [0, T ) into Lq,σ, has also been
shown, by different techniques, by Beirão da Veiga [6]. Furthermore,

v ∈ C
(
[0, T ), L2,σ ∩ Lq,σ

)
∩ L2

(
(0, T ),H1

2 ∩ Lq,σ
)

(0.8)

if v0 ∈ L2,σ ∩ Lq,σ. In addition, Beirão da Veiga gives an estimate for the maximal
existence time (depending on ‖v0‖Lq) and proves that the solution exists globally,
that is, for all time, if the norm of v0 in L2 ∩ Lq is sufficiently small.

More recently, C.P. Calderón (see [10], [11], [12]) obtained the existence of very
weak local solutions of (0.1) for q = m also.

The case q = m is critical since then the nonlinear term P (v · ∇)v has the ‘same
strength’ as the Laplace operator, that is, P (v · ∇)v is not subordinate to −∆v.
Thus one cannot take advantage of the regularizing effect of the heat semigroup
which is the basis of practically all known existence proofs. The criticality of Lm
is also manifest in the scaling invariance ‖λu(λ·)‖Lm = ‖u‖Lm for λ > 0 (see [13]
for a detailed exposition of ‘critical spaces’ for Navier–Stokes equations).

The critical case q = m has first been treated by Kato [45]. He showed, by using
some ideas developed earlier, jointly with Fujita ([23], [46]), that, given v0 ∈ Lm,σ,
there exist T > 0 and a unique solution v of (0.1) in the class

C
(
[0, T ], Lm,σ

)
∩ C(1−m/q)/2

(
(0, T ], Lq,σ

)
, m < q <∞. (0.9)

Here, given any Banach space E, any µ ∈ R, and any subinterval J of R+ con-
taining 0 such that J̇ := J \{0} 6= ∅, we denote by Cµ(J̇ , E) the Banach space
consisting of all u ∈ C(J̇ , E) such that

(
t 7→ tµu(t)

)
∈ BC(J̇ , E) and tµu(t)→ 0

as t→ 0, equipped with the obvious norm.
A solution on [0, T ] is in this case a function v in (0.9) satisfying

v(t) = e−tSv0 +
∫ t

0
e−(t−τ)Sb(v, v)(τ) dτ, 0 ≤ t ≤ T , (0.10)

where S is the Stokes operator −νP∆ (hence S = −ν∆ in the case under consid-
eration) and

b(u, v) := −P (u · ∇)v = −P∇ · (u⊗ v)

on solenoidal vector fields. (In fact, this is a simplified version of Kato’s result (see
[13] and [85]), since in [45] class (0.9) is more restricted.) In [45] it is also shown
that v is global if ‖v0‖Lm is sufficiently small.

The case m = 3 has recently been extensively studied by Cannone and Mey-
er [15] and Cannone [13]. Motivated by a wavelet approach of Federbush [21],
in [15] there is proven an abstract local existence and uniqueness theorem for mild
solutions of (0.1). By a mild solution (in E) of (0.1) on J we mean a function
v ∈ C(J,E) satisfying (0.10) on J , where E is a Banach space of distributions
on which the Stokes semigroup { e−tS ; t ≥ 0 } is strongly continuous and the
integral in (0.10) is well-defined. By means of Littlewood–Paley decompositions,
that is, techniques from harmonic analysis, these authors introduce the concept
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of a Banach space ‘well-suited for the Navier–Stokes equations’. Then they show
that their local existence and uniqueness result holds whenever E is well-suited.
In particular, in [15] (also see [13]) it is shown that Lq is well-suited if q > m = 3.
In the same paper it is also shown that the Sobolev spaces Hs

2 := Hs
2(Ω,Rm) are

well-suited for the Navier–Stokes equations if s > 1/2 (and, of course, m = 3 and
Ω = R3). Thus, if m = 3, there exists for each s > 1/2 and each

v0 ∈ Hs
2,0,σ := { u ∈ Hs

2 ; ∇ · u = 0 }
a unique mild solution

v ∈ C
(
[0, T ),Hs

2,0,σ
)

of the Navier–Stokes equations. (The reason for the index 0 in Hs
2,0,σ will become

clear in (0.17).) Moreover, the existence time T depends on ‖v0‖Hs2 only. This
extends an earlier result of Kato [44] who had to suppose that s > 5/2.

The more general case where v0 belongs to a Bessel potential space

Hs
q := Hs

q (Ω,Rm)

has been investigated by Kato and Ponce [47] for 1 < q <∞ and s > 1 +m/q if
m = 3, and, by different techniques, by Ribaud [66]. The last author assumes that

1 < q <∞, −1 +m/q < s < (m/q) ∧ (1 +m/q)/2

and

v ∈ Hs
q,0,σ := { u ∈ Hs

q ; ∇ · u = 0 }.
Then he proves that (0.1) possesses a local mild solution

v ∈ C
(
[0, T ),Hs

q,0,σ
)
. (0.11)

It is unique if
s ≥ m(1/q − 1/2)+. (0.12)

Otherwise, it is the unique solution in Lr
(
(0, T ), L2q

)
, where

2/r +m/2q < 1. (0.13)

Moreover, u is smooth for t > 0. This result generalizes, in particular, the one
of Kato and Ponce. (In [66] the case of certain parabolic equations is considered
as well, as is being done in many other works. Since here we are interested in
the Navier–Stokes equations we do not comment on those results.) Note that
Hs
q,0,σ contains non-regular tempered distributions if s < 0, which is possible if

q > m.
The situation described so far is not very satisfactory. Indeed, uniqueness is al-

ways, except in Ribaud’s result (0.11), (0.12), proven under additional restrictions
(eg., (0.6) or (0.9)) which are artificial as far as the natural concepts of solutions
are concerned. Uniqueness is only guaranteed if specific classes of functions are
specified a priori, and there is no relation between the different uniqueness the-
orems. This amounts to the fact that ‘each author has his own solutions’ and,
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indeed, as many solutions as he can specify uniqueness classes. (We recall that in
the introduction to Chapter VI of her book [55] Ladyženskaya already points out
the fact that there are infinitely many ‘generalized solutions’ due to the possible
choices of the underlying function spaces.) It is one of the purposes of this paper
to rectify this unpleasant situation.

In order to formulate our main results we introduce suitable subspaces of par-
ticular Besov spaces as follows: if 0 < |s| < 2 we set

nsq := closure of Hs
q in Bsq,∞,

denoting by Bsq,r := Bsq,r(Ω,Rm) Besov spaces. Since

Bsq,1 ↪→ Hs
q ↪→ Bsq,∞, 1 < q <∞, s ∈ R,

the ‘little Nikol’skii spaces’ nsq are well-defined. We also set

nsq,0,σ := { u ∈ nsq ; ∇ · u = 0 }, 1 < q <∞, 0 < |s| < 2,

(if Ω = Rm), and n0
q,0,σ := Lq,σ.

Now we can formulate a preliminary version of our main existence and unique-
ness result. It is implied by Theorem 6.1 and Proposition 6.5.

Proposition 0.1. Suppose that m < q ≤ r <∞ and

v0 ∈ n−1+m/q
q,0,σ .

Then there exists a unique maximal solution v := v(·, v0) of the Navier–Stokes
equations such that

v ∈ C
(
(0, t+),H2

r,0,σ
)
∩ C1((0, t+), Lr,σ

)
(0.14)

and

lim
t→0

v(t) = v0 in n
−1+m/q
q,0,σ

as well as

lim
t→0

t(1−m/q)/2v(t) = 0 in Lq.

Observe that, a priori, Proposition 0.1 guarantees for each r ≥ q a unique maxi-
mal solution vr on the maximal interval of existence [0, t+r ). Since the spaces (0.14)
are not comparable for different values of r it is conceivable that vr 6= vs if r 6= s.
In Proposition 6.5 it is shown that vs ⊃ vr if s > r. This means, in particular, that
t+r ≤ t+s for r < s. Thus, although the solution vr ceases to exist in class (0.14)
at t+r , if t+r <∞, it can be continued to the possibly larger interval [0, t+s ) in the
class which is obtained by replacing H2

r,σ and Lr,σ in (0.14) by H2
s,σ and Ls,σ, re-

spectively. Thus we should obtain a unique maximal solution v, independently of
r > q, by letting r →∞. To give a precise formulation we need some preparation.
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Suppose that {Eα ; α0 < α <∞} is a family of Banach spaces such that
Eα ↪→ Eβ if α < β. Then

⋃
Eα :=

⋃
α>α0

Eα is a vector space with the obvious def-
inition of its linear structure. There exists a finest locally convex topology on

⋃
Eα

such that each one of the natural inclusions

Eβ →
⋃
Eα, x 7→ x

is continuous. The space
⋃
Eα, endowed with this topology, is said to be the direct

limit of the family {Eα ; α > α0 } and denoted by

lim
−→

Eα or lim−→
α

Eα.

Clearly, Eβ ↪→ lim
−→

Eα for β > α0 (cf. [17, Appendix Two], [42, Section 2, § 12]).
In Section 3 it is shown that

n
−1+m/r
r,0,σ ↪→ n

−1+m/s
s,0,σ , m/3 < r < s <∞.

Thus the direct limit

n−1
∞,0,σ := lim−→

r

n
−1+m/r
r,0,σ

is well-defined, and

n
−1+m/r
r,0,σ ↪→ n−1

∞,0,σ, m/3 < r <∞.

Now suppose that u ∈ C
(
[0, t+), lim

−→
Eα
)

for some t+ ∈ (0,∞]. Then we say that
u is well-adapted to lim

−→
Eα if there exist α1 > α0 and, for each α ≥ α1, a number

t+α ∈ (0, t+] such that

t+α = sup
{
t ∈ [0, t+); u(τ) ∈ Eα , 0 ≤ τ ≤ t

}
and

u | [0, t+α ) ∈ C
(
[0, t+α ), Eα

)
.

Note that t+α ≤ t+β if α < β. We call t+α time of maximal existence of u in Eα.
We say that v is a maximal strong solution of the Navier–Stokes equations

if there exists a maximal t+ ∈ (0,∞], the maximal existence time, such that

v ∈ C
(
[0, t+), n−1

∞,0,σ
)
,

v is well-adapted to n−1
∞,0,σ,

v ∈ C
(
(0, t+r ),H2

r,0,σ
)
∩ C1((0, t+r ), Lr,σ

)
for each sufficiently large r > m with t+r being the maximal existence time of v
in n

−1+m/r
r,0,σ , and v satisfies (0.2).

If q > m/3 then v is said to be a strong q-solution on J if

v ∈ C(J, n−1+m/q
q,0,σ ) ∩ C(J̇ ,H2

q,0,σ) ∩ C1(J̇ , Lq,σ)
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and v satisfies (0.2). If v0 ∈ n−1+m/q
q,0,σ and v is a strong q-solution on J then it is

a strong r-solution on J for each r > q. In particular, if v0 ∈ n−1+m/q
q,0,σ and v is a

maximal strong solution then v is a strong r-solution on [0, t+r ) for each r ≥ q.
After these preparations we can formulate a simplified version of our main

existence and uniqueness theorems for strong solutions of (0.1).

Theorem 0.2. Suppose that m/3 < q <∞ and v0 ∈ H−1+m/q
q,0,σ .

(i) There exists a unique maximal strong solution v := v(·, v0) of the Navier–
Stokes equations satisfying

lim
t→0

v(t) = v0 in H−1+m/q
q

and, if q > m,

lim
t→0

t(1−m/q)/2v(t) = 0 in Lq.

It is smooth for t > 0, that is,

v ∈ C∞
(
Ω× (0, t+),Rm

)
,

where t+ := t+(v0) is the maximal existence time of v.
(ii) If

v0 ∈ F sq,0,σ ∈ {Hs
q,0,σ, B

s
q,r,0,σ, n

s
q,0,σ ; 1 ≤ r <∞}

for some s ∈ ((−1 +m/q)+, 2] then

lim
t→0

v(t) = v0 in F sq,0,σ.

(iii) If q ≥ m then

v ∈ Lr
(
(0, T ), Ls

)
, 0 < T < t+q ,

for all r ∈ [2,∞] and s ∈ [m,∞) satisfying 2/r +m/s = m/q.
(iv) Given T > 0, there exists R > 0 such that

t+(v0) > T for ‖v0‖
n
−1+m/q
q,0,σ

≤ R.

Proof. This is a consequence of Theorem 11.1, Corollary 11.2, and Remarks 9.5(a)
and 11.3(e). �

Of course,

Bsq,r,0,σ = { u ∈ Bsq,r ; ∇ · u = 0 }

(if Ω = Rm). Also note that

F sq,0,σ ↪→ H
−1+m/q
q,0,σ , s > −1 +m/q. (0.15)
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Next we show that all solutions described above coincide on their intervals of
existence with the strong solution v(·, v0). This will be entailed by Theorem 0.2
and the following result.

Theorem 0.3. Suppose that q ≥ m and v0 ∈ Lq,σ.
(a) The following are equivalent:

(i) u is a very weak solution in C
(
[0, T ), Lq,σ

)
.

(ii) u is a mild solution in Lq,σ on [0, T ).
(iii) u is a strong q-solution in C

(
[0, T ), Lq,σ

)
.

(b) v(·, v0) is a mild solution in Lq,σ on [0, t+q ).

Proof. (a) follows from Theorems 6.1 and 7.2 (also see Remark 5.7(a)), and (b) is
implied by (a) and Theorem 7.2. �

A result related to parts (i) and (ii) of this theorem has also been shown by
Fabes, Jones, and Rivière [18] using crucially the fact that the Stokes semigroup
as well as the Helmholtz projector possess rather explicit representations on Rm.

Now it is easy to derive the desired uniqueness result guaranteeing that all
solutions described up to now coincide on their respective intervals of existence if
their initial values coincide.

Theorem 0.4. Suppose that q > m/3. Then v(·, v0) ⊃ v whenever v is one of the
solutions described above and v0 = v(0).

Proof. (i) Suppose that q > m and v0 ∈ Lq,σ. It follows from Theorem 0.2(iii),
Hölder’s inequality (see the proof of Remark 9.5(b)), and Theorem 0.3 that v(·, v0)
is a very weak solution in Lr

(
(0, T ), Ls

)
for 0 < T < t+q , where r and s satisfy (0.6).

Since the Fabes, Jones, and Rivière solution v is the only one in this class it follows
that v(·, v0) ⊃ v. The same argument applies to Calderón’s solution if q = m.

(ii) If q > m then v(·, v0) is continuous from [0, t+q ) into Lq,σ. Hence it is con-
tinuous from [0, t+q ) into the weak topology of Lq,σ. Theorem 0.3 guarantees that
v(·, v0) is a very weak solution on [0, t+q ). Since the solution v constructed by Beirão
da Veiga is the only very weak solution in this class we infer that v(·, v0) ⊃ v.

(iii) Let v0 ∈ Hs
q,0,σ with s ≥ (−1 +m/q)+. Then v0 ∈ Lq,σ if q ≥ m, and Theo-

rem 3.10 guarantees that v0 ∈ Lm,σ if q < m. Thus v(·, v0) ∈ C
(
[0, t+q ), Lq∨m

)
and

is the only mild solution in this class by Theorem 0.2(i) and Theorem 0.3. Hence,
if v is any one of the solutions obtained by Kato [44], [45], Kato and Ponce [47],
Ribaud [66], Cannone and Meyer [15], and Cannone [13], it follows from

Hs
q,0,σ ↪→ H

(−1+m/q)+
q,0,σ ↪→ Lq∨m,σ

and the continuity of v as a map into Hs
q,0,σ that v(·, v0) ⊃ v. �
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The following remark implies that, in a suitable sense, v(·, v0) is also indepen-
dent of q.

Remark 0.5. Let the hypotheses of Theorem 0.2 be satisfied and fix any p > q.
Then

H
−1+m/q
q,0,σ ↪→ H

−1+m/p
p,0,σ

by Theorem 3.10. Hence we obtain unique maximal strong solutions vq(·, v0) and
vp(·, v0) if we apply Theorem 0.2 to v0 ∈ H−1+m/q

q,0,σ or to v0 ∈ H−1+m/p
p,0,σ , respec-

tively. However, vq(·, v0) ⊂ vp(·, v0).

Proof. This follows from Proposition 6.5. �

The following theorem, combined with (0.15), shows that v(·, v0) blows up
near t+ in each norm which is stronger than the H−1+m/q

q -norm if v(·, v0) does
not exist globally. In addition, it contains an estimate for the blow-up rate.

Theorem 0.6. Suppose that m/3 < q <∞ and v0 ∈ H−1+m/q
q,0,σ . Put v := v(·, v0).

(i) If t+ <∞ then

lim
t→t+

‖v(t)‖Hsr,0,σ =∞

for every r > m with r ≥ q and every s > −1 +m/r.
(ii) Suppose that r > m with r ≥ q and −1 +m/r < s ≤ 0. Then

‖v(t)‖Hsr,0,σ ≥ c
/

(t+ − t)(s+1−m/r)/2, 0 < t+ − t ≤ 1,

where c > 0 is independent of v0.

Proof. This follows from Remarks 11.3(a) and (b). �

Now we turn to the much more complicated case Ω 6= Rm. For simplicity, we
assume, in addition to (0.3), that

either Ω has a compact boundary
or Ω is a half-space in Rm.

(0.16)

Many of the results described below hold for more general domains. For this we
refer to the main body of this paper.

First we have to give a meaning to Hs
q,0,σ := Hs

q,0,σ(Ω,Rm) in this case. We set

Hs
q,0,σ :=

{
{ u ∈ Hs

q ; ∇ · u = 0, u |∂Ω = 0 },
{ u ∈ Hs

q ; ∇ · u = 0, u · ~n = 0 },
1/q < s ≤ 2,

0 ≤ s < 1/q,
(0.17)

where ~n is the outer unit-normal field on ∂Ω. Of course, u · ~n and u |∂Ω are to be
understood in the sense of traces (see Sections 2 and 3). It follows that

H0
q,0,σ = Lq,σ.
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We also put

H
1/q
q,0,σ :=

{
u ∈ H1/q

q (Rm,Rm) ; supp(u) ⊂ Ω, ∇ · u = 0, u · ~n = 0
}
. (0.18)

Of particular interest is the case q = 2 where Remark 2.5(a) implies

H
1/2
2,0,σ :=

{
u ∈ H1/2

2 ; ∇ · u = 0, u · ~n = 0, d−1/2u ∈ L2
}

with d(x) := 1 ∧ dist(x, ∂Ω) for x ∈ Ω, and where H1/2
2,0,σ is given the norm

u 7→
(
‖u‖2

H
1/2
2

+ ‖d−1/2u‖2L2

)1/2
.

Similarly, we define Bsq,r,0,σ, 1 ≤ r <∞, and nsq,0,σ for 0 ≤ s ≤ 2 by replacing Hs
q

in (0.17) and (0.18) by Bsq,r and nsq, respectively.
Next we set

H−sq,0,σ := (Hs
q′,0,σ)′, 0 < s ≤ 2,

by means of the Lq,σ-duality pairing, where q′ := q/(q − 1) is the dual exponent
of q ∈ (1,∞). Due to the presence of a nonempty boundary these ‘negative’ spaces
do not allow an easy characterization similar to the one for the case Ω = Rm.
In fact, it follows from Proposition 2.4 and Theorem 3.5 that in the presently
most interesting case where s ≤ 1, the elements of H−sq,0,σ can be identified with
equivalence classes of distributions in H−sq , where two distributions in H−sq are
equivalent if they differ by the gradient of an appropriately smooth function only.
For a useful characterization of the distributions belonging to H−sq for 0 < s ≤ 1
we refer to Theorem 2.1.

We also put

B−sq,r,0,σ := (Bsq′,r′,0,σ)′, 1 < r ≤∞, 0 < s < 2,

by means of the Lq,σ-duality pairing, and

n−sq,0,σ := closure of Lq,σ in B−sq,∞,0,σ, 0 < s < 2,

(see Sections 2 and 3 for more details).
Lastly, we have to redefine the concept of a very weak solution by taking into

account the presence of the boundary. For simplicity, we restrict ourselves here to
the case q ≥ m. Then a very weak q-solution on J of (0.1) (with f = 0) is a
function v ∈ C(J, Lq,σ) satisfying (0.7) for all

ϕ ∈ L1(J,H2
q′,0,σ) ∩W 1

1 (J, Lq′,σ)

having compact support in J∗ := J \sup(J). (In Remark 7.1(c) it is shown that
this definition coincides with the earlier one if Ω = Rm.)

With these definitions Proposition 0.1 remains true if assumption (0.4) is re-
placed by (0.16). Hence the concept of a maximal strong solution of the Navier–
Stokes equations is well-defined in this case also.

Theorem 0.7. Let condition (0.16) be satisfied. Then Theorems 0.2, 0.3, 0.6, and
Remark 0.5 are true.
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Proof. This follows from the fact that all theorems from the main body of this
paper, referred to so far, are also valid if (0.16) is satisfied. �

In the remainder, Ω is said to be a standard domain if either Ω = Rm or
Ω satisfies (0.16).

The most important concept of a solution in the theory of the Navier–Stokes
equations is probably the one of a weak solution. If v0 ∈ L2,σ then

u ∈ L∞(J, L2,σ) ∩ L2(J,H1
2 )

is a weak solution on J of (0.1) (with f = 0), provided∫
J

{
−〈ϕ̇, u〉+ ν〈∇ϕ,∇u〉 +

〈
ϕ, (u · ∇)u

〉}
dt =

〈
ϕ(0), u0〉

for all ϕ ∈ D(J∗,Dσ). It is a global weak solution if it is a weak solution on [0, T ]
for every T > 0. As is well-known, thanks to Leray [57] and Hopf [41], there ex-
ists for each v0 ∈ L2,σ at least one global weak solution v satisfying the energy
inequality

‖v(t)‖2L2
+ 2ν

∫ t

0
‖∇v(τ)‖L2 dτ ≤ ‖v0‖2L2

, t > 0, (0.19)

a Leray–Hopf weak solution. Uniqueness and smoothness are open problems.
(We refer to the surveys by Galdi [27] and Wiegner [85] for more details, as well
as to [27], Lions [58], and Temam [75] for (modernized versions of) the existence
proofs.)

The following theorem guarantees uniqueness and smoothness on the maximal
existence interval of the strong solution v(·, v0).

Theorem 0.8. Suppose that Ω is a standard domain and v0 ∈ L2,σ ∩ Lq,σ for
some q ≥ m. Then

(i) v := v(·, v0) is a weak solution on [0, T ] for every T ∈ (0, t+). It belongs to
C
(
[0, t+), L2

)
and satisfies the strong energy equality

‖v(t)‖2L2
+ 2ν

∫ t

s

‖∇v(τ)‖2L2
dτ = ‖v(s)‖2L2

, 0 ≤ s < t < t+.

(ii) If u is any Leray–Hopf weak solution then u ⊃ v(·, v0). In particular, u is
smooth on (0, t+).

Proof. (i) follows from Remarks 10.2(a) and 11.3(d), and (ii) is a special case of
Theorem 11.4. �

Given the postulated hypotheses, Theorem 0.8 guarantees local uniqueness and
smoothness for Leray–Hopf weak solutions without further restrictions. In partic-
ular, if v(·, v0) exists globally then there is a unique Leray–Hopf weak solution and
it is smooth for t > 0. This is in contrast to the known uniqueness theorems of
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Foias [22], Prodi [64], Serrin [68], Fabes, Jones, and Rivière [18], Masuda [60], Sohr
and von Wahl [73], von Wahl [80], Kozono and Sohr [51] which are conditional in
the sense that they require the solution to belong to more restricted classes.

It is well-known that Leray–Hopf weak solutions with appropriately regular
initial values are smooth as long as there exist strong solutions with the same initial
values (e.g., [31], [45] and others; see the surveys by Galdi [27] and Wiegner [85]).
The new fact is the (unconditional) uniqueness assertion.

The first local regularity results for weak solutions of the Navier–Stokes equa-
tions are due to Kiselev and Ladyženskaya [48] (also see the exposition in [55]
and related work of Sobolevskii [70], [71]). This research has been considerably
improved by Solonnikov [74] who, by means of potential theoretic estimates, es-
tablished the local existence of strong q-solutions in Sobolev and Hölder spaces
under the assumption that m = 3 and Ω has a compact boundary, provided v0 is
sufficiently regular. Using those results which, by the way, are optimal as far as
regularity in the classes under consideration goes, Solonnikov could also prove
existence, but not uniqueness, of a local solution for v0 ∈ L3,σ.

Temporarily, we now suppose that

Ω is bounded.

Given this assumption, Sobolevskii and, independently, Kato and Fujita [23], [46]
were the first to employ semigroup theory and, in particular, the technique of
fractional powers in the study of the Navier–Stokes equations. In [23], improving
the results of [46], it is shown that, if m = 3 and v0 ∈ H1/2

2,0,σ, there exist T > 0
and a unique strong 2-solution v in C

(
[0, T ], L2,σ

)
satisfying

lim
t→0

t1/4 ‖v(t)‖H1
2

= 0.

Extending the Kato-Fujita approach from the Hilbert to a Banach space setting,
Miyakawa [61] assumed that q > m and v0 ∈ Lq,σ and proved the existence of
T > 0 and of a unique mild solution v in

C
(
[0, T ], Lq,σ

)
∩ Cs/2

(
(0, T ],Hs

q,0,σ
)

for some s ∈ (1, 3/2). Miyakawa also showed that v is a weak solution on [0, T ]
satisfying the energy inequality.

Semigroup theory and fractional powers have also been used by v. Wahl [80] to
get local strong solutions. He assumes that v0 ∈ Lq,σ with q ≥ m and establishes
the existence of r ∈ (0, 1) and of a unique maximal mild solution v of (0.1) in

C
(
[0, t+q ), Lq,σ

)
∩ Cr/2

(
(0, t+q ),Hr

q,0,σ
)
.

In addition, v. Wahl proves higher regularity results and studies also the case
m/3 < q < m with v0 ∈ H2

q,0,σ.
Those results have been considerably improved by Giga and Miyakawa [32]:

suppose that

q > m/3, −1 +m/q ≤ s < 2, v0 ∈ Hs
q,0,σ.
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Then, given any r ∈
(
s, 2 ∧ (2 + s)

)
, in [32] it is shown that there exists a mild

solution
v ∈ C

(
[0, T ],Hs

q,0,σ
)
∩ C(r−s)/2

(
[0, T ],Hr

q,0,σ
)
. (0.20)

Moreover, any mild solution satisfying (0.20) for some r > |s| is unique. In [32] it
is also shown that v is smooth for t > 0.

The results of Giga and Miyakawa also extend earlier results of Weissler [82].
Similar results involving other restrictions on r are contained in Grubb [37] who,
however, treats other boundary conditions also.

Remarks 0.9. (a) In none of the papers of Kato and Fujita [23], [46], Miyaka-
wa [61], v. Wahl [80], and Giga and Miyakawa [32] do the spaces Hs

q,0,σ occur
explicitly. Indeed, all results in those works are formulated in terms of fractional
powers of the Stokes operator Sq on Lq,σ (as is the case in many other papers).
However, it follows from a result of Giga [30] on the boundedness of the imaginary
powers of Sq that

D(Sθq ) .= [Lq,σ,H2
q,0,σ]θ, 0 < θ < 1,

where [·, ·]θ, 0 < θ < 1, are the complex interpolation functors. Using this,

[Lq,σ,H2
q,0,σ]θ

.= H2θ
q,0,σ, 0 < θ < 1,

(see Theorem 2.2) and Theorem 3.4, we obtain the statements given above.

(b) In all of the above work it is also shown that the respective solutions are global
if v0 is sufficiently small in the respective norm. Furthermore, a non-vanishing
force f is admitted too. �

Kobayashi and Muramatu [49] have presented a variant of the work of Giga and
Miyakawa by introducing a class of abstract Besov spaces constructed by means
of fractional powers of the Stokes operator. Their results amount essentially to
replacing Hs

q,0,σ by nsq,0,σ, although this is shown nowhere. In particular, in [49]
there is given no concrete characterization of these abstract Besov spaces.

Giga [31] and, more recently, Wiegner [85] present existence proofs using Kato’s
ideas [45]. (Also see the work of Weissler [81], [82], [83].) This approach is not based
on fractional powers but on Lp-Lq-estimates for the Stokes semigroup (cf. [85], for
example, for definitions). The required Lp-Lq-estimates are known to hold if Ω is
a standard domain (e.g., see [45] if Ω = Rm, [7] and [78] if Ω is a half-space, [31] if
Ω is bounded, and [43] if Ω is an exterior domain). Thus we assume that

Ω is a standard domain.

Then Giga’s [31] results imply that, given v0 ∈ Lq,σ with q ≥ m, there exist T > 0
and a unique mild solution v in

C
(
[0, T ], Lq,σ

)
∩ C1/r

(
(0, T ], Ls,σ

)
∩ Lr

(
(0, T ), Ls,σ

)
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where r, s ∈ (q,∞) satisfy 2/r +m/s = m/q. If v0 is sufficiently small in Lm then
T =∞. If u ∈ C

(
[0, t∗), Lr,σ

)
is a maximal mild solution for some r > m then

‖u(t)‖Lr ≥ c
/

(t∗r − t)(1−m/r)/2. (0.21)

Furthermore, if v0 ∈ L2,σ ∩ Lq,σ then v is a weak solution satisfying the energy
inequality. (To be more precise: assumption (A) in [31] is covered by the Lp-Lq-
estimates. For condition (NI) one has to invoke Theorem 4.2 of this paper.)

Suppose that v0 ∈ Lm,σ. Then Wiegner’s [85] theorem implies the existence of
a unique maximal mild solution v ∈ C

(
[0, t∗m), Lm,σ

)
satisfying

sup
0<t<T

t1/2 ‖∇v(t)‖Lm + sup
0<t<T

t(1−m/s)/2 ‖v(t)‖Ls <∞

for 0 < T < t+m and s > m. Moreover,

v ∈ Lr
(
(0, T ), Ls

)
, 0 < T < t+m,

provided s > m and 2/r + s/m = 1. Finally, t+ =∞ if v0 is sufficiently small
in Lm.

Kozono and Nakao [50] assume that m ≥ 4 and either Ω = Rm, a half-space, or
an exterior domain, and that v0 ∈ Lm,σ ∩ Lr,σ with r > m. Then they prove the ex-
istence of a unique local strong m-solution v. They also show that v ∈ C

(
[0, T ], Lr

)
and establish estimate (0.21).

Similarly as in the case where Ω = Rm, we can show that all solutions described
above are restrictions of the maximal strong solution v(·, v0) of Theorem 0.2.

Theorem 0.10. Let Ω be a standard domain. If v is any one of the solutions
described above then v(·, v0) ⊃ v, provided v0 = v(0).

Proof. (a) Assume that v0 = v(0) ∈ Hs
q,0,σ with s ≥ (−1 +m/q)+. Then Theo-

rem 0.2 guarantees that v(·, v0) is the unique maximal strong solution u satisfying
u(t)→ v0 in Hs

q,0,σ as t→ 0. In particular, v(·, v0) is the only strong q-solution in
C
(
[0, t+q ),Hs

q,0,σ
)
. By Theorem 0.3 and the cited results, v belongs to (a proper

subclass of) C
(
[0, t+q ),Hs

q,0,σ
)
. Hence v(t) = v(t, v0) for 0 ≤ t < t+q .

(b) It remains to consider the case v0 ∈ Hs
q,0,σ with −1 +m/q ≤ s < 0 which is

admissible — under some restrictions — in the results of Giga and Miyakawa [32]
and Grubb [37]. But in this case the assertion is a consequence of Theorem 6.1,
Proposition 6.4, and the construction of v(·, v0) in the proof of Theorem 11.1. �

We point out that Kozono and Yamazaki [52] study the well-posedness of the
Navier–Stokes equations on Rn by assuming that v0 belongs to certain spaces of
Besov type which are constructed by means of Morrey instead of Lebesgue spaces.
The same authors consider in [53] initial data in Lm,∞ + Lq for some q > m, where
Lm,∞ is a Lorentz space and Ω is an exterior domain. Those results do not seem
to be comparable to the ones of this paper.



30 H. Amann JMFM

Now we can comment on some of the improvements of our results over the
existing ones.
• Our theorems generalize and improve almost all of the previous existence and

uniqueness results (known to us).
• We give rather precise descriptions of the spaces of initial values, in contrast

to abstract statements to the effect that v0 belongs to some fractional power space.
• If v0 ∈ Hs

q,0,σ with s ≥ (−1 +m/q)+ then Theorem 0.2 guarantees existence
and uniqueness under the sole (natural) assumption that the solution be continuous
at t = 0 in Hs

q,0,σ. Almost all of the existence results known so far require additional
restrictions.
• We can admit initial values in the negative space H−1+m/q

q,0,σ , or even in the

space n−1+m/q
q,0,σ , with arbitrarily large q > m. This is the first result of this type if

Ω is an exterior domain.
• The blow-up results given in Theorem 0.6 generalize (0.21) by showing that

already weaker norms than the Lr-norm blow up if t+ is finite.
• The equivalences given in Theorem 0.3(a) are of independent interest.
It follows from the results of Kato [45], Giga [31], and Wiegner [85], for example,

and from Theorems 0.4 and 0.10 that v(·, v0) exists globally if v0 ∈ Lm,σ and
‖v0‖Lm is sufficiently small. Recently, this has been considerably improved by
Cannone [13], [14] if Ω = R3. Under this assumption he shows that, given q ∈ (3, 6],
the Navier–Stokes equations (with f = 0) possess a unique global mild solution

v ∈ BC(R+, L3,σ) ∩ C
(
(0,∞), Lq

)
satisfying

‖v(t)‖Lq ≤ ct−1+3/q, t > 0,

whenever v0 ∈ L3,σ and the norm of v0 is sufficiently small in the homogeneous
Besov space Ḃ−1+3/q

q,∞ . To be small in Ḃ−1+3/q
q,∞ is a much weaker condition than to

be small in L3. Cannone’s proof rests heavily on the fact that the boundary of Ω
is empty since he uses that the Stokes semigroup reduces to the heat semigroup
and the Helmholtz projector has a rather explicit representation by means of Riesz
operators. In addition, essential use is made of the representations of Besov spaces
by means of Littlewood–Paley decompositions on the Fourier side.

Using the particularly simple geometry of a half-space in R3, allowing a re-
flection argument, together with Ukai’s representation formula for the Stokes op-
erator [78] Cannone, Planchon, and Schonbek [16] extended this global existence
theorem to the case where Ω is a half-space in R3.

The starting point for our paper was the question whether Cannone’s result
could be proven for other domains as well; for example, if Ω is bounded. In this
case homogeneous Besov spaces are not meaningful anymore since they are not
invariant under local diffeomorphisms and since they involve conditions on the be-
havior of their members at infinity. Natural substitutes are the (nonhomogeneous)
spaces B−1+m/q

q,∞ . However, due to the presence of a nonempty boundary, the situ-
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ation is more complicated. Moreover, Fourier analysis is no longer useful directly.
Thus we use semigroup theory to prove the following result.

Theorem 0.11. Suppose that Ω is bounded, q > m/3, and 0 ≤ ω < λ0, where
λ0 is the smallest eigenvalue of the Stokes operator. Then, given any r > m with
r ≥ q and v0 ∈ H−1+m/q

q,0,σ , the solution v(·, v0) exists globally and satisfies

‖v(t, v0)‖Lr ≤ ct−1+m/re−ωt, t > 0, (0.22)

provided the norm of v0 is sufficiently small in n
−1+m/r
r,0,σ .

Proof. This is a special case of Theorem 11.6. �

Remarks 0.12. (a) Suppose that v0 ∈ H(−1+m/q)+
q,0,σ . Then

v0 ∈ H−1+m/q
q,0,σ ↪→ n

−1+m/q
q,0,σ ↪→ n

−1+m/r
r,0,σ , r > q,

by Corollary 3.11. Moreover, Proposition 2.4 and Remark 3.6 imply

‖v0‖
n
−1+m/r
r,0,σ

≤ c ‖v0‖
B
−1+m/r
r,∞

.

Hence in this case (in particular, if v0 ∈ Lm,σ) it follows that v(·, v0) exists globally
and satisfies (0.22) whenever the norm of v0 is sufficiently small in B

−1+m/r
r,∞ for

some r > m with r ≥ q. Thus Theorem 0.11 is indeed the analogue to Cannone’s
result for the case where Ω is bounded. Note, however, that we can allow rather
rough initial values.

(b) Theorem 0.11 remains true if the assumption that Ω be bounded is replaced by
the hypothesis that the Stokes operator is well-defined and the Stokes semigroup
is exponentially decaying.

(c) Suppose that v0 ∈ L2,σ ∩ Lq,σ for some q ≥ m. Also suppose that either
(i) v0 is small in n

−1+m/r
r,∞ for some r > m with r ≥ q and Ω is bounded,

or
(ii) v0 is small in Lq,

or
(iii) Ω equals either R3 or a half-space in R3, q = m, and v0 is small in Ḃ−1/2

6,∞ .
Then there exists exactly one Leray–Hopf weak solution and it is smooth for t > 0.

Proof. This follows from Theorems 0.8(ii) and 0.2(i) since v(·, v0) exists globally.
Indeed, in case (i) this is guaranteed by Theorem 0.11. If v0 is small in Lq then
t+ =∞ is a consequence of the results cited above and of Theorems 0.7 and 0.10.
Lastly, if (iii) is satisfied then t+ =∞ is implied by the results of Cannone [13] and
Cannone, Planchon, and Schonbek [16], respectively, since their solutions coincide
with v(·, v0) thanks to the fact that they belong to C(R+, L3,σ). �
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Note that Ḃ−1+3/r
r,∞ ↪→ Ḃ

−1/2
6,∞ for 3 < r ≤ 6.

Finally, we give a brief outline of the contents of the following sections. In
Section 1 we collect the basic facts on the interpolation-extrapolation theory which
are fundamental for our approach. In contrast to all the other work, our results are
neither based on fractional powers nor on Lp-Lq-estimates. In fact, it does not seem
to be possible to obtain sharp results without using interpolation-extrapolation
techniques.

In Section 2 we introduce the underlying function spaces which are related to
the Dirichlet problem for the Laplace operator. These results are then used in
Section 3 to find concrete realizations of the interpolation-extrapolation spaces for
the Stokes operator. In the presence of a boundary this is rather complicated. We
also prove natural extensions of Sobolev type embedding theorems for the spaces
Hs
q,0,σ and nsq,0,σ, being by no means obvious. This rather long section is basic for

a good understanding of the occurring spaces of distributions.
In Section 4 we study continuity properties of the nonlinear convection term.

In this investigation — as in other places also — Lemma 3.3 plays a crucial rôle
since it allows to get rid of the non-local Helmholtz projection. By this way we
obtain sharp results which improve on all continuity estimates known so far.

In Section 5 we develop a complete and self-contained existence, uniqueness,
and regularity theory for abstract parabolic evolution equations with quadratic
nonlinearities. By means of interpolation theory we get optimal results which can-
not be obtained by the theory of fractional powers. Of course, the existence part
rests on the contraction mapping principle and is, in this respect, close to but dif-
ferent from the work of von Wahl (see Theorem II.3.3 in [80]) and also Kato [45].

The basic existence, uniqueness and regularity result for strong q-solutions of
the Navier–Stokes equations under minimal requirements on v0 and f is Theo-
rem 6.1. It is more or less a straightforward application of the results in Section 5,
except for the regularity assertions. For those we rely on some general results of
the author [5]. Theorem 6.2 guarantees global existence for small data and under
appropriate assumptions on the Stokes operator. In the remainder of Section 6
it is shown that the maximal strong q-solution is essentially independent of the
occurring parameters.

In Section 7 we discuss very weak q-solutions and show that they are the same
as mild solutions. In the next section we prove a uniqueness theorem for very weak
q-solutions (Theorem 8.2). Our proof is rather simple and different from related
ones of Lions and Masmoudi [59] and Monniaux [63]. Whereas, up to this point,
we only had to assume that the Stokes operator is well-defined and generates an
analytic semigroup, now we have to rely on maximal regularity in Lm,σ if q = m.
For this it is sufficient to know that Sm has bounded imaginary powers. This
assumption imposes (at our present state of knowledge) restrictions on Ω (which
are met if Ω is a standard domain).

Section 9 is devoted to integrability properties of very weak q-solutions, and in
Section 10 we study weak solutions. In particular, we show — given rather general
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hypotheses on Ω — that very weak q-solutions are weak solutions satisfying the
strong energy equality. From this we obtain a (local) uniqueness theorem for Leray–
Hopf weak solutions under rather general conditions (Theorem 10.3).

Finally, in the last section we prove the existence of a unique maximal strong
solution and show that it possesses all the properties described in the theorems of
this introduction. This is true for nonvanishing outer forces also. For simplicity, we
do not give the most general hypotheses on f but restrict ourselves to relatively
simple ones. Obvious generalizations are left to interested readers.

1. Interpolation–extrapolation scales

Throughout this paper all vector spaces are over the reals. If there occur, explicitly
or implicitly, complex numbers then the corresponding statements always refer to
the respective complexifications. Furthermore, c stands for various positive con-
stants which may differ from occurrence to occurrence but are always independent
of the free variables in a given equation. For ξ, η ∈ R we set ξ ∨ η := max{ξ, η}
and ξ ∧ η := min{ξ, η}, as well as ξ+ := ξ ∨ 0.

Let E and F be Banach spaces. We write E ↪→ F if E is continuously injected
in F , that is, E is a linear subspace of F and the natural injection x 7→ x from E

into F is continuous. If E is also dense in F then we express this by E
d
↪→ F . In this

case (F,E) is said to be a densely injected Banach couple. We also write E .= F if
E ↪→ F and F ↪→ E, that is, if E equals F except for equivalent norms.

By L(E,F ) we mean the Banach space of all bounded linear operators from E
into F , and L(E) := L(E,E). If G is a third Banach space then L(E,F ;G) is
the Banach space of all continuous bilinear maps from E × F into G. We also set
L2(E,F ) := L(E,E;F ).

We denote by E′ := L(E,R) the dual of E and by 〈·, ·〉E the duality pairing
between E′ and E, so that 〈x′, x〉E is the value of x′ ∈ E′ at x ∈ E.

Given ω ∈ R, we write A ∈ G(E,ω) if −A generates a strongly continuous
semigroup { e−tA ; t ≥ 0 } on E, that is, in L(E), such that there exists M ≥ 1
satisfying

‖e−tA‖ ≤Meωt, t ≥ 0.

The infimum of all such ω is the growth bound or the type, type(−A), of −A.
Let (E0, E1) be a densely injected Banach couple. Then H(E1, E0) is the set

of all A ∈ L(E1, E0) such that −A, considered as a linear operator in E0 with
domain E1, generates a strongly continuous analytic semigroup on E0.

In the following we make free use of interpolation theory and refer to Sec-
tion I.2 of [5] for a summary. As usual, we denote by [·, ·]θ the complex, by (·, ·)θ,r,
1 ≤ r ≤ ∞, the real, and by (·, ·)0

θ,∞ the continuous interpolation functors of ex-
ponent θ ∈ (0, 1).
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For convenience, we recall that

(E0, E1)0
θ,∞ is the closure of E1 in (E0, E1)θ,∞. (1.1)

We set Eθ,r := (E0, E1)θ,r and E0
θ,∞ := (E0, E1)0

θ,∞. Then

E1
d
↪→ Eθ,1

d
↪→ Eθ,r

d
↪→ E0

θ,∞ ↪→ Eθ,∞
d
↪→ Eϑ,1

d
↪→ E0 (1.2)

for 0 < ϑ < θ < 1 and 1 < r <∞, and

Eθ,1
d
↪→ E[θ] := [E0, E1]θ

d
↪→ E0

θ,∞, 0 < θ < 1. (1.3)

Now we collect some basic facts about interpolation-extrapolation scales. Proofs
and many more details are contained in [5, Chapter V].

Let (E0, E1) be a densely injected Banach couple such that E := E0 is reflexive.
Suppose that A ∈ H(E1, E0). Then E1

.= D(A), where D(A) is the domain of A
endowed with its graph norm. Set Ek := D(Ak) for k ∈ N with k ≥ 2. Also set
E] := E′ and A] := A′, where A′ is the dual of A in E in the sense of unbounded
linear operators. Finally, let E]k := D

(
(A])k

)
for k ∈ N. Then we define E−k for

k ∈ N× := N\{0} by E−k := (E]k)′ with respect to the duality pairing (induced
by) 〈·, ·〉E . This means the following: E−k is the dual space of E]k and

〈x], x〉E−k = 〈x], x〉E , x ∈ Ek, x] ∈ E]. (1.4)

Since E]k
d
↪→ E], it follows that (E])′ = E

d
↪→ (E]k)′ by reflexivity and the Hahn-

Banach theorem. Thus, by density, 〈·, ·〉E−k , and hence E−k, is uniquely deter-
mined by (1.4).

For each θ ∈ (0, 1) we fix

(·, ·)θ ∈
{

[·, ·]θ, (·, ·)θ,r, (·, ·)0
θ,∞ ; 1 ≤ r <∞

}
(1.5)

and put Ek+θ := (Ek, Ek+1)θ for k ∈ Z. It follows that

Eα
d
↪→ Eβ , −∞ < β < α <∞. (1.6)

If α ≥ 0 then we denote by Aα the maximal restriction of A to Eα whose do-
main equals { x ∈ Eα ∩E1 ; Ax ∈ Eα }. If α < 0 then Aα is the closure of A
in Eα. It follows that Aα is well-defined for α ∈ R, and A0 = A. The family[

(Eα, Aα) ; α ∈ R
]

is said to be the interpolation-extrapolation scale gen-
erated by (E,A) and (·, ·)θ, 0 < θ < 1.

One shows that Aβ is the closure of Aα in Eβ if β < α. Furthermore,

Aα ∈ H(Eα+1, Eα), α ∈ R, (1.7)

and A ∈ G(E,ω) implies Aα ∈ G(Eα, ω) for α ∈ R. In addition,

e−tAβ ⊃ e−tAα , t ≥ 0, β < α. (1.8)
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Now we define the dual interpolation functor (·, ·)]θ of (·, ·)θ by

(·, ·)]θ :=


[·, ·]θ if (·, ·)θ = [·, ·]θ,
(·, ·)θ,1 if (·, ·)θ = (·, ·)0

θ,∞,

(·, ·)θ,r′ if (·, ·)θ = (·, ·)θ,r, 1 < r <∞,
(1.9)

where r′ := r/(r − 1). Then we abbreviate the interpolation-extrapolation scale
generated by (E], A]) and (·, ·)]θ, 0 < θ < 1, by

[
(E]α, A

]
α) ; α ∈ R

]
and call it

interpolation-extrapolation scale dual to
[

(Eα, Aα) ; α ∈ R
]
.

If (·, ·)θ 6= (·, ·)θ,1 for 0 < θ < 1 then

(E−α)′ .= E]α, (A−α)′ = A]α, α ∈ R, (1.10)

with respect to the duality pairing 〈·, ·〉E−α induced by 〈·, ·〉E .
We denote by[

(Eα,1, Aα,1) ; α ∈ R
]

and
[

(E0
α,∞, A

0
α,∞) ; α ∈ R

]
the interpolation-extrapolation scales generated by (E,A) and the functors (·, ·)θ,1
and (·, ·)0

θ,∞, respectively, for 0 < θ < 1. (This notation is consistent with the one
used in (1.2).)

Lemma 1.1. Suppose that 0 ≤ α ≤ 1. Then

(Eα−1, Eα)θ,1
.= Eα−1+θ,1, (Eα−1, Eα)0

θ,∞
.= E0

α−1+θ,∞ (1.11)

for 0 < θ < 1 with α+ θ 6= 1. Furthermore,

(Eα−1, Eα)θ,1
d
↪→ Eα−1+θ

d
↪→ (Eα−1, Eα)0

θ,∞, 0 < θ < 1. (1.12)

Proof. It follows from Theorem V.1.5.7 and Corollary V.1.5.8 of [5] (if one sets
(·, ·)θ := {·, ·}θ := (·, ·)θ,1) that

(Eα−1,1, Eα,1)θ,1
.= Eα−1+θ,1, 0 < θ < 1, α+ θ 6= 1. (1.13)

Since

(Ej−1, Ej)α,1 ↪→ Eα+j−1 ↪→ (Ej−1, Ej)0
α,∞, 0 < α < 1, (1.14)

for j = 0, 1, the reiteration theorem (cf. (I.2.8.7) in [5]) and (1.13) imply the first
assertion in (1.11). The second one follows by replacing (·, ·)θ,1 by (·, ·)0

θ,∞ in this
argument.

Fix µ > type(−A) and note that Ej
.= D

(
(µ+A−1)j+1

)
for j ∈ {0, 1}. Thus

(cf. (I.2.9.6) in [5])

(E−1, E1)1/2,1
d
↪→ E0

d
↪→ (E−1, E1)0

1/2,∞. (1.15)
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If 0 < α < 1 then, by (1.14), (1.15), and the reiteration theorem,

(Eα−1, Eα)0
1−α,∞

.=
(
(E−1, E0)0

α,∞, (E0, E1)0
α,∞

)0
1−α,∞

.=
(
(E−1, E1)0

α/2,∞, (E−1, E1)0
(1+α)/2,∞

)0
1−α,∞

.= (E−1, E1)0
1/2,∞.

(1.16)

By replacing in (1.16) the continuous interpolation functor everywhere by the
functor (·, ·)θ,1, we find that (Eα−1, Eα)1−α,1

.= (E−1, E1)1/2,1. This, combined
with (1.15) and (1.16), implies (1.12) for θ := 1− α. If θ 6= 1− α then (1.12) is an
immediate consequence of (1.2), (1.3), and (1.11). �

2. Dirichlet scales

If Ω 6= Rm then we assume throughout that ∂Ω is uniformly regular of class C2

(in the sense of [9]). This guarantees the existence of suitable extension operators,
so that all results on function spaces which we use below, and which are proven in
Triebel’s book [77] for bounded smooth domains, hold in this case also, provided
the regularity indices are restricted to belong to [−2, 2] (cf. Section II of [3]). Of
course, the extension of the results in [77] to the case of Rm-valued distributions
is trivial. Thus we simply refer to [77] and related work without further mention
of this fact.

Throughout this paper

1 < q <∞ and − 2 ≤ s ≤ 2,

unless further restrictions are explicitly mentioned.
We denote by

W s
q :=

(
W s
q (Ω,Rm), ‖·‖Ws

q

)
the usual Sobolev–Slobodeckii spaces. Recall that W 0

q = Lq := Lq(Ω,Rm) and

‖u‖Wk
q

:=
(∑
|α|≤k

‖∂αu‖qLq
)1/q

, k = 1, 2,

whereas

‖u‖Wk+θ
q

:=
(
‖u‖q

Wk
q

+
∑
|α|=k

∫
Ω×Ω

|∂αu(x)− ∂αu(y)|q
|x− y|m+qθ d(x, y)

)1/q
(2.1)

for k ∈ {0, 1} and 0 < θ < 1.
We write D := D(Ω,Rm) for the space of Rm-valued smooth functions having

compact supports in Ω, that is, D is the space of Rm-valued test functions on Ω,
and D′ is its dual, the space of Rm-valued distributions on Ω. Then

◦
Wp

s is the
closure of D in W s

p , and

W−sq := (
◦
Wq′

s)′, 0 < s ≤ 2, (2.2)
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with respect to the Lq-duality pairing

〈v, u〉 :=
∫

Ω
v · u dx, (v, u) ∈ Lq′ × Lq, (2.3)

where q′ := q/(q − 1).
We also put Λ(ξ) := (1 + |ξ|2)1/2 for ξ ∈ Rm and denote by F the Fourier

transform on S′ := S′(Rm,Rm), the space of Rm-valued temperate distributions
on Rm. Then

(1−∆)s/2 := Λs(D) := F−1ΛsF ,

where Λ acts as a multiplication operator.
For Ω = Rm the Bessel potential spaces are the Banach spaces defined by

Hs
q := Hs

q (Rm,Rm) := (1−∆)−s/2Lq.

Fix any smooth ψ on Rm such that ψ(ξ) = 1 for |ξ| ≤ 1 and ψ(ξ) = 0 for |ξ| ≥ 2.
Put ψ0 := ψ and

ψk(ξ) := ψ(2−kξ)− ψ(2−k+1ξ), ξ ∈ Rm, k ∈ N× := N\{0}. (2.4)

Then

supp(ψk) ⊂ { ξ ∈ Rm ; 2k−1 ≤ |ξ| ≤ 2k+1 }, k ∈ N×,

and
∞∑
k=0

ψk(ξ) = 1, ξ ∈ Rm.

Thus (ψk) is a smooth dyadic resolution of the identity on Rm.
The Besov spaces, Bsq,r := Bsq,r(Rm,Rm), are the Banach spaces defined by

Bsq,r :=
(
{ u ∈ S′ ; ‖u‖Bsq,r <∞}, ‖·‖Bsq,r

)
,

where

‖u‖Bsq,r :=


( ∞∑
k=0

2ksr ‖ψk(D)u‖rLq
)1/r

, 1 ≤ r <∞,

sup
k≥0

2ks ‖ψk(D)u‖Lq , r :=∞,
(2.5)

with ψk(D) := F−1ψkF . These spaces are independent of the particular dyadic
resolution of the identity, except for equivalent norms.

We denote by

rΩ : D′(Rm,Rm)→ D′(Ω,Rm)

the operator of restriction to Ω in the sense of distributions. If Ω 6= Rm we set

Hs
q := Hs

q (Ω,Rm) := rΩH
s
q (Rm,Rm)
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and

Bsq,r := Bsq,r(Ω,Rm) := rΩB
s
q,r(Rm,Rm), 1 ≤ r ≤ ∞,

where these spaces are given the obvious quotient norms. Hence they are Banach
spaces as well. It is known that

Hs
p
.= Btq,r iff s = t and p = q = r = 2, (2.6)

and that

W s
q
.=
{
Hs
q , s ∈ [−2, 2] ∩ Z,

Bsq,q, s ∈ (−2, 2)\Z. (2.7)

It is also known that Bsq,∞ coincides for s > 0, except for equivalent norms, with
the Nikol’skii space Ns

q := Ns
q (Ω,Rm) (cf. [54], [77]).

For the reader’s convenience, we recall the definition of the norm of Ns
q for

0 < s < 2. We denote by [s]− the largest integer strictly smaller than s and put

[u]ϑ,q,∞ :=

{
suph6=0 |h|

−ϑ ‖u(·+ h)− u‖Lq(Ω|h|), 0 < ϑ < 1,

suph6=0 |h|
−1 ‖u(·+ h)− 2u+ u(· − h)‖Lq(Ω|h|), ϑ = 1,

where Ω|h| :=
{
x ∈ Ω ; dist(x, ∂Ω) > |h|

}
and Lq(Ω|h|) := Lq(Ω|h|,Rm). Then

‖u‖Nsq := ‖u‖
W

[s]−
q

+ max
|α|=[s]−

[∂αu]s−[s]−,q,∞. (2.8)

For convenience, we set

N0
q := Lq, N−sq := B−sq,∞, 0 < s < 2. (2.9)

We refer to [77] for equivalent intrinsic norms for Bsq,r with 1 ≤ r <∞.
The following theorem gives another useful characterization (not contained

in [77]) of the ‘negative spaces’ H−sq and B−sq,r for 0 < s ≤ 2.

Theorem 2.1. Suppose that −1 ≤ s ≤ 2 and k ∈ {1, 2} with s− k ≥ −2. Also
suppose that Bs ∈ {Hs

q , B
s
q,r ; 1 ≤ r ≤∞}. Then u belongs to Bs−k iff there exist

uα ∈ Bs for |α| ≤ k such that

u =
∑
|α|≤k

∂αuα. (2.10)

Moreover,
u 7→ inf

(∑
|α|≤k

‖uα‖Bs
)

(2.11)

is an equivalent norm for Bs−k, where the infimum is taken over all representa-
tions (2.10).

Proof. By the usual extension and restriction procedure we can assume Ω = Rm.
In this case the restriction |s| ≤ 2 is not necessary.
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Since
∂α ∈ L(Bs,Bs−|α|), α ∈ Nm, (2.12)

it follows that u ∈ Bs−k if it is defined by the right-hand side of (2.10). Conversely,
given u ∈ Bs−k, it is known that v := Λ−2k(D)u ∈ Bs+k. Hence

u = Λ2k(D)v =
∑
|α|≤k

(−1)|α|
( k
α

)
∂2αv =

∑
|α|≤k

∂αvα,

where vα := (−1)|α|
(
k
α

)
∂αv ∈ Bs for |α| ≤ k. Thus, putting M(k) :=

∑
|α|≤k 1, it

follows that the linear map

Tk : (Bs)M(k) → Bs−k, (uα)|α|≤k 7→
∑
|α|≤k

∂αuα

is well-defined and surjective. Consequently, thanks to (2.12), it is a continuous
linear surjection. Define T̂k by the commutativity of the diagram

(Bs)M(k) (Bs)M(k)/ ker(Tk)

Bs−k
Tk T̂k

-

@
@@R

������

where the horizontal arrow denotes the canonical projection. Then T̂k is a toplinear
isomorphism (that is, an isomorphism in the category of Banach spaces) by the
open mapping theorem. This implies the assertion since (2.11) is the quotient norm
of (Bs)M(k)/ ker(Tk). �

It should be remarked that Theorem 2.1 and (2.7) imply that definition (2.2)
for s ∈ {1, 2} is equivalent to the usual definition of the Sobolev spaces of negative
orders (e.g., [1]).

Lastly, we define the little Nikol’skii spaces by

nsq := closure of H2
q in Ns

q . (2.13)

Since

DΩ := D(Ω,Rm) :=
{
u |Ω ; u ∈ D(Rm,Rm)

}
is dense in W s

q it follows that

nsq := closure of DΩ in Ns
q . (2.14)

We denote by γ∂ the trace operator on ∂Ω if ∂Ω 6= ∅ and put

H2
q,0 :=

{
H2
q if Ω = Rm,

{ u ∈ H2
q ; γ∂u = 0 } otherwise.

Then (E0,E1) := (Lq,H2
q,o) is a densely injected Banach couple.
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We write ∆D := ∆D,q for the Lq-realization of the Dirichlet-Laplace operator
defined by

dom(∆D) := H2
q,0, ∆Du := ∆u.

It is well-known that
−∆D ∈ H(H2

q,0, Lq). (2.15)

Thus the interpolation-extrapolation scale[
(Eα,Aα) ; α ∈ R

]
,

the Dirichlet scale, generated by (E,A) := (Lq,−∆D) and (·, ·)θ, 0 < θ < 1,
where (·, ·)θ satisfies (1.5), is well-defined.

In order to characterize this scale we set

F 2j
q := H2j

q , j ∈ {0,±1}, (2.16)

and, for s = 2j + 2θ with j ∈ {−1, 0} and 0 < θ < 1,

F sq :=


Hs
q if (·, ·)θ = [·, ·]θ,

Bsq,r if (·, ·)θ = (·, ·)θ,r, 1 ≤ r <∞,
nsq if (·, ·)θ = (·, ·)0

θ,∞.

(2.17)

We also set F#2j
q′ := H2j

q′ for j ∈ {0, 1} and

F#2θ
q′ :=


H2θ
q′ if (·, ·)θ = [·, ·]θ,

B2θ
q′,r′ if (·, ·)θ = (·, ·)θ,r, 1 < r <∞,

B2θ
q′,1 if (·, ·)θ = (·, ·)0

θ,∞

(2.18)

for 0 < θ < 1. If Ω = Rm then F sq,0 := F sq and F#s
q′,0 := F#s

q′ . Otherwise, we put
F̃ sq := F sq (Rm,Rm) and

F sq,0 :=


{ u ∈ F sq ; γ∂u = 0 },{
u ∈ F̃ 1/q

q ; supp(u) ⊂ Ω
}
,

F sq ,

1/q < s ≤ 2,
s = 1/q,

0 ≤ s < 1/q.
(2.19)

We also define F#s
q′,0 for s ≥ 0 by replacing F sq , resp. F̃ 1/q

q , in (2.19) by F#s
q′ ,

resp. F̃#1/q′

q′ .
Now we define negative spaces

F−2
q,0 := (F 2

q′,0)′ = (H2
q′,0)′ =: H−2

q,0 (2.20)

by means of the duality pairing induced by (2.3), and

F−2+2θ
q,0 := (F−2

q,0 , F
0
q,0)θ = (H−2

q,0 , Lq)θ, 0 < θ < 1. (2.21)

Theorem 2.2. Eα
.= F 2α

q,0 for |α| ≤ 1.
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Proof. Suppose that 0 < α < 1. If Ω = Rm then the results of Section 2.4 in [77]
imply

Eα = (E0,E1)α = (Lq,H2
q )α

.= F 2α
q = F 2α

q,0 .

If Ω 6= Rm then Eα
.= F 2α

q,0 is a consequence of interpolation results due to Gris-
vard [36], Seeley [67], and Guidetti [39].

It is well-known that (E#,A#) = (Lq′ ,−∆D,q′). Hence

E−1 = (E#
1 )′ = (H2

q′,0)′ = H−2
q,0 = F−2

q,0

by (1.10) and reflexivity. Hence (2.21) and known duality properties of the used
interpolation functors imply Eα−1

.= F 2α−2
q,0 . �

Corollary 2.3. Suppose that (·, ·)θ 6= (·, ·)θ,1 for 0 < θ < 1. Then

(F−sq,0 )′ .= F#s
q′,0, 0 < s ≤ 2, (2.22)

with respect to the duality pairing (2.3). Hence

F−sq,0
.= (F#s

q′,0)′, 0 < s ≤ 2, (2.23)

provided (·, ·)θ 6= (·, ·)0
θ,∞ for 0 < θ < 1.

Proof. The first assertion follows from Theorem 2.2 and (1.10). The second one is
now a consequence of reflexivity. �

The next proposition shows that F sq,0 coincides with the simpler space F sq ,
provided s is suitably restricted.

Proposition 2.4. If −2 + 1/q < s < 1/q then F sq,0 = F sq .

Proof. It follows from Theorems 4.3.2.1 and 4.7.1 in [77], the definition of the little
Nikol’skii spaces, and (1.2) that D is dense in F sq,0 for 0 ≤ s < 1 + 1/q and in F#t

q′,0
for 0 ≤ t < 1 + 1/q′ = 2− 1/q. Hence the assertion is entailed by (2.19) and (2.23)
if either s ≥ 0 or if s < 0 and (·, ·)θ /∈

{
(·, ·)θ,1, (·, ·)0

θ,∞
}

for 0 < θ < 1.
Suppose that −2 + 1/q < s0 < s < s1 = 0. Set θ := (s0 − s1)/s0 and suppose

that (·, ·)θ ∈
{

(·, ·)θ,1, (·, ·)0
θ,∞
}

. Then it follows from what has already been shown
and from Lemma 1.1 that

F sq,0
.= (Hs0

q ,H
s1
q )θ

.= F sq .

This covers the remaining cases. �

Recall that D is not dense in F#s
q′,0 if Ω 6= Rm and 1 + 1/q′ ≤ s ≤ 2. Thus,

since F−sq,0 = (F#s
q′,0)′ for (·, ·)θ /∈

{
(·, ·)θ,1, (·, ·)0

θ,∞
}

, it follows that F−sq,0 cannot be
identified with a subspace of D′ in this case.
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We define Hs
q,0 etc. for |s| ≤ 2 by

F sq,0 =:


Hs
q,0

Bsq,r,0
nsq,0

if F sq =


Hs
q ,

Bsq,r,

nsq,

respectively, and

W s
q,0 :=

{
Hs
q,0, s ∈ [−2, 2] ∩ Z,

Bsq,q,0, s ∈ (−2, 2)\Z.

Remarks 2.5. (a) If ∂Ω 6= ∅ then we put

d(x) := 1 ∧ dist(x, ∂Ω), x ∈ Ω.

Then
u 7→ ‖u‖

W
1/q
q

+ ‖d−1/qu‖Lq (2.24)

is an equivalent norm for W 1/q
q,0 . Similarly, set Ωt :=

{
x ∈ Ω ; d(x) < t

}
for t > 0.

Then

u 7→
(
‖u‖q

N
1/q
q

+ sup
0<t<1

t−1/q
∫

Ωt
|u|q dx

)1/q
(2.25)

is an equivalent norm for N1/q
q,0 , hence for n1/q

q,0 .

Proof. See Remark 4.3.2.2 in [77]. �

(b) Suppose that 0 < s < 2− 1/q. Then (Bsq′,1,0)′ = N−sq .

Proof. Since D is dense in Bsq′,1,0 for 0 < s < 1 + 1/q′ = 2− 1/q this follows from
Theorem 4.8.1 in [77] and from (2.9). �

(c) If m < q < r <∞ then N
−1+m/q
q ↪→ N

−1+m/r
r .

Proof. This is a consequence of (2.9) and the known embedding theorems for Besov
spaces (e.g., [77]). �

3. Stokes scales

We put Dσ := { u ∈ D ; ∇ · u = 0 } and let Lq,σ be the closure of Dσ in Lq. We
also set

Lq,π :=
{
v ∈ Lq ; ∃ p ∈ Lq,loc(Ω,R) : v = ∇p

}
.
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Then we assume that the topological direct sum decomposition, the Helmholtz
decomposition,

Lq = Lq,σ ⊕ Lq,π (3.1)

is valid for each q ∈ (1,∞). Thus the Helmholtz projector Pq, that is, the projection
of Lq onto Lq,σ parallel to Lq,π, is well-defined for 1 < q <∞.

We also assume that

(Pq)′ = Pq′ , 1 < q <∞. (3.2)

We define the Stokes operator Sq in Lq,σ by

dom(Sq) := H2
q,0 ∩ Lq,σ, Squ := −νPq∆u,

and assume that
−Sq generates a strongly continuous
analytic semigroup on Lq,σ for 1 < q <∞.

(3.3)

Remark 3.1. Assumptions (3.1)–(3.3) are additional hypotheses on Ω, which are
known to hold in a variety of situations, but not always (e.g., Remark III.1.3
in [28]). To be more precise, they are satisfied if Ω is

(i) Rm;
(ii) a half-space [7];
(iii) an exterior domain ([8], [69], [79], also see [62], [74]);
(iv) a bounded domain ([25], [29], also see [61], [74], [80]);
(v) an aperture domain [20];
(vi) an infinite layer domain [84];
(vii) a compact perturbation of a half-space [19];
We also note that the Stokes semigroup is known to be bounded in each one of
the cases (i)–(vi), as is shown in the above references. If Ω is bounded then this
semigroup is even exponentially decaying, independently of q, that is, there exists
ω > 0 such that

type(−Sq) ≤ −ω, 1 < q <∞. (3.4)

Proof. If Ω is bounded then Sq has a compact resolvent. Using this fact it is not
difficult to see that the spectrum and the eigenfunctions of Sq are independent
of q ∈ (1,∞). Since type(−Sq) equals the real part of the least eigenvalue of Sq,
assertion (3.4) easily follows from the case q = 2 and Poincaré’s inequality. �

Henceforth Ω is said to be a standard domain if one of the following condi-
tions is satisfied: Ω is

(i) Rm;
(ii) a half-space;
(iii) an exterior domain and m ≥ 3;
(iv) bounded.
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(The reason for imposing the restriction m ≥ 3 in case of an exterior domain will
become clear in Remark 8.1).

Now we fix q and set P := Pq and S := Sq. It is a consequence of (3.3) that the
interpolation-extrapolation scale[

(Eα,Aα) ; α ∈ R
]
, generated by (E,A) := (Lq,σ, S) and (·, ·)θ, 0 < θ < 1,

where (·, ·)θ satisfies (1.5), the Stokes scale, is well-defined. The following lemma
will be used to characterize Eα for 0 ≤ α ≤ 1.

Lemma 3.2. Given any interpolation functor F,

F(E0,E1) .= F(E0,E1) ∩ E0.

Proof. Fix µ > 0 with µ > type(−S) and recall that type(−∆D) = 0. Define the
map Q1 ∈ L(E1,E1) by the commutativity of the diagram

E1 E1

E0 E0

µ+ A ∼= ∼= µ+ A

Q1

P

-

-
? ?

(3.5)

so that Q1 = (µ+ A)−1P (µ+ A). Denote by P> the dual of P ∈ L(E0,E0). Then
P> equals the injection i] : E]0 ↪→ E]

0. Write Q if Q1 is being considered as a
densely defined linear operator from E0 into E0 with domain E1. Then, since
im(µ+ A])−1 = E]1 ⊂ E]

1 = dom(µ+ A]), it follows that

Q′ = (µ+ A)′P>
[
(µ+ A)−1]′ = (µ+ A])(µ+ A])−1 ∈ L(E]0,E

]
0).

Hence Q′′ ∈ L(E0,E0) which, thanks to Q′′ ⊃ Q and the density of E1 in E0, shows
that Q1 has a unique continuous extension Q0 ∈ L(E0,E0). In other words: there
exists a unique Q0 ∈ L(E0,E0) for which the diagram

E1 E1

E0 E0

d d

Q1

Q0

-

-
?

��

?

��

(3.6)

is commutative.
Owing to E1 ↪→ E1, we can consider Q1 as a bounded linear map in E1. Then

Q2
1 = (µ+ A)−1P (µ+ A)(µ+ A)−1P (µ+ A) = (µ+ A)−1P (µ+ A) = Q1,

thanks to P 2 = P , which entails

P (µ+ A)(µ+ A)−1P = P (µ+ PA)(µ+ A)−1P = P
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as a consequence of PA |E1 = A. Thus Q1 is a continuous projection from E1
onto E1. From this and from (3.6) it follows that Q0 ∈ L(E0) is also a projec-
tion from E0 onto E0. Now the assertion is a consequence of interpolation theory
(e.g., Theorem 1.17.1 in [77]). �

The main idea of the preceding proof, namely the construction of projections
Q0 and Q1, is due to Fujita and Morimoto [24] and has also been used by Giga
(see Lemma 6 in [30]).

The next lemma, guaranteeing the existence of a unique extension of the Helm-
holtz projector to negative spaces, will be of fundamental importance for the proof
of Theorem 4.2.

Lemma 3.3. For 0 < α ≤ 1 there exists a unique P−α ∈ L(E−α,E−α) satisfying
P−α ⊃ P .

Proof. Define P−1 ∈ L(E−1,E−1) by the commutativity of the diagram

E0 E0

E−1 E−1

µ+ A−1 ∼= ∼= µ+ A−1

Q0

P−1

-

-
? ?

Then, thanks to (3.5) and (3.6),

P−1 = (µ+ A−1)Q0(µ+ A−1)−1 ⊃ (µ+ A)Q1(µ+ A)−1 = P.

Thus the diagram

E0 E0

E−1 E−1

d d

P

P−1

-

-
?

��

?

��

is commutative. Now the assertion follows by interpolation and the density of E0
in E−1. �

It is the purpose of the following considerations to characterize the negative
spaces E−α for 0 < α ≤ 2. For this we need some preparation.

Let M be a vector subspace of some Banach space E. Then its annihilator

M⊥ :=
{
e′ ∈ E′ ; 〈e′,m〉 = 0 ∀m ∈M

}
is a closed linear subspace of E′. It is a well-known consequence of the Hahn-
Banach theorem (e.g., Theorem I.6.4 in [35]) that the restriction map

E′/M⊥ →M ′, [e′] 7→ e′ |M (3.7)
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is an isometric isomorphism.
Suppose that E = M ⊕N and denote by Q the projection of E onto M par-

allel to N . Then M = im(Q) = ker(1−Q) and N = ker(Q) = im(1−Q). Since
Q′ ∈ L(E′) is a projection as well,

E′ = ker(1−Q′)⊕ ker(Q′) =
[
im(1−Q)

]⊥ ⊕ [im(Q)
]⊥ = N⊥ ⊕M⊥,

since im(T )⊥ = ker(T ′) for each T ∈ L(E). Thus it follows from (3.1) and (3.2)
that

Lp′,σ = (Lp,π)⊥, Lp′,π = (Lp,σ)⊥, 1 < p <∞. (3.8)

We define a continuous bilinear form 〈·, ·〉σ on Lq′,σ ×Lq,σ by restriction of 〈·, ·〉,
that is,

〈u, v〉σ := 〈u, v〉, (u, v) ∈ Lq′,σ × Lq,σ.

It follows from (3.1) and (3.8) that 〈·, ·〉σ is non-degenerate. Moreover, it is a
consequence of (3.1) and (3.8) that

(Lq,σ)′ = Lq′,σ by means of the duality pairing 〈·, ·〉σ. (3.9)

Now we put

F sq,0,σ := F sq,0 ∩ Lq,σ, F#s
q′,0,σ := F#s

q′,0 ∩ Lq′,σ, 0 ≤ s ≤ 2.

Of course, F sq,0,σ is called Hs
q,0,σ if F sq,0 = Hs

q,0, etc.
We also set

F−2θ
q,0,σ := (F#2θ

q′,0,σ)′, 0 < θ < 1, (·, ·)θ /∈
{

(·, ·)θ,1, (·, ·)0
θ,∞
}
,

by means of the duality pairing 〈·, ·〉σ. This defines

[Hs
q,0,σ ; |s| ≤ 2 ] and [Bsq,r,0,σ ; |s| ≤ 2 ], 1 < r <∞.

We put

N−sq,0,σ := (Bsq′,1,0,σ)′, 0 < s < 2,

by means of 〈·, ·〉σ, and

n−sq,0,σ := closure of H2
q,0,σ in N−sq,0,σ, 0 < s < 2. (3.10)

Finally,
B−2θ
q,1,0,σ := (H−2

q,0,σ, Lq,σ)θ,1, 0 < θ < 1. (3.11)

Then the scales of Banach spaces

[Bsq,1,0,σ ; |s| ≤ 2 ], [nsq,0,σ ; |s| ≤ 2 ], [W s
q,0,σ ; |s| ≤ 2 ]

have also been well-defined, where

W s
q,0,σ

.=
{
Hs
q,0,σ, s ∈ [−2, 2] ∩ Z,

Bsq,q,0,σ, s ∈ (−2, 2)\Z.



Vol. 2 (2000) On the Strong Solvability of the Navier–Stokes Equations 47

The following theorem justifies the introduction of these spaces.

Theorem 3.4. Eα
.= F 2α

q,0,σ for |α| ≤ 1.

Proof. (a) If 0 ≤ α ≤ 1 then this is an immediate consequence of Theorem 2.2 and
Lemma 3.2.

(b) It follows from (3.9) that E# = Lq′,σ. Denote by P> ∈ L(Lq′,σ, Lq′) the
dual of P ∈ L(Lq, Lq,σ). Then it is easily verified that P> = i# : Lq′,σ ↪→ Lq′ .
Thus, given (v, u) ∈ H2

q′,0,σ ×H2
q,0,σ,

〈v,Au〉σ = −ν〈v, Pq∆Du〉σ = −ν
〈
i#(v),∆Du

〉
= −ν

〈
∆Dv, i(u)

〉
= 〈−νPq′∆Dv, u〉σ = 〈Sq′v, u〉σ.

This shows that A′ ⊃ Sq′ . Since the resolvent set of A′ and the one of Sq′ have a
nonempty intersection, it follows that A′ = Sq′ , that is, A# = Sq′ . Hence (a) im-
plies E#

α
.= F#2α

q′,0,σ for 0 ≤ α ≤ 1.
(c) Suppose that (·, ·)θ /∈

{
(·, ·)θ,1, (·, ·)0

θ,∞
}

. Then the reflexivity of E = Lq,σ,
which holds since Lq,σ is a closed linear subspace of the reflexive space Lq, implies
the reflexivity of Eα for each α ∈ R (cf. Theorem V.1.5.12 in [5]). Thus we infer
E−α

.= (E#
α )′ = F−2α

q,0,σ for 0 ≤ α ≤ 1 from (b) and (1.10).
(d) Suppose that (·, ·)θ = (·, ·)0

θ,∞ for 0 < θ < 1. Then, thanks to (1.9), (1.10),
and (a),

(E−α)′ = E#
α
.= B2α

q′,1,0,σ, 0 ≤ α ≤ 1.

Consequently,

E−α ↪→ (E−α)′′ = (B2α
q′,1,0,σ)′ = N−2α

q,0,σ, 0 < α < 1,

where the first injection is the canonical injection of a Banach space into its bidual.
Since E−α = (E−1,E0)0

1−α,θ, the assertion follows from the density of E1
.= H2

q,0,σ
in E−α and from (3.10).

(e) If (·, ·)θ = (·, ·)θ,1 then the assertion concerning E−α follows immediately
from (b), which gives E−1

.= H−2
q,0,σ, and from (3.11). �

The next theorem shows that, in the reflexive case, the negative spaces F−sq,σ
possess further useful characterizations.

Theorem 3.5. Suppose that (·, ·)θ /∈
{

(·, ·)θ,1, (·, ·)0
θ,∞
}

. Then, given s ∈ (0, 2],

F−sq,0
/
Lq,π → F−sq,0,σ, [u] 7→ u |F#s

q′,0,σ

is an isometric isomorphism, where Lq,π is the closure of Lq,π in F−sq,0 .

Proof. Note that
Lq,π ↪→ Lq ↪→ F−sq,0 , (3.12)
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where the last injection follows from Theorem 2.2. Hence Lq,π is well-defined.
Thanks to (3.8),

Lq,π = (Lq′,σ)⊥ ⊂ (F#s
q′,0 ∩ Lq′,σ)⊥ = (F#s

q′,0,σ)⊥. (3.13)

The assumption implies that F#s
q′,0 is reflexive. Thus we infer from (3.7) that(

(F#s
q′,0,σ)⊥

)′ ∼= (F#s
q′,0)′′/(F#s

q′,0,σ)⊥⊥ = F#s
q′,0/F

#s
q′,0,σ. (3.14)

Suppose that f ∈ F#s
q′,0 = (F−sq,0 )′ and f |Lq,π = 0. Then f ∈ (Lq,π)⊥ = Lq′,σ, which

shows that f ∈ F#s
q′,0 ∩ Lq′,σ = F#

q′,0,σ. Hence we infer from (3.14) that there is
no continuous linear form on (F#s

q′,0,σ)⊥ vanishing on Lq,π. Thus Lq,π is dense
in (F#s

q′,0,σ)⊥ by (3.13) and the Hahn-Banach theorem. Since (F#s
q′,0,σ)⊥ is closed

in (F#s
q′,0,σ)′ = F−sq,0,σ, it follows that Lq,π = (F#s

q′,0,σ)⊥. This implies, together with
Corollary 2.3, that

F−sq,0
/
Lq,π = (F#s

q′,0)′/(F#s
q′,0,σ)⊥.

Now the assertion is entailed by (3.7). �

Remark 3.6. Suppose that 0 < s ≤ 2. Then n−sq,0,σ is isometrically isomorphic to
the closure of Lq/Lq,π in N−sq,0/(B

s
q′,1,0,σ)⊥.

Proof. From (3.7) we deduce that N−sq,0/(B
s
q′,1,0,σ)⊥ is isometrically isomorphic

to (Bsq′,1,0,σ)′ = N−sq,0,σ. Again by (3.7), this isomorphism restricts to an isometric
isomorphism

Lq/Lq,π = (Lq′)′/(Lq′,σ)⊥ ∼= (Lq′,σ)′ = Lq,σ = E0.

Since E1 = H2
q,0,σ

d
↪→ E0 the assertion follows from the definition of n−sq,0,σ. �

The difficulty in treating the Navier–Stokes equations in a weak setting, which
forces us to employ the somewhat complicated setting introduced above, stems
from the fact that we have to characterize the negative spaces by duality. This is
due to the fact that, in the presence of a boundary, we have no explicit representa-
tion either of −∆D or of the Helmholtz projection P . The situation is considerably
simpler if Ω = Rm (or if Ω is a torus, a case we do not consider here) as is ex-
plained below. In the full-space problem we have an explicit representation of P
which commutes with ∆ so that the Stokes operator reduces to −ν∆ |H2

q ∩ Lq,σ.

Remarks 3.7. (a) Suppose that Ω = Rm. Then

Eα
.= F 2α

q ∩ ker(∇·) = { u ∈ F 2α
q ; ∇ · v = 0 }, |α| ≤ 1,

where ∇· denotes the divergence operator on D′, of course.
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Proof. It is well-known (and by means of the Fourier transform not difficult to
verify) that

P = 1− [RjRk]1≤j,k≤m,

where Rj := F−1(ξj/ |ξ|)F are the Riesz transforms for 1 ≤ j ≤ m. Since Rj be-
longs to L(Hs

q ) for s ∈ R, as is a well-known consequence of Mikhlin’s multiplier
theorem, it follows that P ∈ L(Hs

q ) with P 2 = P and P (Hs
q ) = Hs

q ∩ ker(∇·). Of
course, P commutes with ∆. From this we infer that 1 + Sq is an isomorphism
from Hs+2

q ∩ ker(∇·) onto Hs
q ∩ ker(∇·) for s ∈ R. Consequently, if (·, ·)θ equals

[·, ·]θ for 0 < θ < 1 then

Eα = H2α
q ∩ ker(∇·), α ∈ R.

Indeed, this follows from the general definition of interpolation-extrapolation scales
given in Chapter V of [5], from Lemma 3.2, the fact that the Bessel potential spaces
are invariant under complex interpolation, and from Theorem V.1.5.12 in [5].

Now the assertions for the other choices of (·, ·)θ follows by interpolation and
by applying Lemma 3.2 once more. �

(b) Let Ω be a standard domain with nonempty boundary. Then

F sq,0,σ =


{ u ∈ F sq ; ∇ · u = 0, γ∂u = 0 },
{ u ∈ F 1/q

q,0 ; ∇ · u = 0, γ~nu = 0 },
{ u ∈ F sq ; ∇ · u = 0, γ~nu = 0 },

1/q < s ≤ 2,
s = 1/q,

0 ≤ s < 1/q,

where γ~n denotes the normal trace operator defined by γ~nu := (γ∂u) · ~n for u ∈ Lq
with ∇ · u ∈ Lq(Ω,R).

Proof. This follows from F sq,0,σ = F sq,0 ∩ Lq,σ for 0 ≤ s ≤ 2, the definition of F sq,0,
and the fact that

Lq,σ = { u ∈ Lq ; ∇ · u = 0, γ~nu = 0 }

(see [25] if Ω is bounded and [69] if Ω is unbounded; also cf. Section 5 in [19]). �

Having found explicit representations for the Banach spaces Eα for |α| ≤ 1, we
now turn to characterizations of the extrapolated Stokes operator.

Theorem 3.8. Suppose that 0 ≤ α < 1. Then

H2
q′,0,σ ×H2

q,0,σ → R, (v, u) 7→ 〈∆v, u〉

extends to a continuous bilinear form over F#2−2α
q′,0,σ × F 2α

q,0,σ, again denoted by the
same symbol, that is,(

(v, u) 7→ 〈∆v, u〉
)
∈ L(F#2−2α

q′,0,σ , F 2α
q,0,σ;R).



50 H. Amann JMFM

Moreover,

〈v,Aα−1u〉Eα−1 = −ν〈∆v, u〉, (v, u) ∈ F#2−2α
q′,0,σ × F 2α

q,0,σ. (3.15)

Proof. From the proof of Theorem 3.4 we know that (E#,A#) = (Lq′,σ, Sq′) with
respect to 〈·, ·〉σ. Note that Aα−1 ∈ L(Eα,Eα−1) and (1.10) imply(

(v, u) 7→ 〈v,Aα−1u〉Eα−1

)
∈ L(E]1−α,Eα;R). (3.16)

Hence, by Proposition V.1.5.14 in [5],

〈v,Aα−1u〉Eα−1 = 〈A]−αv, u〉Eα , (v, u) ∈ E]1−α × Eα.

Given (v, u) ∈ E]1 × E1,

〈A]−αv, u〉Eα = 〈A]v, u〉 = −ν〈∆v, u〉. (3.17)

Now the assertion follows from (3.16), (3.17), from E]1 × E1
d
↪→ E]1−α × Eα, and

from Theorem 3.4. �

Suppose that Ω 6= Rm and 0 ≤ 2α < 1/q. Then F 2α−2
q,0 is not a space of distri-

butions (since D is not dense in F 2−2α
q′,0 ). Thus Theorem 3.4 shows that F 2α−2

q,0,σ is
not a (quotient) space of distributions either. Hence (3.17) is in this case not a
distributional relation.

The following proposition gives distributional characterizations of Aα−1. Given
(A,B) ∈ Lq′(Ω,Rm×m)× Lq(Ω,Rm×m), we set

〈A,B〉 :=
∫

Ω
A : B dx,

where A : B := trace(B>A).

Proposition 3.9. Suppose that 0 ≤ α ≤ 1 and either Ω = Rm or 2α > 1/q. Then

Aα−1 = −νPα−1∆ |F 2α
q,0,σ . (3.18)

If 1/q < 2α < 1 + 1/q then Aα−1 is also characterized by

〈v,Aα−1u〉Eα−1
= ν〈∇v,∇u〉, (v, u) ∈ F#2−2α

q′,0,σ × F 2α
q,0,σ. (3.19)

Proof. It is a consequence of Proposition 2.4 that ∆ ∈ L(F 2α
q,0 , F

2α−2
q,0 ), provided

either Ω = Rm or 2α > 1/q. Hence Lemma 3.3 and Theorem 3.4 imply

A = −νP∆ |H2
q,0,σ ⊂ −νPα−1∆ |F 2α

q,0,σ ∈ L(Eα,Eα−1).

Since
Aα−1 ∈ L(Eα,Eα−1) (3.20)

is the unique continuous extension of A ∈ L(E1,E0), assertion (3.18) follows.
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Now suppose that 1/q < 2α < 1 + 1/q. Then we infer from Proposition 2.4 that(
(v, u) 7→ 〈∇v,∇u〉

)
∈ L(F#2−2α

q′,0,σ , F 2α
q,0,σ;R).

If (v, u) ∈ H2
q′,0,σ ×H2

q,0,σ then it is clear that 〈v,Au〉 = ν〈∇v,∇u〉. Hence a den-
sity argument and (3.20) prove (3.19). �

We close this section by proving some important embedding theorems. For this
we recall that, given −2 ≤ t ≤ s ≤ 2 and 1 < r <∞,

Hs
q

d
↪→ Ht

r, 1/q ≥ 1/r ≥ 1/q − (s− t)/m. (3.21)

The following proposition shows that a similar result is true for Hs
q,0,σ-spaces, at

least if Ω is a standard domain.

Theorem 3.10. Let Ω be a standard domain. Suppose that s, t ∈ [−2, 2] and that
q, r ∈ (1,∞) satisfy

1/q ≥ 1/r ≥ 1/q − (s− t)/m. (3.22)

Then

Hs
q,0,σ

d
↪→ Ht

r,0,σ.

Proof. (a) First suppose that t ≥ 0 and

s 6= 1/q, t 6= 1/r. (3.23)

Then, by (3.21) and the definition of Hτ
p,0 (see (2.17) and (2.19)),

Hs
q,0 ↪→ Ht

r,0. (3.24)

From this we obtain
Hs
q,0,σ ↪→ Ht

r,0,σ, (3.25)

thanks to Remark 3.7(b).
(b) Now suppose that s ≤ 0 and

−s 6= 1/q′, −t 6= 1/r′. (3.26)

Then the arguments leading to (3.24) show that

H−tr′,0 ↪→ H−sq′,0. (3.27)

Suppose that 1 < p <∞ and τ ∈ [0, 2]/{1/p}. Then

C2
c,0 :=

{
u ∈ C2(Ω,Rm) ; supp(u) ⊂⊂ Ω, u |∂Ω = 0

}
is dense in Hτ

p,0. Indeed, if τ < 1/p then this follows from D ⊂ C2
c,0 and the density

of D in Hτ
p = Hτ

p,0 (cf. Propostion 2.4). If 1/p < τ ≤ 2 then it is a consequence of
the arguments of Section 5 in [2] (also see Appendix B in [4]). Now we infer that
injection (3.27) is dense. Thus, by duality, reflexivity, Theorem 2.2 and (1.10),

Hs
q,0

d
↪→ Ht

r,0.
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This implies

Hs
q,0
/
Lq,π

d
↪→ Ht

r,0
/
Lr,π (3.28)

since Lp,π = (Lp′,σ)⊥ = D⊥σ for p ∈ {q, r}, where the closure and the annihilator
are taken in Hτ

p,0 for (τ, p) ∈
{

(s, q), (t, r)
}

, respectively.
We infer from (3.27), similarly as in (a), that

H−tr′,0,σ ↪→ H−sq′,0,σ. (3.29)

Theorem 3.5 entails

Tτ,p : Hτ
p,0
/
Lp,π → Hτ

p,0,σ, [u] 7→ u |H−τp′,0,σ
is an isometric isomorphism for (τ, p) ∈

{
(t, r), (s, q)

}
. From (3.29) we deduce that

Tt,r ⊃ Ts,q. Consequently, (3.28) guarantees that

Hs
q,0,σ

d
↪→ Ht

r,0,σ. (3.30)

(c) Suppose that t ≤ 0 < s and (3.23) as well as (3.26) are true. Since

Hs1
q,0,σ ↪→ Hs2

q,0,σ, −2 ≤ s2 < s1 ≤ 2,

we can assume, by decreasing s and increasing t, if necessary, that

1/r = 1/q − (s− t)/m. (3.31)

This implies that s− t < m/q. Thus, since t ≤ 0, it follows that s < m/q. Hence
1/q > 1/p := 1/q − s/m > 0. Consequently,

Hs
q,0,σ ↪→ Lp,σ (3.32)

by (3.25). Note that (3.31) entails 1/r = 1/p+ t/m. Hence, by (3.30),

Lp,σ ↪→ Ht
r,0,σ. (3.33)

Now, by combining (3.32) and (3.33), we find

Hs
q,0,σ ↪→ Ht

r,0,σ (3.34)

in this case also.
(d) From (a)–(c) we know that (3.34) is true, provided (3.22), (3.23), and

(3.26) are satisfied. Since Ω is a standard domain it is known that A has bounded
imaginary powers (cf. Remark 8.2 below). Hence we infer from Theorem V.1.5.4
of [5] and from Theorem 3.4 that, given −2 ≤ t0 < t1 ≤ 2,

[Ht0
p,0,σ,H

t1
p,0,σ]θ

.= H
(1−θ)t0+θt1
p,0,σ , 0 < θ < 1, 1 < p <∞. (3.35)

Now suppose that at least one of (3.23) and (3.26) is not satisfied. Then we can
find ε > 0 such that s+ ε, t+ ε as well as s− ε, t− ε satisfy (3.23) and (3.26).
Similarly as in step (c), we can also assume that −2 ≤ t− ε < s+ ε ≤ 2. Thus, by
what has already been shown,

Hs+ε
q,0,σ ↪→ Ht+ε

r,0,σ, Hs−ε
q,0,σ ↪→ Ht−ε

r,0,σ.
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From this we obtain (3.34) by interpolation thanks to (3.35). Consequently, (3.34)
has been verified whenever s, t, q and r satisfy the hypotheses of the proposition.
Moreover, by (3.30) the asserted injection is dense if s ≤ 0.

(e) Suppose that t ≥ 0. By replacing in step (b) injection (3.27) by (3.24) we
deduce that

H−tr′,0,σ
d
↪→ H−sq′,0,σ.

Hence duality, reflexivity, Theorem 3.4, and (1.10) give Hs
q,0,σ

d
↪→ Ht

q,0,σ. Finally,
if s > 0 ≥ t then the density of injection (3.34) is derived from (3.32) and (3.33)
since we now know that these injections are dense. �

Corollary 3.11. Let Ω be a standard domain. Assume that s, t ∈ [−2, 2] and that
q, r ∈ (1,∞). Then

nsq,0,σ
d
↪→ ntr,0,σ, 1/q ≥ 1/r ≥ 1/q − (s− t)/m.

Proof. First suppose that s, t /∈ 2Z. Fix ε > 0 so that −2 ≤ t− ε < s+ ε ≤ 2. Then

Hs+ε
q,0,σ

d
↪→ Ht+ε

r,0,σ, Hs−ε
q,0,σ

d
↪→ Ht−ε

r,0,σ (3.36)

by Theorem 3.10. Hence, thanks to the reiteration theorem and to (3.35),

(Hs−ε
q,0,σ,H

s+ε
q,0,σ)0

1/2,∞
.=
(
[H−2

q,0,σ,H
2
q,0,σ](s+2−ε)/4, [H−2

q,0,σ,H
2
q,0,σ](s+2+ε)/4

)0
1/2,∞

.= (H−2
q,0,σ,H

2
q,0,σ)0

(s+2)/4,∞.

(3.37)

Let
[

(Eα,Aα) ; α ∈ R
]

be the Stokes scale constructed with [·, ·]θ, 0 < θ < 1.
Then Theorem 3.4 and Theorem V.1.5.4 in [5] imply (see Remark 8.1 below)

H2k
q,0,σ

.= Ek = [Ek−1,Ek+1]1/2, k = ±1.

Hence (1.3) and the reiteration theorem entail, together with Theorem V.1.5.9
in [5],

(H−2
q,0,σ,H

2
q,0,σ)0

θ,∞
.=
(
(E−2,E0)0

1/2,∞, (E0,E2)0
1/2,∞

)0
θ,∞

.= E0
−1+2θ,∞

if θ 6= 1/2. Consequently, we infer from (3.37) that

(Hs−ε
q,0,σ,H

s+ε
q,0,σ)0

1/2,∞
.= nsq,0,σ.

Similarly,

(Ht−ε
r,0,σ,H

t+ε
r,0,σ)0

1/2,∞
.= ntr,0,σ.

Now the assertion follows from (3.36) by interpolating with (·, ·)0
1/2,∞.

If s ∈ 2Z then we deduce from Theorem 3.10 that

nsq,0,σ = Hs
q,0,σ

d
↪→ Ht

q,0,σ
d
↪→ ntq,0,σ,
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where the last injection is a consequence of (1.2) and Lemma 1.1. This proves
everything. �

Remark 3.12. Instead of assuming in Theorem 3.10 that Ω is a standard domain
it suffices to presuppose that

Lp,σ = { u ∈ Lp ; ∇ · u = 0, γ~nu = 0 }, 1 < p <∞,

and that the Stokes operator has bounded imaginary powers. In fact, this last
assumption is not needed if

1/r /∈
{

1/qm′, m′(1/q − 2/m), m′/q′, 1− 2/m− 1/q′m′
}
.

Proof. Suppose that s = 1/q and

1/r = 1/q − (1/q − t)/m = 1/qm′ + t/m

with t 6= 0. Then we can choose ε ∈ (0, |t| ∧ 1/r) and proceed by interpolation as
in step (d) of the proof of Theorem 3.10. Since in this case ‘we do not interpolate
across 0’, it is true that

[Hτ−ε
p,0,σ,H

τ+ε
p,0,σ]1/2

.= Hτ
p,0,σ, (τ, p) ∈

{
(s, q), (r, t)

}
,

without the hypothesis that A has bounded imaginary powers, thanks to The-
orem 3.4 with F := H. The exceptional value 1/r = 1/qm′ corresponds to t = 0
where we would have to interpolate across 0. The other values correspond to s = 2,
s = 0, and t = −2, respectively. �

4. The convection term

Of course, it is most important to have a good understanding of the continuity
properties of the nonlinear convection term. It is the purpose of this section to
derive results giving such information.

Recall that

∂j ∈ L(Hs
q ,H

s−1
q ), 1 ≤ j ≤ m, −1 ≤ s ≤ 2. (4.1)

Moreover, given p1, p2 ∈ [1,∞], Hölder’s inequality implies(
(a, b) 7→ ab

)
∈ L

(
Lp1(Ω,R), Lp2(Ω,R);Lp0(Ω,R)

)
, (4.2)

where 1/p0 := 1/p1 + 1/p2. From this it easily follows that

Q :=
(
(u, v) 7→ u · ∇v

)
∈ L2(H2

q , Lq), (4.3)

provided q ≥ m/3. Thus, setting

b(u, v) := −P (u · ∇v) = −P∇ · (u⊗ v), u, v ∈ H2
q,0,σ, (4.4)
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we obtain b ∈ L2(H2
q,0,σ, Lq,σ). In the following we establish continuity properties

of b on various other spaces as well.

Proposition 4.1. Suppose that 1 < p <∞ and 0 ≤ t ≤ 2.
Let one of conditions (i)–(iii) be satisfied:

(i) −1 +m/p ≤ t ≤ m/p, m(1/p+ 1/q − 1) < t < m/q.
(ii) 1 ≤ t ≤ 1 +m/p, 1 +m(1/p+ 1/q − 1) < t < 1 +m/q.
(iii) p ≥ q and

−1 +m/p ≤ t ≤ 1 +m/p, m(1/p+ 1/q − 1) < t < 1 +m/q,

where m(1/p+ 1/q − 1) < 1 if t > m/p.
Then

b ∈ L(Lp,σ,Ht
q,0,σ;Ht−1−m/p

q,0,σ ). (4.5)

Proof. (i) Set R(u, v) := ∇ · (u⊗ v). Since t < m/q it follows from (3.21) and (4.2)
that (

(u, v) 7→ u⊗ v
)
∈ L

(
Lp,H

t
q;Lr(Ω,Rm × Rm)

)
,

where 1 > 1/r := 1/p+ 1/q − t/m > 0. Thus, by (4.1),

R ∈ L(Lp,Ht
q,H

−1
r ). (4.6)

Put s := 1 +m/p− t ∈ [1, 2]. Note that 1/r′ = 1/q′ − (s− 1)/m. Hence we obtain
Hs
q′ ↪→ H1

r′ from (3.21). Thanks to

D ↪→ Hs
q′,0 ↪→ Hs

q′ and D d
↪→ H1

r′,0 ↪→ H1
r′ ,

this implies Hs
q′,0

d
↪→ H1

r′,0. Consequently, by Proposition 2.4, the Hahn-Banach
theorem, and Theorem 2.2,

H−1
r = H−1

r,0 ↪→ H−sq,0 .

By composing this injection with (4.6) and using Ht
q,0 ↪→ Ht

q, we see thatR belongs

to L(Lp,Ht
q;H

t−1−m/p
q,0 ). Now the assertion follows in this case from

Lp,σ ×Ht
q,0,σ ↪→ Lp ×Ht

q (4.7)

and from Lemma 3.3 and Theorem 3.4, since b = −PR |Lp,σ ×Ht
q,0,σ.

(ii) By (4.1)

(v 7→ ∇v) ∈ L
(
Ht
q,H

t−1
q (Ω,Rm×m)

)
.

Thus, as a consequence of (3.21) and (4.2),

Q ∈ L(Lp,Ht
q;Lρ), (4.8)

where 1 > 1/ρ := 1/p+ 1/q − (t− 1)/m > 0. Since Hs
q′,0

d
↪→ Lρ′ , we obtain by du-

ality that Lρ ↪→ H−sq,0 . By combining this with (4.8) and using (4.7) we see that

Q ∈ L(Lp,σ,Ht
q;H

t−1−m/p
q,0 ).
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Now again the assertion follows from Lemma 3.3 and Theorem 3.4.
(iii) First suppose that p > q. If t ≤ m/p then (4.5) is entailed by (i). Thus

suppose that m/p < t ≤ 1 +m/p. Set t0 := m/p and t1 := (1 +m/p) ∧ 2. Note
that t1 > 1 +m(1/p+ 1/q − 1). Consequently, thanks to (i) and (ii),

b ∈ L(Lp,σ,H
tj
q,0,σ;Htj−1−m/p

q,0,σ ), j = 0, 1.

Thus, given u ∈ Lp,σ,

b(u, ·) ∈ L(Htj
q,0,σ;Htj−1−m/p

q,0,σ ), j = 0, 1,

and the norms of these linear operators are bounded by c ‖u‖Lp . Theorem 3.4 and
the reiteration theorem for the complex interpolation functor entail

Ht
q,0,σ = [Ht0

q,0,σ,H
t1
q,0,σ]θ, H

t−1−m/p
q,0,σ = [Ht0−1−m/p

q,0,σ ,H
t1−1−m/p
q,0,σ ]θ

for θ := (t− t0)/(t1 − t0). Hence the validity of (4.5) follows in this case by inter-
polation.

Lastly, suppose that p = q. Then (4.5) is a consequence of (i) if t < m/q. If
m/q ≤ t < 1 +m/q then the above argument gives the desired result, provided we
choose t0 < m/q and t1 < 1 +m/q sufficiently close to m/q and to (1 +m/q) ∧ 2,
respectively. �

It is now easy to deduce from this proposition the following basic continuity
result.

Theorem 4.2. Suppose that s, t ∈ [0, 2] satisfy

s < m/q, t < 1 +m/q,

and
−1 +m/q ≤ s+ t ≤ 1 +m/q (4.9)

as well as
s+ t > m(2/q − 1). (4.10)

Furthermore, assume that

s+ 1 > m(2/q − 1) if s+ t > m/q. (4.11)

Then
b ∈ L(Hs

q,0,σ ,H
t
q,0,σ;Hs+t−1−m/q

q,0,σ ). (4.12)

Proof. Set 1/p := 1/q − s/m ≤ 1/q and note that Hs
q,0,σ ↪→ Lp,σ. Then (4.9) is

equivalent to

−1 +m/p ≤ t ≤ 1 +m/p,

and (4.10) is equivalent to t > m(1/p+ 1/q − 1). Furthermore, (4.11) says that

m(1/p+ 1/q − 1) < 1 if t > m/p.



Vol. 2 (2000) On the Strong Solvability of the Navier–Stokes Equations 57

Hence the assertion follows from Proposition 4.1(iii). �

It should be noted that Proposition 4.1 and Theorem 4.2 are sharp results.
Weaker statements can be obtained, of course, by combining those statements
with embeddings of the form Hs

q,0,σ ↪→ Ht
q,0,σ for −2 ≤ t < s ≤ 2.

Bilinear estimates for the convection term are fundamental for the study of the
Navier–Stokes equations and have been derived — given various hypotheses —
by several authors. Most of these papers contain estimates involving fractional
powers of the Stokes operator. We refer, in particular, to Lemma 2.2 of Giga and
Miyakawa [32], where Ω is supposed to be bounded. Since in that case the Stokes
operator has bounded imaginary powers, it follows (cf. Theorem V.1.5.4 in [5])
that Lemma 2.2 of [32] guarantees the validity of (4.12), provided (4.9) and the
additional assumptions

s > 0, t > 0, s+ t > 2 +m(1/q − 1/q′) (4.13)

are satisfied. (Observe that the second inequality in (4.9) and the last inequality
in (4.13) entail the restriction q > m′.)

More recently, Kobayashi and Muramatu (see Lemma 5.1 in [49]) have been
able to drop the additional hypotheses (4.13) at the price of using certain abstract
Besov spaces. Their result is weaker than Theorem 4.2 (since it involves abstract
Besov spaces of the type Bsq,1 as domains and of the type Bsq,∞ as image spaces).
In addition, there are no concrete characterizations of these spaces in [49].

Assertion (4.12) has also been obtained by Grubb (see in Theorem 2.1 of [38]),
provided the additional assumptions

s+ t > 1 +m(2/q − 1)+, s+ t− (1 +m/q) > −1 + 1/q

are satisfied.

Remark 4.3. Suppose that m/q ≤ s < 2. Then there exists t ∈ (s− 2, s) such
that b ∈ L2(Hs

q,0,σ,H
t
q,0,σ).

Proof. This follows by obvious modifications of the proof of Proposition 4.1. �

5. Evolution equations with quadratic nonlinearities

Let X be a metric space. Then BC(X,E) is the Banach space of all bounded and
continuous functions from X into E, endowed with the supremum norm.

Given µ, σ ∈ R and a perfect subinterval J of R+ containing 0, we denote by
BCµ,σ(J̇ , E) the Banach space of all u : J̇ → E such that(

t 7→ tµeσtu(t)
)
∈ BC(J̇ , E),
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equipped with the norm

u 7→ ‖u‖Cµ,σ := ‖u‖Cµ,σ(J̇,E) := sup
t∈J̇

tµeσt ‖u(t)‖ .

We write Cµ,σ(J̇ , E) for the closed linear subspace thereof, consisting of all u
satisfying tµu(t)→ 0 as t→ 0. We also set Cµ := Cµ,0.

Throughout this section (E0, E1) is a densely injected Banach couple, and
A ∈ H(E1, E0). We put U(t) := e−tA for t ≥ 0 and fix ω such that

‖U(t)‖L(E0,Ej) ≤ ct−je−ωt, j ∈ {0, 1}, t > 0.

Moreover,

ω :=
{
ω if J = R+,

0 otherwise.

It is well-known that

U ∈ C
(
J,Ls(Ej)

)
∩BCj−k,ω

(
J̇ ,L(Ek, Ej)

)
, j, k ∈ {0, 1}, k ≤ j, (5.1)

where Ls(E) denotes L(E) endowed with the strong topology. We also set

E[j] := Ej,p := E0
j,∞ := Ej , j ∈ {0, 1}, 1 ≤ p ≤∞.

Using these facts we can easily prove the following continuity properties of U .

Lemma 5.1.
(i) If 0 ≤ α ≤ 1 then

U ∈ C
(
J,Ls(Eα)

)
∩BC0,ω

(
J̇ ,L(Eα)

)
∩BC0,ω

(
J̇ ,L(Eα,∞)

)
for Eα ∈ {E[α], Eα,p, E

0
α,∞ ; 1 ≤ p <∞}.

(ii) If 0 ≤ β < α ≤ 1 then

U ∈ BCα−β,ω
(
J̇ ,L(Eβ,∞, Eα,1)

)
. (5.2)

Proof. (i) Thanks to (5.1) we can assume that 0 < α < 1. Then the assertion
follows easily by interpolation from (5.1) and the density of E1 in Eα (also cf.
Lemma V.2.1.2 of [5]).

(ii) By interpolation we infer from (5.1) that (5.2) is true if either β = 0 and
α < 1 or β > 0 and α = 1. If 0 < β < α < 1 then, by the reiteration theorem,
(Eβ,∞, E1)θ,1

.= Eα,1 for θ := (α− β)/(1− β). Thus (5.2) follows in this case from

U ∈ BC1−β,ω
(
J̇ ,L(Eβ,∞, E1)

)
∩BC0,ω

(
J̇ ,L(Eβ,∞)

)
by interpolating with (·, ·)θ,1. �

Given u ∈ L1(J̇ , E0), we put

U ? u(t) :=
∫ t

0
U(t− τ)u(τ) dτ, t ∈ J̇ ,
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whenever these integrals exist.

Lemma 5.2. Suppose that β < 1.
(i) If 0 < α ≤ 1 then u 7→ U ? u belongs to

L
(
Cβ,ω(J̇ , Eα), Cβ−1,ω(J̇ , Eα)

)
and to

L
(
C
(
[0, T ], Eα

)
, BC−α

(
(0, T ], E1

))
, T > 0,

for Eα ∈ {E[α], Eα,p, E
0
α,∞ ; 1 ≤ p <∞}.

(ii) If 0 < γ < α ≤ 1 then

(u 7→ U ? u) ∈ L
(
Cβ,ω(J̇ , Eγ,∞), Cα+β−γ−1,ω(J̇ , Eα,1)

)
.

The norms of these linear maps are bounded by an increasing function of the length
of J for J 6= R+.

Proof. (i) From Lemma 5.1(i) we obtain the estimate

‖U ? u(t)‖Eα ≤ c
∫ t

0
e−ω(t−τ) ‖u(τ)‖Eα dτ ≤ ce

−ωt
∫ t

0
τ−β dτ ‖u‖Cβ,ω((0,t),Eα)

for t ∈ J̇ . Now the assertion is obvious.
(ii) Similarly as in (i) we infer from Lemma 5.1(ii) that

‖U ? u(t)‖Eα,1 ≤ c
∫ t

0
(t− τ)γ−αe−ω(t−τ) ‖u(τ)‖Eγ,∞ dτ

≤ ctγ−α−β+1e−ωtB(1 + γ − α, 1− β) ‖u‖Cβ,ω((0,t),Eγ,∞)

for t ∈ J̇ , where B denotes the beta function. This implies that the map

t 7→ tα+β−γ−1eωtU ? u(t)

is bounded from J̇ into Eα,1. It also shows that tα+β−γ−1U ? u(t)→ 0 in Eα,1 as
t→ 0. Finally, it is not difficult to see that U ? u belongs to C(J̇ , Eα,1). Now the
assertion is obvious. �

Let X , Y , and Z be nonempty sets and f : X × Y → Z. Then

f \(u)(x) := f
(
x, u(x)

)
, x ∈ X, u : X → Y .

Thus f \ : Y X → ZX is the Nemyt’skii operator induced by f .

Lemma 5.3. Suppose that 0 < γ ≤ α ≤ 1, 0 ≤ β < 1/2, and ω ≥ 0. Also assume
that Q ∈ L2(E1, Eγ,∞). Then

(u, v) 7→ U ? Q\(u, v)
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belongs to

L2(Cβ,ω(J̇ , E1), Cα+2β−γ−1,ω(J̇ , Eα,1)
)

and to

L2(C([0, T ], E1
)
, BC−γ

(
(0, T ], E1

))
, T > 0.

Proof. Since ω ≥ 0 it follows that

t2βeωt ‖Q\(u, v)(t)‖Eγ,∞ ≤ ‖Q‖
(
tβeωt ‖u(t)‖E1

)(
tβeωt ‖v(t)‖E1

)
for u, v : J̇ → E1 and t ∈ J̇ . This shows that

Q\ ∈ L2(Cβ,ω(J̇ , E1), C2β,ω(J̇ , Eγ,∞)
)
.

Now Lemma 5.2 implies the assertion. �

Remark 5.4. It is obvious that the analogues of Lemmas 5.2 and 5.3 are valid,
which are obtained by replacing C·,ω by BC·,ω everywhere. �

In the following we denote by Uu0 the function t 7→ U(t)u0 for u0 ∈ E0.

Lemma 5.5. Suppose that 0 < α < 1 and let F1−α be a Banach space such that

E1−α,1
d
↪→ F1−α ↪→ E1−α,∞.

If u0 ∈ F1−α then Uu0 ∈ Cα,ω(J̇ , E1).

Proof. Lemma 5.1 and F1−α ↪→ E1−α,∞ imply

U ∈ BCα,ω
(
J̇ ,L(F1−α, E1)

)
,

thus Uu0 ∈ BCα,ω(J̇ , E1). Hence it remains to show that tα ‖U(t)u0‖E1 → 0 as
t→ 0. Fix T > 0 and ε > 0. Since E1 is dense in E1−α,1, hence in F1−α, there
exists v ∈ E1 such that

‖v − u0‖F1−α < ε
/

sup
0<t≤T

tα ‖U(t)‖L(F1−α,E1) .

The strong continuity of U on E1 implies tαU(t)v → 0 in E1 as t→ 0. Thus

tα ‖U(t)u0‖E1 ≤ tα ‖U(t)v‖E1 + tα ‖U(t)‖L(F1−α,E1) ‖u0 − v‖F1−α

≤ tα ‖U(t)v‖E1 + ε

for 0 < t ≤ T . Hence the assertion follows. �

Now we suppose that

0 < γ < 1/2 and Q ∈ L2(E1, Eγ,∞). (5.3)
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Then we consider the Cauchy problem

u̇+Au = Q(u, u) + g(t), t ∈ J̇ , u(0) = u0, (5.4)

where g : J̇ → E0. By a solution u of (5.4) on J ′ we mean a function

u ∈ C(J ′, E0) ∩ C(J̇ ′, E1) ∩ C1(J̇ ′, E0)

satisfying (5.4) point-wise on J ′, where J ′ is a perfect subinterval of J contain-
ing 0. It is maximal if there does not exist a solution ũ ⊃ u with ũ 6= u. If it
is defined on all of J then it is global. Each function u ∈ C(J ′, E0) satisfying
u = Uu0 + U ?

[
Q\(u, u) + g

]
on J ′ is a mild solution of (5.4) on J ′.

Theorem 5.6. Suppose that (5.3) is satisfied and 0 ≤ α ≤ γ. Let F1−α be a Ba-
nach space with

E1−α,1
d
↪→ F1−α ↪→ E1−α,∞ (5.5)

and
U |F1−α is strongly continuous. (5.6)

Also suppose that
(u0, g) ∈ F1−α × Cα+γ(J̇ , E0

γ,∞). (5.7)

Then problem (5.4) possesses a unique maximal solution u := u(·, u0, g) such that

tγ ‖u(t)‖E1
→ 0 as t→ 0. (5.8)

The maximal interval of existence, J+ := J+(u0, g) := dom(u), is open in J , and

u ∈ C(J+, F1−α). (5.9)

If α > 0 then
tα ‖u(t)‖E1

→ 0 as t→ 0. (5.10)

Remark. Of course, (5.10) implies (5.8). However, this theorem guarantees unique-
ness among all perspective solutions satisfying (5.8) only.

Proof. (a) Fix T∗ ∈ J̇ and set J∗ := [0, T∗]. By assumption (5.6),

Uu0 ∈ C(J∗, F1−α). (5.11)

Hypothesis (5.5) and Lemma 5.5 imply

Uu0 ∈ Cα(J̇∗, E1) if α > 0. (5.12)

From Lemma 5.2 and assumptions (5.5) and (5.7) we infer that

U ? g ∈ C0(J̇∗, F1−α) ∩ Cα(J̇∗, E1). (5.13)

Put XT := Cγ
(
(0, T ], E1

)
for T ∈ J̇ and a := Uu0 + U ? g. Then (5.11)–(5.13) and

α ≤ γ imply that
a ∈ XT , 0 < T ≤ T∗. (5.14)
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Set

ϕ(u) := a+ U ? Q\(u, u), u ∈ XT .

Lemma 5.3 guarantees the existence of µ := µ(T∗) ∈ R+ such that

‖ϕ(u)− ϕ(v)‖XT ≤ µ(‖u‖XT + ‖v‖XT ) ‖u− v‖XT (5.15)

and
‖ϕ(u)− a‖XT ≤ µ ‖u‖

2
XT

(5.16)

for u, v ∈ XT and 0 < T ≤ T∗.
Set R :=

(√
3− 1

)/
4µ and r :=

(
2−
√

3
)/

4µ. Thanks to (5.14) we can find
T ∈ (0, T∗] such that ‖a‖XT ≤ R. Using this fact it is not difficult to verify that
the sequence (uj), defined by u0 := a and uj+1 := ϕ(uj) for j ∈ N, lies in

M := MX := { u ∈ XT ; ‖u− a‖XT ≤ r }
and that ϕ |M is a contraction. From this we infer that (uj) converges to a fixed
point u of ϕ in M and that this is the only one in M . Thus u ∈ Cγ

(
(0, T ], E1

)
and

u = Uu0 + U ?
(
Q\(u, u) + g

)
(5.17)

on (0, T ]. From (1.2) and Lemma 5.3 we deduce that

U ? Q\(u, u) ∈ C0
(
(0, T ], E1−γ,∞

)
. (5.18)

Hence (5.11) and (5.13) entail

u ∈ C
(
[0, T ], E1−γ,∞

)
↪→ C

(
[0, T ], E0

)
.

Thus u is a mild solution of (5.4) on [0, T ].
(b) Thanks to (5.3), (5.7), and (1.2),

h := Q\(u, u) + g ∈ C
(
(0, T ], Eβ,1

)
for 0 < β < γ. Thus, given 0 < ε < T , it follows from u(ε) ∈ E1, Lemma 5.1, and
Theorem IV.1.2.1 in [5] that the Cauchy problem

v̇ +Av = h(ε+ t), 0 < t ≤ T − ε, v(0) = u(ε) (5.19)

has a unique solution v ∈ C
(
[0, T − ε], E1

)
∩C1

(
[0, T − ε], E0

)
. Clearly, v is a mild

solution of (5.19) on [0, T − ε]. Since mild solutions of linear Cauchy problems
are unique and u(ε+ ·) is also a mild solution of (5.19) on [0, T − ε] we find
u(ε+ t) = v(t) for 0 ≤ t ≤ T − ε. This being true for every ε ∈ (0, T ), it follows
that u is a solution of (5.4) on [0, T ].

(c) For T ∈ J̇ set

YT :=
{

C
(
[0, T ], E1

)
if α = 0,

Cα
(
(0, T ], E1

)
if α > 0.

Then (5.11)–(5.13) imply a ∈ YT for 0 < T ≤ T∗. It also follows from Lemma 5.3
and α ≤ γ that ϕ satisfies (5.15) and (5.16) with XT replaced by YT . If α > 0
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then the above arguments imply, by replacing M by MY and making T smaller
if necessary, the existence of a unique solution v of (5.4) on [0, T ] belonging to
Cα
(
(0, T ], E1

)
. If α = 0 then, by Lemma 5.3,

‖U ? Q\(u, u)‖C([0,T ],E1) ≤ cT γ ‖u‖2C([0,T ],E1)

for T ∈ J̇ and u ∈ C
(
[0, T ], E1

)
. Thus, by making T smaller if necessary, we see

that in this case ϕ(MY ) ⊂MY and ϕ |MY is a contraction. Hence Banach’s fixed
point theorem implies that ϕ has a unique fixed point v in MY . Clearly, v is a mild
solution of (5.4) on [0, T ]. Since YT ↪→ XT , uniqueness implies v = u. Consequently,
u ∈ C

(
[0, T ], E1

)
if α = 0, and u ∈ Cα

(
(0, T ], E1

)
otherwise.

(d) Since u(T ) ∈ E1, the argument in (c) with α = 0, combined with a standard
continuation procedure, shows that the Cauchy problem

u̇+Au = Q(u, u) + g(T + t), t ∈ (J̇ − T ) ∩ (0,∞), u(0) = u(T )

possesses a unique maximal solution w ∈ C(J+
T
, E1). Hence, setting

u(t) :=

{
u(t), 0 ≤ t ≤ T ,
w(t− T ), t− T ∈ J+

T
,

it follows that u is the unique maximal solution of (5.4) satisfying (5.8). Since
(5.10) has already been proven, as well as (5.9) for α = 0, it remains to verify that
(5.9) holds if α > 0. But this is obvious from (5.12), (5.13), u ∈ Cα

(
(0, T ], E1

)
,

and

U ? Q\(u, u) ∈ Cα−γ
(
(0, T ], E1−α,1

)
↪→ C0

(
(0, T ], F1−α

)
,

which is a consequence of Lemma 5.3 and α ≤ γ. �

Remarks 5.7. Let conditions (5.3) be satisfied.

(a) Suppose that

(u0, g) ∈ E0
1−γ,∞ × C2γ(J̇ , E0

γ,∞) and u ∈ C(J ′, E0
1−γ,∞) ∩Cγ(J̇ ′, E1)

for some perfect subinterval J ′ of J containing 0. Then u is a mild solution of (5.4)
on J ′ iff it is a solution on J ′.

Proof. Clearly, every solution on J ′ is a mild solution on J ′. The converse has been
shown in step (b) of the preceding proof. �

(b) Suppose that 0 ≤ α ≤ γ and

(u0
j , gj) ∈ E0

1−α,∞ × Cα+γ(J̇ , E0
γ,∞), j = 1, 2,

and T ∈ J̇+(u0
1, g1) ∩ J̇+(u0

2, g2). Then there exists a constant κ := κ(T ) such that,
letting uj := u(·, u0

j , gj),

‖u1 − u2‖Cα((0,T ],E1) ≤ κ
(
‖u0

1 − u0
2‖E0

1−α,∞
+ ‖g1 − g2‖Cα+γ((0,T ],E0

γ,∞)
)
,
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where Cα
(
(0, T ], E1

)
is replaced by C

(
[0, T ], E1

)
if α = 0.

Proof. Note that

u1 − u2 = a1 − a2 + U ?
(
Q\(u1, u1)−Q\(u2, u2)

)
,

where aj := Uu0
j + U ? gj . Fix T0 > 0 such that ‖aj‖YT0

≤ R for j = 0, 1. Then
parts (a) and (c) of the proof of Theorem 5.6 show that ‖uj − aj‖YT0

≤ r. Thus

‖uj‖YT0
≤ R+ r = 1/4µ, j = 1, 2.

Hence we infer from the analogue of (5.15) that

‖u1 − u2‖YT0
≤ 2 ‖a1 − a2‖YT0

. (5.20)

Now suppose that τ ∈ [T0, T ] and put

aτj := U
(
uj(τ)

)
+ U ? gj(τ + ·), j = 1, 2.

Note that (t, w) 7→ U(t)w is continuous from R+ ×E1 to E1. Hence

[0, T ]× [T0, T ]→ E1, (t, τ) 7→ U
(
uj(τ)

)
(t)

is uniformly continuous. Clearly, (t, τ) 7→ U ? gj(τ + ·)(t) is also uniformly contin-
uous from [0, T ]× [T0, T ] into E1. Thus there exists τ1 > 0 with ‖aτj ‖Yτ1 ≤ R for
j = 1, 2 and τ ∈ [T0, T ]. Now, similarly as above, we find that

‖u1 − u2‖C([τ,τ+τ1],E1) ≤ 2 ‖aτ1 − aτ2‖C([τ,τ+τ1],E1) , T0 ≤ τ ≤ T .

This implies the existence of T0 < T1 < · · · < Tm−1 < Tm := T such that

‖u1(t)− u2(t)‖E1 ≤ c
(
‖u1(Tk)− u2(Tk)‖E1 + ‖g1 − g2‖C([Tk,Tk+1],E1)

)
for Tk ≤ t ≤ Tk+1 and 0 ≤ k ≤ m− 1. Now the assertion follows by finite induction
starting with (5.20).

(c) Given any T ∗ ∈ J̇ , there exists R > 0 such that u(·, u0, g) exists on [0, T∗]
whenever (u0, g) satisfies

‖Uu0 + U ? g‖Cγ((0,T∗],E1) ≤ R.

Proof. This is obvious by the proof of Theorem 5.6. �

Besides the foregoing local existence theorem we obtain — given the additional
hypothesis that ω ≥ 0 if J = R+ — global existence for small data.

Theorem 5.8. Let the assumptions of Theorem 5.6 be satisfied and suppose that
ω ≥ 0. Then there exists R > 0 such that u(·, u0, g) is a global solution of (5.4)
and belongs to Cγ,ω(J̇ , E1), provided

‖Uu0 + U ? g‖Cγ,ω(J̇,E1) ≤ R. (5.21)
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Proof. This follows from part (a) of the proof of Theorem 5.6 by replacing XT

by X := Cγ,ω(J̇ , E1) and by denoting by µ the norm of the bilinear map U ? Q\

on X . �

The following remarks give further sufficient criteria for u(·, u0, g) to be global.

Remarks 5.9. (a) Note that (5.21) is estimated above by

c
(
‖Uu0‖Cγ,ω(J̇ ,E1) + ‖g‖C2γ,ω(J̇,Eγ,∞)

)
,

which, in turn, is majorized by

c
(
‖u0‖E1−γ,∞ + ‖g‖C2γ,ω(J̇,Eγ,∞)

)
.

Proof. This follows from Lemmas 5.1 and 5.2. �

(b) Let the hypotheses of Theorem 5.6 be satisfied and put u := u(·, u0, g). Suppose
that either
(i) u(J+) is relatively compact in E0

1−γ,∞
or
(ii) u : J+ → E0

1−γ,∞ is bounded and uniformly continuous.
Then J+ = J .

Proof. (i) Suppose that u(J+) is relatively compact in E0
1−γ,∞ and that J+ 6= J .

Fix T0 ∈ J+ and T ∈ J \J+. Since g ∈ C
(
[T0, T ], E0

γ,∞
)
, Lemma 5.2(i) implies

‖U ? gτ‖Cγ((0,t],E1) ≤ c ‖U ? gτ‖C([0,t],E1) ≤ ctγ ‖g‖C([T0,T ],E0
γ,∞)

for τ ∈ [T0, t
+] and t ∈ (0, T − t+], where t+ := supJ+ and gτ := g(τ + ·). Thus

there exists T ′ such that

‖U ? gτ‖Cγ((0,T ′],E1) ≤ R/2, T0 ≤ τ ≤ t+. (5.22)

It follows from Lemma 5.1 that

‖Ue‖Cγ((0,T ],E1) ≤ ‖Uuτ‖Cγ((0,T ],E1) + c ‖e− uτ‖E0
1−γ,∞

for τ ∈ J+ and e ∈ E0
1−γ,∞, where uτ := u(τ). Thus, given τ ∈ [T0, t

+), there exist
Tτ ∈ (0, T − τ ] and rτ > 0 such that

‖Ue‖Cγ((0,Tτ ],E1) ≤ R/2, e ∈ B(uτ , rτ ), (5.23)

where B(e, r) is the open ball in E0
1−γ,∞ centered at e with radius r. Since u(J+) is

relatively compact in E0
1−γ,∞ there exist τj ∈ J+ and eτj ∈ u(J+) for 0 ≤ j ≤ m

such that u(J+) is contained in
⋃{

B(eτj , rτj ) ; 0 ≤ j ≤ m
}

. Set

T := min{Tτj ; 0 ≤ j ≤ m } ∧ T ′
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and fix t ∈ J+ satisfying t > t+ − T/2. Then it follows from (5.22) and (5.23) (with
e := u(t)) that

‖Uut + U ? gt‖Cγ((0,T ],E1) ≤ R.

Thus, since u(t) ∈ E1, (the proof of) Theorem 5.6 implies that the problem

v̇ +Av = Q(v, v) + gt, t ∈ J − t, v(0) = u(t)

has a unique solution v ∈ C
(
[0, T ], E1

)
. Consequently, u has been extended to the

interval [0, t+ T ] with t+ T > t+, which contradicts the maximality of t+.
(ii) Suppose that u : J+ → E0

1−γ,∞ is bounded and uniformly continuous and,
without loss of generality, that J is bounded. Then u possesses an extension
u ∈ C(J+, E0

1−γ,∞). Since J+ is compact, u(J+) is compact in E0
1−γ,∞. Hence

u(J+) is relatively compact in E0
1−γ,∞ and (i) implies the assertion. �

(c) Let the hypotheses of Theorem 5.6 be satisfied and suppose that α < γ. Fix
T∗ ∈ J̇ . Then

t+(u0, g) > T∗ ∧ c
(
‖u0‖F1−α + ‖g‖Cα+γ(J̇,Eγ,∞)

)−1/(γ−α)
,

where t+(u0, g) := supJ+(u0, g) and c > 0 is independent of (u0, g).

Proof. Note that

‖Uu0 + U ? g‖Cγ((0,T ],E1) ≤ T γ−α ‖Uu0 + U ? g‖Cα((0,T ],E1)

≤ cT γ−α
(
‖u0‖F1−α + ‖g‖Cα+γ((0,T ],Eγ,∞)

)
for T ∈ J̇ with T ≤ T∗. Hence u(·, u0, g) exists on [0, T ] at least if T ≤ T∗ and

cT γ−α
(
‖u0‖F1−α + ‖g‖Cα+γ(J̇,Eγ,∞)

)
≤ R.

Thus the assertion follows. �

(d) Let the hypotheses of Theorem 5.6 be satisfied and suppose that α < γ. If
t+ := t+(u0, g) < supJ then

lim
t→t+

‖u(t)‖Eβ,∞ =∞

for each β ∈ (1− γ, 1].

Proof. Suppose that there are β ∈ (1− γ, 1] and a sequence (tj) in J+ with tj → t+

and

sup
j
‖u(tj)‖Eβ,∞ <∞.

Then, fixing α < γ such that β > 1− α, it follows from Eβ,∞ ↪→ E0
1−α,∞ and (c)

(with F1−α := E0
1−α,∞) that there exists τ > 0 such that t+

(
u(tj), g

)
≥ τ for
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j ∈ N. This implies that u can be continued beyond t+, contradicting its max-
imality. �

In this paper we are interested in the Navier–Stokes equations. For this reason
we have restricted our considerations to quadratic nonlinearities. However, it is
not too difficult to extend the results of this section to other cases and to non-
autonomous situations as well. This and applications to parabolic systems will be
done elsewhere.

6. The Navier–Stokes evolution equation

Throughout this section we suppose that

(3.1)–(3.3) are satisfied. (6.1)

We consider the Navier–Stokes evolution equation

v̇ + Sv = b(v, v) + Pf(t), t > 0, v(0) = v0 (6.2)

in Lq,σ and in suitable superspaces thereof. We suppose that (·, ·)θ satisfies (1.5)
for 0 < θ < 1 and employ the notations F sq,0 and F sq,0,σ, etc., introduced in Sections
2 and 3, respectively.

We begin by proving the following fundamental existence, regularity, and blow-
up theorem concerning maximal solutions of (6.1).

Theorem 6.1. Suppose that q > m/3. Fix s ∈ [0, 2) satisfying

−1 +m/q < s < (m/q) ∧ (1 +m/q)/2. (6.3)

Also suppose that
−1 +m/q ≤ r ≤ s (6.4)

and
(v0, f) ∈ n−1+m/q

q,0,σ × C(2s−r+1−m/q)/2
(
(0, T ], n2s−1−m/q

q,0

)
(6.5)

for each T > 0.
Then:

(i) Problem (6.2) possesses (in Hs−2
q,0,σ) a unique maximal solution

v := v(·, v0, f) ∈ C(J+, n
−1+m/q
q,0,σ ) ∩ C(J̇+,Hs

q,0,σ) ∩ C1(J̇+,Hs−2
q,0,σ) (6.6)

satisfying
lim
t→0

t(s+1−m/q)/2 ‖v(t)‖Hsq = 0. (6.7)

The maximal interval of existence of v, that is,

J+ := J+(v0, f) := dom
(
v(·, v0, f)

)
, (6.8)
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is open in R+, and

v ∈ C(J+, F rq,0,σ) if v0 ∈ F rq,0,σ. (6.9)

If r < s and v0 ∈ F rq,0,σ then

lim
t→0

t(s−r)/2 ‖v(t)‖Hsq = 0. (6.10)

(ii) For each T > 0 there exists R > 0 such that J+ ⊃ [0, T ] whenever

‖v0‖
N
−1+m/q
q,0,σ

+ ‖f‖
Cs+1−m/q((0,T ],N2s−1−m/q

q,0 ) ≤ R.

(iii) Put t+(v0, f) := t+ := supJ+. If r > −1 +m/q then t+ exceeds

1 ∧ c
(
‖v0‖F rq,0,σ + sup

t>0
t(2s−r+1−m/q)/2‖f(t)‖

N
2s−1−m/q
q,0

)−2/(r+1−m/q)
,

where c > 0 is independent of (v0, f).
(iv) Suppose that t+ <∞. Then either

lim
t→t+

‖v(t)‖
N
−1+m/q
q,0

=∞

or v : J+ → n
−1+m/q
q,0,σ is not uniformly continuous. Furthermore,

lim
t→t+

‖v(t)‖Hτq,0,σ =∞

for each τ > −1 +m/q.
(v) If

f ∈ Cρ(R+, Lq) + C(R+,Hρ
q ) (6.11)

for some ρ ∈ (0, 1) then v is a strong q-solution on J̇+, that is,

v ∈ C(J̇+,H2
q,0,σ) ∩ C1(J̇+, Lq),

and v0 ∈ F rq,0,σ implies v ∈ C(J+, F rq,0,σ), provided −1 +m/q ≤ r ≤ 2.
(vi) Suppose that ∂Ω is uniformly regular of class C∞ ( that is, of class Ck for ev-

ery k ∈ N) if Ω 6= Rm and that, in addition to (6.11), f ∈ C∞
(
(0,∞)× Ω,Rm

)
.

Then

v ∈ C∞(J̇+ × Ω,Rm).

Proof. (a) First we note that (1 +m/q)/2 ≤ m/q iff q ≤ m. Furthermore,

(1 +m/q)/2 > −1 +m/q and − 1 +m/q < 2 iff q > m/3.

Thus there exists s ∈ [0, 2) satisfying (6.3).
(b) Denote by

[
(Eα,Aα) ; α ∈ R

]
the Stokes scale constructed with [·, ·]θ and

by
[

(Fα,Bα) ; α ∈ R
]

the one constructed with (·, ·)θ for 0 < θ < 1. Set

(E0, E1) := (Es/2−1,Es/2), A := As/2−1.
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By Lemma 1.1

Eθ,1
d
↪→ Fs/2−1+θ

d
↪→ E0

θ,∞
.= ns−2+2θ

q,0,σ , 0 < θ < 1. (6.12)

Theorem 4.2 gives b ∈ L2(Es/2,Es−(1+m/q)/2). Setting 2γ := s+ 1−m/q, we infer
from (6.3) that 0 < γ < 1/2. Consequently, thanks to (6.12) and (1.2),

b ∈ L2(E1, Eγ,∞). (6.13)

Put 2α := s− r and F1−α := F rq,0,σ = Fr/2. Then (6.4) entails 0 ≤ α ≤ γ, and
(6.12) implies

E1−α,1
d
↪→ F1−α

d
↪→ E1−α,∞.

Moreover,U |F1−α is strongly continuous. (Here and below we use the same symbol
for U and any one of its continuous extensions over superspaces of E0.) Since
−2 < 2s− 1−m/q < 0 by (6.3), it follows, by invoking Lemma 1.1 once more, that

n
2s−1−m/q
q,0

.= (E−1,E0)0
γ+s/2,∞ = E0

γ−1+s/2,∞,

where
[

(Eα,Aα) ; α ∈ R
]

denotes the Dirichlet scale constructed with [·, ·]θ for
0 < θ < 1. Hence Theorem 2.2, Lemma 3.3, and (6.5) imply

g := Pf ∈ Cα+γ
(
(0, T ),E0

γ−1+s/2,∞
)
, T > 0.

Since

E0
γ−1+s/2,∞

.= (Es/2−1,Es)0
γ,∞ = E0

γ,∞

by Lemma 1.1, it follows that

g ∈ Cα+γ
(
(0, T ], E0

γ,∞
)
, T > 0.

Consequently, setting Q := b and invoking Theorem 3.4, assertion (i) follows from
Theorem 5.6.

(c) Assertion (ii) is entailed by the above considerations, Remark 5.9(a), and
Theorem 5.8 by applying the latter Theorem to (6.2) on [0, T ] for each fixed T > 0.

(d) Remarks 5.9(b)–(d) entail, by invoking (1.2), assertions (iii) and (iv).
(e) Let (6.11) be true. Fix T ∈ J̇+ and set ϕε(t) := ϕ(ε+ t) for 0 ≤ t ≤ T − ε

whenever ϕ is defined on [0, T ]. Since v ∈ C
(
(0, T ],Es/2

)
, it follows from Theo-

rem 4.2 that
h := b\(v, v) + g ∈ C

(
(0, T ],Es−δ

)
, (6.14)

where 2δ := 1 +m/q.
Observe that

vε(t) = U(t)v(ε) + U ? hε(t), 0 ≤ t ≤ T − ε. (6.15)

Since this holds for every ε ∈ (0, T ), we infer from Lemmas 5.1 and 5.2 that

v ∈ C
(
(0, T ],Es−δ+ξ

)
, 0 ≤ ξ < 1. (6.16)
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Fix ξ ∈ (0, 1) such that κ := κ(ξ) := s/2 + ξ − δ > 0 and 2κ(ξ) < m/q, and that
that there exists N ∈ N with

s/2 +Nκ < δ < s/2 + (N + 1)κ.

Define ξN ∈ (0, ξ) by

s/2 +Nκ(ξ) + κ(ξN ) = δ.

Also set

β0 := s/2, βj := βj−1 + κ = s/2 + jκ, 1 ≤ j ≤ N.

Since v ∈ C
(
(0, T ],Eβ1

)
by (6.16) we deduce from Theorem 4.2 that

h ∈ C
(
(0, T ],Es/2+β1−δ

)
.

Thus (6.15) and

s/2 + β1 − δ + ξ = β1 + κ = β2

imply (similarly as (6.14) entailed (6.16)) that v ∈ C
(
(0, T ],Eβ2

)
. This bootstrap-

ping argument leads by induction to v ∈ C
(
(0, T ],EβN

)
.

Note that κ(ξN ) < κ(ξ) so that 2κ(ξN ) < m/q. Hence, by invoking Theorem 4.2
once more (with α := κ(ξN ) and β = βN ), we get from κ(ξN ) + βN = δ that h
belongs to C

(
(0, T ],E0

)
. Now (6.15) entails

v ∈ C
(
(0, T ],Eη

)
∩ C1((0, T ],Eη−1

)
, 0 < η < 1. (6.17)

Fix α, β, η ∈ (0, 1) satisfying η > α ∨ β and

b ∈ L(Eα,Eβ ;E0). (6.18)

We deduce from (6.17), (1.2), and Proposition II.1.1.2 in [5] that v belongs to
Cθ
(
(0, T ],Eα∨β

)
for some θ ∈ (0, ρ). From this, from (6.18), from (6.11), and from

(1.2) we infer that

h ∈ Cθ
(
(0, T ],E0

)
+ C

(
(0, T ],Eθ

)
.

Now Theorems II.1.2.1 and II.1.2.2 of [5] imply

v ∈ C
(
(0, T ],E1

)
∩ C1((0, T ],E0

)
.

Since this is true for every T ∈ J+ it follows that v is a strong q-solution on J+.
The fact that v is continuous at t = 0 in F rq,0,σ if

(m/q) ∧ (1 +m/q)/2 ≤ r ≤ 2

follows by the arguments used in the above bootstrapping procedure and by the
assertions contained in Theorems II.1.2.1, II.1.2.2, and IV.1.2.1, IV.1.2.2 of [5]
concerning strict solutions. This proves (v).

(f) Assertion (vi) follows by a standard but tedious bootstrapping argument
(cf. [32] and [49]) which we leave to the reader. �
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Next we prove a global existence theorem for small data in the case where Ω is
bounded.

Theorem 6.2. Let the hypotheses of Theorem 6.1 be satisfied and let Ω be bounded.
Denote by λ0 the smallest eigenvalue of the Stokes operator. Then, given ω ∈ [0, λ0),
there exists R > 0 such that t+(v0, f) =∞ and

sup
t>0

t(s+1−m/q)/2eωt ‖v(t, v0, f)‖Hsq <∞ (6.19)

whenever
‖v0‖

N
−1+m/q
q,0,σ

+ sup
t>0

ts+1−m/qeωt ‖f(t)‖
N

2s−1−m/q
q,0

≤ R. (6.20)

Proof. This is an easy consequence of Theorem 5.8, Remark 5.9(a), and the proof
of Theorem 6.1, thanks to type(−S) = −λ0 (see Remark 3.1). �

Remarks 6.3. (a) Theorem 6.2 shows that v(·, v0, f) is exponentially decaying
in Hs

q whenever this is the case for f in N
2s−1−m/q
q,0 , provided (6.19) is true.

(b) Suppose that f = 0 and 0 ≤ ω < λ0. Then Theorem 5.8 implies the existence
of a constant R′ > 0 such that t+(v0) =∞ and (6.19) is true, provided

sup
t>0

tγeωt ‖e−tSv0‖Hsq ≤ R
′, (6.21)

where 2γ := s+ 1−m/q. However, this condition is equivalent to the requirement
that ‖v0‖

N
−1+m/q
q,0,σ

be small.

Proof. It suffices to show that (6.21) defines an equivalent norm on N
−1+m/q
q,0,σ .

Using the notations of the proof of Theorem 6.1 we see that, denoting by ∼
equivalent norms,

tγeωt ‖e−tSv0‖Hsq = tγ−1 ‖(A− ω)−1t(A− ω)e−(A−ω)tv0‖E1

∼ tγ−1 ‖tBe−tBv0‖E0 ,

since B := A− ω ∈ H(E1, E0) and B is an isomorphism from E1 onto E0, thanks
to type(−B) = ω + type(−A) = ω − λ0 < 0. It is known (cf. Section I.2.10 in [5])
that

sup
t>0

tγ−1 ‖tBe−tBv0‖E0 ∼ ‖v0‖E1−γ,∞ .

Since, thanks to (6.12),

E0
1−γ,∞ = ns−2γ

q,0,σ = n
−1+m/q
q,0,σ ,

the assertion follows. �
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(c) Theorem 6.2 and the above remarks remain valid if the assumption that Ω be
bounded is replaced by the hypothesis that type(−S) < 0. �

A priori Theorem 6.1 guarantees a unique maximal solution vs for each choice
of s. The following proposition implies, however, that vs is independent of s if f is
sufficiently regular.

Proposition 6.4. Suppose that q > m/3 and s, s ∈ [0, 2) satisfy

−1 +m/q < s < s < (m/q) ∧ (1 +m/q)/2

and
−1 +m/q < 2s− s < 1 +m/q. (6.22)

Also suppose that

(v0, f) ∈ n−1+m/q
q,0,σ × Cs+1−m/q

(
(0, T ], n2s−1−m/q

q,0

)
(6.23)

for each T > 0. Let

v ∈ C(J+, n
−1+m/q
q,0,σ ) ∩ C(J̇+,Hs

q,0,σ) ∩ C1(J̇+,Hs−2
q,0,σ) (6.24)

be the unique maximal solution of (6.2) satisfying (6.7), guaranteed by Theo-
rem 6.1(i). Then

v ∈ C(s+1−m/q)/2
(
(0, T ],Hs

q,0,σ
)
∩ C1((0, T ],Hs−2

q,0,σ

)
, 0 < T < t+.

Proof. First we note that (6.23) implies

f ∈ Cs+1−m/q
(
(0, T ], n2s−1−m/q

q,0

)
, T > 0.

Thus Theorem 6.1 guarantees that v is well-defined.
Fix T ∈ J̇+ and set (E0, E1) := (Hs−2

q,0,σ,H
s
q,0,σ). Also set

2γ := 2s− 1−m/q − (s− 2) = 2s− s+ 1−m/q.
Then (6.22) entails 0 < γ < 1. Moreover, setting (·, ·)θ = (·, ·)0

θ,∞,

E
0
γ,∞

.= n
2s−1−m/q
q,0,σ

.= E0
γ,∞,

where, here and below, we use the notations of the proof of Theorem 6.1. Thus we
infer from (6.7), (6.13), and (6.24) (cf. the proof of Lemma 5.3) that

b\(v, v) ∈ Cs+1−m/q
(
(0, T ], E

0
γ,∞
)
.

Since s > s it follows from (6.23), Theorem 2.2, and Lemma 3.3 that

Pf ∈ Cs+1−m/q
(
(0, T ], E

0
γ,∞
)
.

Thus, recalling that h := b\(v, v) + Pf , Lemma 5.2(ii) entails

U ? h ∈ C(s+1−m/q)/2
(
(0, T ],Hs

q,0,σ
)
.
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Set 2α := s+ 1−m/q so that n−1+m/q
q,0,σ

.= E1−α. Then Lemma 5.5 implies

Uv0 ∈ C(s+1−m/q)/2
(
(0, T ],Hs

q,0,σ
)
.

Consequently,

v = Uv0 + U ? h ∈ C(s+1−m/q)/2
(
(0, T ],Hs

q,0,σ
)
. (6.25)

Fix ε ∈ (0, T ) and note that

vε = Uv(ε) + U ? hε

on [ε, T − ε]. Thanks to v(ε) ∈ E1 and hε ∈ C
(
[ε, T − ε], E0

γ,∞
)

it is an easy con-
sequence of Theorem II.1.2.2 in [5] that vε ∈ C1

(
[ε, T ], E0

)
. Since this holds for

every ε ∈ (0, T ) it follows that

v ∈ C1((0, T ],Hs−2
q,0,σ

)
. (6.26)

This proves the assertion. �

Our next proposition shows that v is also independent of q in a suitable sense
if the data are regular enough.

Proposition 6.5. Suppose that Ω is a standard domain and m < q < r <∞. Also
suppose that

(v0, f) ∈ n−1+m/q
q,0,σ ×

[
Cρ(R+, Lq ∩ Lr) + C(R+,Hρ

q ∩Hρ
r )
]

(6.27)

for some ρ ∈ (0, 1). Given p ∈ {q, r}, let

vp ∈ C(J+
p , n

−1+m/q
q,0,σ ) ∩ C(J̇+

p , Lp,σ) ∩ C1(J̇+
p ,H

−2
q,0,σ) (6.28)

be the unique maximal solution of (6.2) in Lp,σ satisfying

lim
t→0

t(1−m/p)/2 ‖vp(t)‖Lp = 0. (6.29)

Then vr ⊃ vq.

Proof. First note that Lq ∩ Lr ↪→ Lp and Hρ
q ∩Hρ

r ↪→ Hρ
p . Furthermore, Corol-

lary 3.11 implies
n
−1+m/q
q,0,σ ↪→ n

−1+m/r
r,0,σ . (6.30)

Hence it follows from Theorem 6.1 that the unique maximal solution vp of (6.2)
satisfying (6.28) and (6.29) is well-defined.

(a) Suppose that 1/r > 2/q − 1/m, that is, −1 +m/q < −m(1/q − 1/r). Put
s := 0 and s := m(1/q − 1/r). Since s < m/q = (m/q) ∧ (1 +m/q)/2, it follows
from (6.27) that

(v0, f) ∈ n−1+m/q
q,0,σ × Cs+1−m/q

(
(0, T ], n2s−1−m/q

q,0

)
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for T > 0. Thus Proposition 6.4 implies

vq ∈ C(1−m/r)/2
(
(0, T ],Hs

q,0,σ
)
∩ C1((0, T ],Hs−2

q,0,σ

)
, T ∈ J̇+

q .

From Theorem 3.10 we infer that

Hs−2j
q,0,σ

d
↪→ H−2j

r,0,σ, j = 0, 1.

Hence
vq ∈ C(J̇+

q , Lr,σ) ∩ C1(J̇+
q ,H

−2
r,0,σ) (6.31)

and
lim
t→0

t(1−m/r)/2 ‖vq(t)‖Lr = 0. (6.32)

From (6.30) it also follows that

vq ∈ C(J+
q , n

−1+m/r
r,0,σ ). (6.33)

Theorem 6.1 implies, thanks to (6.27), that

vq ∈ C(J̇+
q ,H

2
q,0,σ) ∩C1(J̇+

q , Lq,σ). (6.34)

By Theorem 3.10,
H2
q,0,σ ↪→ Lr,σ. (6.35)

Observe that
Sq |H2

q,0,σ ∩H2
r,0,σ = Sr |H2

q,0,σ ∩H2
r,0,σ. (6.36)

Denote by
[

(Ep,α,Ap,α ; α ∈ R
]

the interpolation-extrapolation scale generated
by (Lp,σ, Sp) and [·, ·]θ, 0 < θ < 1. Since Dσ ⊂ Lq,σ ∩ Lr,σ and Dσ is dense in Lp,σ
it follows that Lq,σ ∩ Lr,σ is dense in Lp,σ. Hence, 1 + Ap,0 being an isomorphism
from H2

p,0,σ onto Lp,σ, we see that H2
q,0,σ ∩H2

r,0,σ is dense in H2
p,0,σ. Thus we infer

from (6.36) and

Sp = Ap,0 ⊂ Ap,−1 ∈ L(Lp,σ,H−2
p,0,σ)

that

Aq,−1 |Lq,σ ∩ Lr,σ = Ar,−1 |Lq,σ ∩ Lr,σ.

Consequently, (6.34) and (6.35) imply

Aq,−1vq(t) = Ar,−1vq(t), t ∈ J̇+
q . (6.37)

Therefore we deduce, by taking into account (6.31) and Theorem 4.2, that

v̇q(t) + Ar,−1vq(t) = b
(
vq(t), vq(t)

)
+ Pf(t), t ∈ J̇+

q . (6.38)

Now the assertion follows from (6.31)–(6.33) and (6.38).
(b) Suppose 1/r ≤ 2/q − 1/m. Set r0 := q and define rk ∈ R ∪ {−∞} by

1
rk

:=
3
2

( 1
rk−1

− 1
m

)
+

1
m

=
(3

2

)k(1
q
− 1
m

)
+

1
m
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for k ∈ N×. Then there exists ` ∈ N× such that 1/r`+1 < 1/r ≤ 1/r`. Note that
rk > rk−1 and 1/rk > 2/rk−1 − 1/m for 1 ≤ k ≤ ` as well as r ≥ r` and
1/r > 2/r` − 1/m. Thus (a) implies vq ⊂ vr1 ⊂ vr2 ⊂ · · · ⊂ vr` ⊂ vr, from which
the assertion follows. �

Remark 6.6. Throughout this section — as well as in the remainder of this pa-
per — we always impose regularity hypotheses for f although only Pf occurs in
(6.2). This is done for convenience since f is the quantity given in the original
equations. Of course, if f(t) ∈ Lq for t ∈ R+ then it is no loss of generality to
assume that f = Pf since a term of the form (1− P )f can always be subsumed in
the pressure term ∇p of (0.1). (Note that this argument does not work if f(t) be-
longs to a negative space since then P is defined by continuous extension and we
did not prove that it is a projection.) �

7. Very weak solutions

Throughout this section we suppose that

(3.1)–(3.3) are satisfied and
either q > m or 1 ≤ m/3 ≤ q ≤ m.

(7.1)

We set s(q) := (−1 +m/q)+ and assume that

(v0, f) ∈ Hs(q)
q,0,σ × C(R+,H

s(q)−2
q,0 ). (7.2)

Note that 0 ≤ s(q) ≤ 2.
By a very weak q-solution on J of the Navier–Stokes equations we mean a

function
v ∈ C(J,Hs(q)

q,0,σ) (7.3)

satisfying

−
∫
J

{〈
(∂t + ν∆)w, v

〉
+ 〈∇w, v ⊗ v〉

}
dt =

∫
J

〈w, f〉 dt+
〈
w(0), v0〉 (7.4)

for all
w ∈ L1(J,H2−s(q)

q′,0,σ ) ∩W 1
1 (J,H−s(q)q′,0,σ ) (7.5)

having compact supports in J∗ := J \supJ .
Let (7.3) and (7.5) be satisfied. Theorem 3.8 implies that∫

J

〈
(∂t + ν∆)w, v

〉
dt

is well-defined. It follows from Theorem 4.2 that

b ∈ L2(Hs(q)
q,0,σ,H

2s(q)−1−m/q
q,0,σ ).
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Thus, since 2s(q)− 1−m/q ≥ s(q)− 2, we see that (7.3) and (7.5) imply that〈
w, b(v, v)

〉
is integrable over J . If v ∈ H2

q,0,σ and w ∈ H2
q′,0,σ then it is clear that〈

w, b(v, v)
〉

= 〈∇w, v ⊗ v〉. (7.6)

Hence, by the density of H2
q,0,σ in H

s(q)
q,0,σ and the one of H2

q′,0,σ in H
2−s(q)
q′,0,σ , we

infer from (7.6) that ∫
J

〈∇w, v ⊗ v〉 dt

is meaningful if (7.3) and (7.5) are satisfied. It is obvious from (7.2) that the
integral on the right-hand side of (7.4) is well-defined. Lastly, since

W 1
1 (J,H−s(q)q′,0 ) ↪→ C(J,H−s(q)q′,0 )

(e.g., Theorem III.1.2.2 in [5]), also the term
〈
w(0), v0

〉
makes sense. Consequently,

the concept of a very weak q-solution is meaningful.
Of course, a very weak q-solution is maximal if there does not exist another

such solution being a proper extension of the former.

Remarks 7.1. (a) Let v be a very weak q-solution on J . Then v is a distribu-
tional solution on J of the Navier–Stokes equations in class (7.3). This means
that v satisfies (7.3) and (7.4) for all

w ∈
{
ϕ ∈ D(Ω× J∗,Rm) ; ∇ · ϕ(·, t) = 0, t ∈ J∗

}
=: Dσ(Ω× J∗).

Proof. Using obvious identifications it is known (e.g., Theorem 40.1 in [76]) that
D(Ω× R) = D(R,D). Thus, by restriction, D(Ω× J∗) = D(J∗,D). From this we
infer that

Dσ(Ω× J∗) = D(J∗,Dσ). (7.7)

Since each w ∈ D(J∗,Dσ) satisfies (7.5) and has compact support in J∗, the as-
sertion is obvious. �

(b) Suppose that

Dσ
d
⊂ H2−s(q)

q′,0,σ . (7.8)

Then v is a very weak q-solution on J iff it is a distributional solution on J
satisfying (7.3).

Proof. Thanks to (a) it suffices to show that a distributional solution in class (7.3)
is a very weak q-solution. It is not difficult to verify that (7.8) implies

D(J∗,Dσ)
d
⊂ L1(J,H2−s(q)

q′,0,σ ) ∩W 1
1 (J,H−s(q)q′,0 ).

Now the assertion is obvious. �
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(c) Suppose that Ω is a standard domain. Then (7.8) is true for
(i) m/3 ≤ q <∞ if Ω = Rm,
(ii) m/3 ≤ q < m− 1 otherwise.
Thus in each of these cases very weak q-solutions are distributional solutions be-
longing to class (7.3), and vice versa. However, if Ω 6= Rm and q > m− 1 then
2− s(q) > 1 + 1/q′. Consequently, each w satisfying (7.5) has a normal derivative
on ∂Ω which does not vanish, in general. Thus in this case D(J∗,Dσ) is not dense
in class (7.5) of test functions being admissible for very weak q-solutions. It follows
that in this situation the class of very weak q-solutions is a proper subset of the
class of distributional solutions satisfying (7.3).

Proof. Assertions (i) and (ii) are known and can be shown by the techniques
exposed in Chapter III of [28], for example. �

(d) The considerations following the definition of a very weak q-solution show
that s(q) is the smallest s ∈ R such that the term 〈∇w, v ⊗ v〉 is well-defined for
all v ∈ Hs

q,0,σ. �

(e) A function v is a very weak q-solution on J iff v satisfies (7.3) and (7.4) for
all w = ϕu with ϕ ∈ D(J∗,R) and u ∈ H2−s(q)

q,0,σ .

Proof. Let (E0, E1) be a densely injected Banach couple. Suppose that

u ∈ L1(J∗, E1) ∩W 1
1 (J∗, E0)

with compact support. By a standard extension-by-reflexion procedure we may
assume that

u ∈ L1(R, E1) ∩W 1
1 (R, E0)

with compact support. Let {ϕε ; ε > 0 } be a mollifier. Then ϕε ∗ u ∈ D(R, E1)
and

ϕε ∗ u→ u in L1(R, E1) ∩W 1
1 (R, E0)

as ε→ 0. Hence D(R, E1) is dense in L1(R, E1) ∩W 1
1 (R, E0). Since the tensor

product D(R,R)⊗E1 is dense in D(R, E1) by Proposition V.2.4.1 of [5] it follows,
by restriction, that

D(J∗,R)⊗E1
d
⊂ L1(J∗, E1) ∩W 1

1 (J∗, E0).

Now the assertion is obvious. �

(f) Let Ω be a standard domain. Suppose that 1 ≤ m/3 ≤ q < r ≤ m and that

(v0, f) ∈ H−1+m/q
q,0,σ × C(J,H−3+m/q

q,0,σ ).

If v is a very weak q-solution on J of the Navier–Stokes equations then it is a very
weak r-solution on J .
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Proof. Theorem 3.10 implies that

(v0, f) ∈ H−1+m/r
r,0,σ × C(J,H−3+m/r

r,0,σ ).

Let v be a very weak q-solution on J . Then, again by Theorem 3.10,

v ∈ C(J,H−1+m/q
q,0,σ ) ↪→ C(J,H−1+m/r

r,0,σ ).

By invoking Theorem 3.10 once more we see that

H
2j−s(r)
r′,0,σ ↪→ H

2j−s(q)
q′,0,σ , j = 0, 1.

Now the assertion is an easy consequence of (e). �

The following theorem shows that v is a very weak q-solution on J of the
Navier–Stokes equations iff v solves the integral equation

v(t) = e−tSv0 +
∫ t

0
e−(t−τ)SP

(
−∇ · (v(τ) ⊗ v(τ)) + f(τ)

)
dτ, t ∈ J,

in C(J,Hs(q)
q,0,σ).

Below we denote by
[

(Eα,Aα) ; α ∈ R
]

the Stokes scale constructed with [·, ·]θ
for 0 < θ < 1.

Theorem 7.2. Let (7.1) be satisfied and suppose that v ∈ C(J,Hs(q)
q,0,σ). Then v is

a very weak q-solution of the Navier–Stokes equations on J iff v is a mild solution
of the evolution equation

u̇+ Aα−1u = b(u, u) + g(t), t ∈ J, u(0) = v0 (7.9)

in Eα−1, where 2α := s(q) and g := Pf .

Proof. It follows from (7.1) and Theorem 4.2 that

h := b(v, v) + g ∈ C(J,Eα−1) ⊂ L∞,loc(J,Eα−1).

Let (E0, E1) := (Eα−1,Eα) and A := Aα−1. Then (E0, E1) is a densely injected
Banach couple and A ∈ H(E1, E0). Thus Theorem V.2.8.3 of [5] guarantees that
there exists a unique u ∈ L∞,loc(J,E0) satisfying∫

J

〈
(−∂t +A]−1)u], u

〉
dt =

∫
J

〈u], h〉 dt+
〈
u](0), v(0)

〉
(7.10)

for all u] ∈ L1,loc(J,E
]
0) ∩W 1

1,loc(J,E
]
−1) having compact support in J∗, and that

this unique solution is given by

u(t) = e−tAv(0) +
∫ t

0
e−(t−τ)Ah(τ) dτ, t ∈ J. (7.11)

Thanks to Theorem 3.4,

E]0
.= (E0)′ = (Eα−1)′ .= E]1−α

.= H
2−s(q)
q′,0,σ
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and

E]−1
.= (E1)′ = (Eα)′ .= E]−α

.= H
−s(q)
q′,0,σ .

It also follows from (1.10) that

A]−1 = (A1)′ = (Aα)′ = A]−α

with respect to the duality pairing 〈·, ·〉E0
:= 〈·, ·〉Eα−1

. Thus we infer from (3.17)
that

〈−∂tu] +A]−1u
], u〉 = 〈−∂tu] − ν∆u], u〉. (7.12)

From (7.6) and the density of E]1 × E1 in E]1−α × Eα it follows that

〈u], h〉 = 〈∇u], v ⊗ v〉+ 〈u], f〉. (7.13)

Now suppose that v is a very weak q-solution of (0.1) on J . Then we deduce from
(7.12), (7.13), and (7.10) that u := v satisfies (7.10). Thus

v = Uv0 + U ?
(
b(v, v) + g

)
on J (7.14)

in Eα−1, that is, v is a mild solution of (7.9) on J . Conversely, if v satisfies (7.14)
then the above considerations show that v is a very weak q-solution of (0.1) on J .

�

The only result known to the author which is related to Theorem 7.2 is due to
Fabes, Jones, and Rivière [18]. These authors show that, in the case Ω = Rm with
m ≥ 3, a function v ∈ Lr

(
(0, T ), Lq,σ

)
, where m < q <∞ and m/q + 2/r = 1, is a

distributional solution of (0.1) iff it satisfies an integral equation involving, besides
the heat kernel, an m-dimensional generalization of Oseen’s divergence free matrix
fundamental solution. Thanks to Remark 3.7(a), it is not difficult to see that their
integral equation is a representation of (7.10).

Remark 7.3. Suppose that

f ∈ Lr,loc(R+,H
s(q)−2
q,0 )

for some r ∈ [1,∞). Then Theorem 7.2 remains valid, provided we define a very
weak solution v on J to be a function satisfying (7.3) and (7.4), where (7.5) is
replaced by

w ∈ Lr′(J,H2−s(q)
q′,0,σ ) ∩W 1

r′(J,H
−s(q)
q′,0 ), (7.15)

having compact support in J∗.

Proof. This follows from Theorem V.2.8.3 of [5]. �
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8. Uniqueness

Let (E0, E1) be a densely injected Banach couple and A ∈ H(E1, E0). Given θ ≥ 0,
we write A ∈ BIP(E0, θ) if type(−A) < 0 and there exists N > 0 such that

‖Ait‖L(E0) ≤ Neθ |t|, t ∈ R, (8.1)

that is, if A has a bounded inverse and bounded imaginary powers.

Remark 8.1. Suppose that Ω is a standard domain. Then, given p ∈ (1,∞) and
ω, θ > 0,

ω + Sp ∈ BIP(Lp,σ, θ). (8.2)

Proof. It has been shown by Giga [30] that (8.2) is true with ω = 0 if Ω is bounded.
Giga and Sohr [33] proved that A := Sp satisfies (8.1) with E0 := Lp,σ and p be-
longing to (1,∞) if Ω is an exterior domain and m ≥ 3. This estimate is contained
in Appendix A of [34] if Ω is a half-space. It is well-known and not difficult to
derive by Fourier analysis if Ω = Rm.

Note that type(−Sp) ≤ 0. Hence type(−ω + Sp) ≤ −ω for each ω > 0. Now the
assertion follows from Theorem 3 in [65] (if Ω is bounded also see Corollary III.4.8.6
in [5]). �

We again assume that

(3.1)–(3.3) are satisfied and
either q > m or 1 ≤ m/3 ≤ q ≤ m.

(8.3)

In the proof of the following theorem
[

(Eα,Aα) ; α ∈ R
]

denotes the Stokes scale
constructed with [·, ·]θ, 0 < θ < 1. Recall that s(q) := (−1 +m/q)+.

Theorem 8.2. Suppose that

(v0, f) ∈ Hs(q)
q,0,σ × C(R+,H

s(q)−2
q,0 ).

Also suppose that there are ω ≥ 0 and θ ∈ [0, π/2) such that

ω + Sq ∈ BIP(Lq,σ; θ). (8.4)

Then there exists at most one maximal very weak q-solution of the Navier–Stokes
equations.

Proof. Thanks to Theorem 7.2 we have to show that (7.9) possesses at most one
maximal mild solution v in Hs(q)−2

q,0,σ . For this it suffices, by obvious arguments, to
prove that, given any sufficiently small T > 0, equation (7.9) has at most one mild
solution v ∈ C

(
[0, T ],Eα

)
, where 2α := s(q).

From (8.4) and Proposition V.1.5.5 in [5] we infer that ω + Aα−1 belongs to
BIP(Eα−1; θ). Since E0 is a closed linear subspace of Lq it follows that E0 is a
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UMD space. Thus Eα−1 is a UMD space as well (cf. Theorem III.4.5.2 in [5]).
Hence the Dore-Venni theorem (see [5], Theorems III.1.5.2 and III.4.10.8) entails
that, given any r ∈ (1,∞), there exists κr > 0 such that

‖U ? u‖Lr((0,T ),Eα) ≤ κr ‖u‖Lr((0,T ),Eα−1) (8.5)

for u ∈ Lr
(
(0, T ),Eα−1

)
and T > 0.

Theorem 4.2 guarantees the existence of λ ∈ R+ such that

‖b(u, v)‖Eα−1 ≤ λ ‖u‖Eα ‖v‖Eα , u, v ∈ Eα. (8.6)

Fix 2β ∈ (2α, 2 ∧m/q) and r > 1/(β − α) and set κ := κr. Since Eβ
d
↪→ Eα there

is v∗ ∈ Eβ such that
‖v0 − v∗‖Eα < 1/8λκ. (8.7)

Let v1, v2 ∈ C
(
[0, T ],Eα

)
be mild solutions of (7.9). Set w := v1 − v2 and note that

w = U ?
(
b(v1, v1)− b(v2, v2)

)
= U ?

(
a0(w) + a(w)

)
(8.8)

with

a0(w) := b(w, v1 − v0) + b(v2 − v0, w) + b(w, v0 − v∗) + b(v0 − v∗, w)

and

a(w) := b(w, v∗) + b(v∗, w).

Then

‖a0(w)(t)‖Eα−1 ≤ ϕ(T ) ‖w(t)‖Eα , 0 ≤ t ≤ T ,

where

ϕ(T ) := λ
(
‖v1 − v0‖C([0,T ],Eα) + ‖v2 − v0‖C([0,T ],Eα)

)
+ 1/4κ.

Thus there exists T0 > 0 such that ϕ(T ) ≤ 1/2κ for 0 < T ≤ T0, and, consequently,

‖a0(w)(t)‖Eα−1 ≤ ‖w(t)‖Eα
/

2κ, 0 ≤ t ≤ T ≤ T0.

Now we infer from (8.5) and (8.8) that

‖w‖Lr((0,T ),Eα) ≤ 2 ‖U ? a(w)‖Lr((0,T ),Eα) , 0 < T ≤ T0. (8.9)

Observe that b ∈ L(Eα,Eβ ;Eβ−1) by Theorem 4.2. Hence it follows from Lemma 5.1(ii)
and Hölder’s inequality that

‖U ? a(w)‖Lr((0,T ),Eα) ≤ c
(∫ T

0

(∫ t

0
(t− τ)−1+β−α ‖w(τ)‖Eα dτ

)r
dt
)1/r

≤ c0T β−α ‖w‖Lr((0,T ),Eα) .

(8.10)

Finally, we deduce from (8.9) and (8.10) that w(t) = 0 for 0 ≤ t ≤ T and any
T ∈ (0, T0] satisfying 2c0T β−α < 1. �
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Remarks 8.3. (a) If q > m then assumption (8.4) is not needed for Theorem 8.2
to be valid.

Proof. Indeed, in this case Theorem 4.2 implies that b belongs to L2(E0,E−γ),
where 2γ = 1 +m/q < 2. Thus maximal regularity is not needed and the assertion
follows by an easy modification of the above proof based on the singular Gronwall
inequality (cf. Theorem II.3.3.1 in [5]). Details are left to the reader. �

(b) By replacing in the definition of a very weak solution condition (7.5) by (7.15)
it follows that Theorem 8.2 is also true if

f ∈ Lr,loc(R+,H
s(q)−2
q,0 ).

for some r ∈ [1,∞).

Proof. This is a consequence of Remark 7.3 and the above proof. �

Recently, Furioli et al. [26], Lions and Masmoudi [59] and Monniaux [63] pub-
lished uniqueness proofs for mild solutions in C

(
[0, T ], Lm

)
of the Navier–Stokes

equations. More precisely, in [26] and [63] there is studied the case Ω = R3. Mon-
niaux’s proof is also based on maximal Lr-regularity, but is different from ours
and — even in that simpler situation — more complicated. In [59] there is given
a sketch of an idea for a uniqueness proof in the case where m ≥ 3 and either
Ω = Rm, or Ω is an m-dimensional torus, or Ω is regular, relying on completely
different techniques. We also mention that, by means of probabilistic methods,
Le Jan and Sznitman [56] established uniqueness and existence results for a class
of generalized solutions if Ω = R3.

By combining Theorems 6.1, 7.2, and 8.2 we obtain the following existence and
uniqueness theorem. For simplicity, we impose more restrictive hypotheses on f
than actually needed and leave it to the reader to formulate weaker assumptions.

Theorem 8.4. Let assumptions (8.3) be satisfied and suppose that

(v0, f) ∈ Hs(q)
q,0,σ × C(R+, Lq). (8.11)

If q ≤ m then also suppose that (8.4) is true. Then the Navier–Stokes equations
possess a unique maximal very weak q-solution.

Proof. Fix s ∈ [0, 2) satisfying (6.3). Then (8.11) and Theorem 6.1 imply the ex-
istence of a unique maximal solution vq of (6.2) satisfying (6.5) and belonging to
C(J+,H

s(q)
q,0,σ). Using the notations of Theorem 7.2, it follows that

A(s−2)/2 ⊂ A(s(q)−2)/2

thanks to s > s(q). Hence, taking into account Theorem 4.2, we see that vq is
a mild solution of (7.9) on J+. Now Theorem 8.2 and Remark 8.3(a) entail the
assertion. �



Vol. 2 (2000) On the Strong Solvability of the Navier–Stokes Equations 83

Remarks 8.5. Let the hypotheses of Theorem 8.4 be satisfied.

(a) Fix any s ∈ [0, 2) satisfying (6.3). Then the unique maximal very weak q-solution
v coincides with the unique maximal solution vq of (6.2) in Hs−2

q,0,σ whose existence
is guaranteed by Theorem 6.1(i). In particular, vq is independent of the choice of s.

Proof. The proof of Theorem 8.4 shows that v ⊃ vq. The converse relation, vq ⊃ v,
follows from Theorem 7.2, Remark 5.7(a), and the maximality of vq as a solution
of (6.2) in H

s(q)−2
q,0,σ . �

(b) Also suppose that

f ∈ Cρ(R+, Lq) + C(R+,Hρ
q )

for some ρ ∈ (0, 1). Then the Navier–Stokes equations possess a unique maximal
strong q-solution

v ∈ C(J+,H
s(q)
q,0,σ) ∩ C(J̇+,H2

q,0) ∩ C(J̇+, Lq).

It coincides with the maximal very weak q-solution.

Proof. By (a) and Theorem 6.1(v) the maximal very weak q-solution is a strong
q-solution. Since every strong q-solution belonging to C(J,Hs(q)

q,0,σ) is a very weak
q-solution on J , the assertion is obvious. �

9. Integrability properties

In this section we show that very weak solutions possess additional integrability
properties. For this we need the following embedding result.

Lemma 9.1. Let Ω be a standard domain. If 0 < τ < 2 and 2 ≤ p ≤ r <∞ then

Lp,σ ↪→ (Hτ−2
p,0,σ,H

τ
p,0,σ)1−τ/2,r.

Proof. It follows from Remark 8.1 and Theorem V.1.5.4 of [5] that

[Hs0
p,0,σ,H

s1
p,0,σ]θ

.= Hsθ
p,0,σ (9.1)

for −2 ≤ s0 < s1 ≤ 2 and 0 < θ < 1, where sθ := (1− θ)s0 + θs1. Hence

Hτ−2j
p,0,σ

.= [H−2
p,0,σ,H

2
p,0,σ](τ−2j+2)/4, j = 0, 1. (9.2)

By the reiteration theorem and (9.1)

Bτp,r,0,σ
.= (Lp,σ,H2

p,0,σ)τ/2,r
.=
(
[H−2

p,0,σ,H
2
p,0,σ]1/2,H2

p,0,σ
)
τ/2,r

= (H−2
p,0,σ,H

2
p,0,σ)(τ+2)/4,r

(9.3)
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and, similarly,
Bτ−2
p,r,0,σ

.= (H−2
p,0,σ,H

2
p,0,σ)τ/4,r. (9.4)

Thus we infer from (9.2)–(9.4) that

(H−2
p,0,σ,H

2
p,0,σ)θj ,1 ↪→ Fj ↪→ (H−2

p,0,σ,H
2
p,0,σ)θj ,∞,

where Fj ∈ {Hτ−2j
p,0,σ , B

τ−2j
p,r,0,σ} and θj := (τ − 2j + 2)/4 for j = 0, 1. Consequently,

the reiteration theorem implies

(Hτ−2
p,0,σ,H

τ
p,0,σ)1−τ/2,r

.= (Bτ−2
p,r,0,σ, B

τ
p,r,0,σ)1−τ/2,r. (9.5)

Since 2 ≤ p ≤ r, it is known (cf. Theorem 4.6.1 in [77]) that

Hs
p ↪→ Bsp,r, Bsp′,r′ ↪→ Hs

p′ , 0 ≤ s ≤ 2.

From this and the characterization of the Stokes scales contained in Theorem 3.4
we deduce that

Hτ
p,0,σ

d
↪→ Bτp,r,0,σ, B2−τ

p′,r′,0,σ
d
↪→ H2−τ

p′,0,σ.

Thus, by duality,

Hτ−2j
p,0,σ ↪→ Bτ−2j

p,r,0,σ, j = 0, 1.

Hence
Lp,σ

.= [Hτ−2
p,0,σ,H

τ
p,0,σ]1−τ/2 ↪→ [Bτ−2

p,r,0,σ, B
τ
p,r,0,σ]1−τ/2. (9.6)

Finally, Theorems V.1.5.4, V.1.5.9, and V.1.5.10 of [5] imply that

[Bτ−2
p,r,0,σ, B

τ
p,r,0,σ]1−τ/2

.= (Bτ−2
p,r,0,σ, B

τ
p,r,0,σ)1−τ/2,r.

Now the assertion follows from (9.5) and (9.6). �

Remark 9.2. It should be noted that Lemma 9.1 remains valid if the hypothesis
that Ω is a standard domain is replaced by the assumption that the Stokes operator
is well-defined and condition (8.2) is satisfied. �

After these preparations we can prove the following integrability result.

Theorem 9.3. Suppose that
(i) Ω is a standard domain;
(ii) q ≥ m and m ≥ 3 if q = m;
(iii) 2 ≤ p ≤ r <∞ and p ≤ q;
(iv) (v0, f) ∈ (Lp,σ ∩ Lq,σ)× C(R+, Lp ∩ Lq).

Then the unique maximal very weak q-solution vq ∈ C(J+
q , Lq,σ) of the Navier–

Stokes equations satisfies

vq ∈ Lr
(
(0, T ),H2/r

p,0,σ

)
, T ∈ J̇+

q .

Proof. First we note that v := vq is well-defined, thanks to Theorem 8.4 and Re-
mark 8.1.
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Proposition 4.1(iii) and assumptions (ii) and (iii) imply

b ∈ L(Lq,σ,H
2/r
p,0,σ;H2/r−1−m/q

p,0,σ ). (9.7)

Fix T ∈ J̇+
q . Then, by (9.7),

‖b\(v − v0, v)‖
Lr((0,T0),H2/r−2

p,0,σ ) ≤ c ‖v − v
0‖C([0,T0],Lq) ‖v‖Lr((0,T0),H2/r

p,0,σ) (9.8)

and, given any v∗ ∈ Dσ,

‖b\(v0 − v∗, v)‖
Lr((0,T0),H2/r−2

p,0,σ ) ≤ c ‖v
0 − v∗‖Lq ‖v‖Lr((0,T0),H2/r

p,0,σ) (9.9)

for 0 < T0 ≤ T .
Denote by

[
(Eα,Aα) ; α ∈ R

]
the Stokes scale generated by (Lp,σ, Sp) and

[·, ·]θ, 0 < θ < 1. Set U(t) := e−tA−1+1/r for t ≥ 0. Since (8.2) is satisfied it follows
from Proposition V.1.5.5 and the maximal regularity theorem III.4.10.7 in [5] that

‖U ? g‖
Lr((0,T0),H2/r

p,0,σ) ≤ c ‖g‖Lr((0,T0),H2/r−2
p,0,σ ) , 0 < T0 ≤ T . (9.10)

Thus (9.8) and (9.9) entail∥∥U ?
[
b\(v − v0, v) + b\(v0 − v∗, v)

]∥∥
Lr((0,T0),H2/r

p,0,σ)

≤ ‖v‖
Lr((0,T0),H2/r

p,0,σ)

/
2,

(9.11)

provided v∗ is chosen sufficiently close to v0 and T0 ∈ (0, T ] is sufficiently small.
From Theorem 7.2, formula (9.7), Remark 8.5(a), and (6.37) we infer that

v = a+ U ? b\(v, v)

= a+ U ?
[
b\(v − v0, v) + b\(v0 − v∗, v)

]
+ U ? b\(v∗, v),

where a := Uv0 + U ? Pf . Hence, thanks to (9.11),

‖v‖
Lr((0,T0),H2/r

p,0,σ)

≤ 2 ‖a‖
Lr((0,T0),H2/r

p,0,σ) + 2 ‖U ? b\(v∗, v)‖
Lr((0,T0),H2/r

p,0,σ).
(9.12)

Since Dσ ⊂ Ls,σ for 1 < s <∞ it follows from Proposition 4.1 that

b(v∗, ·) ∈ L(H2/r
p,0,σ,H

2/r−2+1/r
p,0,σ ).

Hence, setting

k(t) := t−1+2/rχ(0,T0](t), w(t) := ‖v(t)‖
H

2/r
p,0,σ

χ(0,T0](t)

for t ∈ R, where χ(0,T0] is the characteristic function of the interval (0, T0], we
obtain

‖U ? b\(v∗, v)‖
Lr((0,T0),H2/r

p,0,σ) ≤ c ‖k ∗ w‖Lr(R,R) ≤ cT
1/2r
0 ‖v‖

Lr((0,T0),H2/r
p,0,σ) ,
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where the last inequality is a consequence of Young’s inequality for convolutions.
Thus, by making T0 smaller if necessary, we infer from (9.12) that

‖v‖
Lr((0,T0),H2/r

p,0,σ) ≤ c ‖a‖Lr((0,T0),H2/r
p,0,σ) .

Note that (9.10) and f ∈ C(R, Lp) imply U ? Pf ∈ Lr
(
(0, T0),H2/r

p,0,σ

)
. From the

maximal regularity theorem III.4.10.7 of [5] and from Lemma 9.1 we deduce that

‖Uv0‖
Lr((0,T0),H2/r

p,0,σ) ≤ c ‖v
0‖(H2/r−2

p,0,σ ,H
2/r
p,0,σ)1−1/r,r

≤ c ‖v0‖Lp <∞.

Hence a belongs to Lr
(
(0, T0),H2/r

p,0,σ

)
, consequently v also.

Now we replace v0 by v(s) for any s ∈ (0, T ]. Since v is uniformly continu-
ous on [0, T ] the preceding arguments guarantee the existence of T1 > 0, being
independent of s ∈ [0, T ], such that

(
t 7→ v(t+ s)

)
∈ Lr

(
(0, T1),H2/r

p,0,σ

)
. Now the

assertion is obvious. �

Corollary 9.4. Let hypotheses (i), (ii), and (iv) of Theorem 9.3 be satisfied. Then

vq ∈ Lr
(
(0, T ), Ls

)
, T ∈ J+

q ,

provided
2
r

+
m

s
=
m

p
>

2
r
, r, s ≥ p ≥ 2, q ≥ p. (9.13)

Proof. Since condition (9.13) guarantees H2/r
p,0,σ ↪→ Ls,σ ↪→ Ls, thanks to Theo-

rem 3.10, the assertion follows. �

Remarks 9.5. (a) Suppose that Ω is a standard domain and q ≥ m with m ≥ 3
if q = m. Also suppose that

(v0, f) ∈ Lq,σ × C(R+, Lq).

Then
vq ∈ Lr

(
(0, T ), Ls

)
, T ∈ J+

q , (9.14)

provided
2
r

+
m

s
=
m

q
, q ≤ r ≤ ∞, q ≤ s <∞, (9.15)

and
lim
t→0

t1/r ‖vq(t)‖Ls = 0. (9.16)

Proof. Assertion (9.14) follows from Corollary 9.4 by setting p = q and by observing
that the case (r, s) = (∞, q) is covered by the continuity of vq from J+

q into Lq.
By Corollary 3.11

Lq,σ ↪→ n−τs,0,σ, τ := m(1/q − 1/s) = 2/r.
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Since −τ ≥ −1 +m/s thanks to q ≥ m, assertion (9.16) follows from (6.10) and
Theorem 7.2. �

(b) Given the hypotheses of (a), it follows that vq ∈ Lr
(
(0, T ), Ls

)
for T ∈ J+

q ,
where r and s satisfy Serrin’s condition

2/r +m/s = 1

with q ≤ s <∞ and 1−m/q ≤ 2/r ≤ 1 + (2−m)/q.

Proof. From (a) we know that vq ∈ Lr
(
(0, T ), Ls

)
whenever 2/r +m/s = m/q.

Since

Lr
(
(0, T ), Ls

)
↪→ Lr

(
(0, T ), Ls

)
, 2/r := 2/r + 1−m/q,

the assertion follows. �

(c) Theorem 9.3 and, hence, Corollary 9.4 and (a) remain valid if the hypothesis
that Ω be a standard domain is replaced by the condition that (3.1)–(3.3) should
be true and assumption (8.2) should hold for the particular p under consideration
and for p := q if q = m.

Proof. This follows from the proof of Theorem 9.3, Remark 9.2, and Theorem 8.4.
�

It is easily verified that the regularity hypotheses for f in the preceding theo-
rems can be relaxed. We leave this to the interested reader.

10. Weak solutions

Suppose that

(v0, f) ∈ L2,σ × L1,loc(R+, L2).

Recall that u is a weak solution on J of the Navier–Stokes equations (0.1),
provided

u ∈ L∞(J, L2,σ) ∩ L2(J,H1
2 )

and∫
J

{
−〈ϕ̇, u〉+ ν〈∇ϕ,∇u〉 +

〈
ϕ, (u · ∇)u

〉}
dt =

∫
J

〈ϕ, f〉 dt+
〈
ϕ(0), v0〉 (10.1)

for all ϕ ∈ D(J∗,Dσ). It is a global weak solution if it is a weak solution on [0, T ]
for every T > 0.

Theorem 10.1. Let (3.1)–(3.3) be satisfied and suppose that q ≥ m, where m ≥ 3
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if q = m. Also suppose that (8.4) is satisfied if q = m, and that

(v0, f) ∈ (L2,σ ∩ Lq,σ)× C(R+, L2 ∩ Lq). (10.2)

Denote by vq ∈ C(J+
q , Lq,σ) the unique maximal very weak q-solution of (0.1).

Then vq is a weak solution on [0, T ] for every T ∈ J̇+
q . Furthermore,

vq ∈ C(J+
q , L2,σ). (10.3)

Proof. Since S2 is self-adjoint and positive semi-definite it follows that (8.2) is
satisfied for p = 2. Thus, thanks to Remark 9.5(c), we infer from Theorem 9.3
with p = r = 2 that

vq ∈ L2
(
(0, T ),H1

2,0,σ
)
, T ∈ J̇+

q . (10.4)

Proposition 4.1 entails

b ∈ L(Lq,σ,H1
2,0,σ;H−m/q2,0,σ ).

Hence v := vq ∈ C(J+
q , Lq,σ) and (10.4) imply

b\(v, v) ∈ L2
(
(0, T ),H−1

2,0,σ

)
, T ∈ J̇+

q .

Thus the maximal regularity theorem III.4.10.7 of [5] entails that, given T ∈ J̇+
q ,

the linear Cauchy problem

u̇+ A−1/2u = b\(v, v) + Pf, 0 < t ≤ T , u(0) = v0 (10.5)

possesses a unique solution

u ∈ L2
(
(0, T ),H1

2,0,σ
)
∩W 1

2
(
(0, T ),H−1

2,0,σ

)
(10.6)

and it is given by

Uv0 + U ?
(
b\(v, v) + Pf

)
.

Hence u = v. By Theorem III.4.10.2 of [5] the intersection space in (10.6) embeddes
continuously in

C
(
[0, T ], (H−1

2,0,σ,H
1
2,0,σ)1/2,2

)
.

Since A0 is self-adjoint it follows from Theorem V.1.5.15 in [5] that

(H−1
2,0,σ,H

1
2,0,σ)1/2,2

.= [H−1
2,0,σ,H

1
2,0,σ]1/2

.= L2,σ.

This implies (10.3) and, thanks to (10.4),

u ∈ L∞
(
(0, T ), L2,σ

)
∩ L2

(
(0, T ),H1

2
)
, T ∈ J+

q .

Fix T ∈ J̇+
q . Since v is a very weak q-solution on [0, T ], relation (7.4) holds, in

particular, for each w ∈ D
(
[0, T ),Dσ

)
. For such a w it follows from (10.4) that

−
∫ T

0
〈∆w, v〉 dt =

∫ T

0
〈∇w,∇v〉 dt.
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It is also not difficult to verify that

−
∫ T

0
〈∇w, v ⊗ v〉 dt =

∫ T

0

〈
w, (v · ∇)v

〉
dt.

Hence v is a weak solution of (10.1) on [0, T ]. �

Remarks 10.2. (a) Let the hypotheses of Theorem 10.1 be satisfied. Then the
strong energy equality

‖vq(t)‖2L2
+ 2ν

∫ t

t′
‖∇vq(τ)‖2L2

dτ = ‖vq(t′)‖2L2
+ 2

∫ t

t′

〈
vq(τ), f(τ)

〉
dτ

is valid for t, t′ ∈ J+
q with t′ < t.

Proof. By Hölder’s inequality (u, v, w) 7→
〈
u, b(v, w)

〉
is a continuous trilinear form

on Lq ×H1
2 ×H1

2 , as is well-known. It is also well-known and easily seen that〈
u, b(u, u)

〉
= 0 for u ∈ Dσ. Hence we infer from Theorem 10.1 by a density argu-

ment that
〈
vq, b

\(vq, vq)
〉

= 0 on J̇+
q . From the preceding proof we know that

vq ∈ L2
(
(0, T ),H1

2,0,σ
)
∩W 1

2
(
(0, T ),H−1

2,0,σ

)
and

v̇q + A−1/2vq = b\(vq, vq) + Pf, 0 < t ≤ T , (10.7)

for any T ∈ J+
q . Hence we can apply 〈vq, ·〉 to (10.7) and integrate from t′ to t.

Then it follows from Proposition 3.9 that∫ t

t′

{
〈vq , v̇q〉+ ν ‖∇vq‖2L2

}
dτ =

∫ t

t′
〈vq, f〉 dτ

which implies the assertion (cf. Proposition V.2.4.7 in [5]). �

(b) Suppose that Ω is a standard domain, q ≥ m with m ≥ 3 if q = m, and f = 0.
If v0 ∈ L2,σ ∩ Lq,σ then vq is a weak solution belonging to a Serrin class on [0, T ]
for every T ∈ J+

q , as we know from Theorem 10.1 and Remark 9.5(b). Hence we
can invoke regularity results due to Heywood [40], Sohr [72], and others (see Theo-
rem 5.2 in Galdi’s survey [27]) to obtain another proof for vq ∈ C∞(J̇+

q × Ω,Rm).
�

Recall that, thanks to results due to Leray [57] and Hopf [41], it is known that,
given any Ω (without any restriction on ∂Ω), there exists a global weak solution v
to the Navier–Stokes equations satisfying the energy inequality

‖v(t)‖2L2
+ 2ν

∫ t

0
‖∇v(τ)‖2L2

dτ ≤ ‖v0‖2L2
+ 2

∫ t

0

〈
v(τ), f(τ)

〉
dτ (10.8)

for t > 0. But neither uniqueness nor smoothness (if f and Ω are smooth) is known
if m ≥ 3. (We refer to Galdi [27] and Wiegner [85] for more information on the
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present state of the art of these problems, as well as for additional references.)
A global weak solution satisfying (10.8) is called Leray–Hopf weak solution.

The results derived above have the following implications on uniqueness and
regularity for weak solutions.

Theorem 10.3. Let conditions (3.1)–(3.3) be satisfied and suppose that q ≥ m
with m ≥ 3 if q = m. Also suppose that (8.4) is true if q = m, that

(v0, f) ∈ (L2,σ ∩ Lq,σ)× C(R+, L2 ∩ Lq),
and denote by vq ∈ C(J+

q , Lq,σ) the unique maximal very weak q-solution of the
Navier–Stokes equations. If u is any Leray–Hopf weak solution of (0.1) then u ⊃ vq.

Proof. Recall that assumption (8.2) holds for p = 2. Hence it follows from Remarks
9.5(b) and (c) that vq is well-defined and

vq ∈ Lr
(
(0, T ), Ls

)
, T ∈ J̇+

q ,

where r > q and s > 2 satisfy 2/r +m/s = 1. Since vq is also a weak solution by
Theorem 10.1, the assertion follows from Serrin’s uniqueness theorem [68, The-
orem 6] (also see Galdi’s proof [27, Theorem 4.2] which is based on Masuda’s
paper [60] and does not need Serrin’s restriction m ≤ 4). �

Remark 10.4. Suppose, in addition to the hypotheses of Theorem 10.3, that

f ∈ Cρ(R+, Lq) + C(R+,Hρ
q )

for some ρ ∈ (0, 1). Then

vq ∈ C(J̇+
q ,H

2
q ) ∩ C1(J̇+

q , Lq)

by Remark 8.5(b). If, moreover, f ∈ C∞
(
(0,∞)× Ω,Rm

)
and ∂Ω is uniformly

regular of class C∞ if Ω 6= Rm, then vq ∈ C∞(J̇+
q × Ω,Rm) by Theorem 6.1(vi).

Hence Theorem 10.3 entails that there exists exactly one Leray–Hopf weak solution
on J+

q and that it enjoys the regularity properties just described. �

Of course, the technique for proving smoothness of weak solutions by identifying
them (if possible) with strong ones is standard and has been used by many authors
starting with Leray [57] (e.g., Galdi’s survey [27]).

11. Strong solutions

In this section we prove our main results concerning the strong solvability of the
Navier–Stokes equations. For the sake of obtaining simple statements we impose
conditions which are more restrictive than necessary. We leave it to the reader to
weaken those assumptions by employing the more general theorems of the preced-
ing sections.



Vol. 2 (2000) On the Strong Solvability of the Navier–Stokes Equations 91

Recall that

n−1
∞,0,σ := lim−→

r

n
−1+m/r
r,0,σ .

Also note that the definition of a maximal strong solution given in the Introduction
carries over to the case where f 6= 0.

Theorem 11.1. Let the following assumptions be satisfied:
(i) Ω is a standard domain;
(ii) either 1 ≤ m/3 < q ≤ m or q > m ≥ 2;
(iii) f ∈ Cρ(R+, Lq ∩ L∞) for some ρ ∈ (0, 1);
(iv) v0 ∈ H−1+m/q

q,0,σ .
Then there exists a unique maximal strong solution v := v(·, v0, f) of the Navier–
Stokes equations satisfying

lim
t→0

v(t) = v0 in H−1+m/q
q (11.1)

and, if q > m,
lim
t→0

t(1−m/q)/2v(t) = 0 in Lq. (11.2)

Proof. Hypotheses (i) and (ii) and Remarks 3.1 and 8.1 imply that assumptions
(6.1), (8.3), and (8.4) are satisfied.

(a) Suppose that q > m. Given r ≥ q, denote by vr the unique maximal solution
of (6.2) in Lr,σ satisfying (6.6) and (6.7) with s := 0 and q replaced by r. Since
Lq ∩ L∞ ↪→ Lr we see, as in the beginning of the proof of Proposition 6.5, that vr is
well-defined. That proposition also guarantees that vr1 ⊃ vr0 if q ≤ r0 < r1 <∞.
Set t+ := supr≥q t+r and define v ∈ C

(
[0, t+), n−1

∞,0,σ
)

by setting v | [0, t+r ) := vr
for r ≥ q. Then v is well-defined and well-adapted to n−1

∞,0,σ. Moreover, Theo-
rem 6.1(v) implies that v | [0, t+r ) is a strong r-solution on (0, t+r ). Thus we infer
from (6.36) that v satisfies (0.2) on (0, t+). Hence v is a maximal strong solution.
Since v | [0, t+q ) := vq it follows from Theorem 6.1 that v satisfies (11.1) and (11.2).
Lastly, v is uniquely determined since this is true for every vr.

(b) Suppose that 1 ≤ m/3 < q ≤ m. Fix r > m such that 2m/r > −1 +m/q,
which is possible. Set s := m(1/q − 1/r). Then Theorem 6.1 implies the existence
of a unique maximal solution

vq ∈ C(J+
q ,H

−1+m/q
q,0,σ ) ∩ C(J̇+

q ,H
s
q,0,σ) ∩ C1(J̇+

q ,H
s−2
q,0,σ) (11.3)

satisfying
lim
t→0

t(1−m/r)/2 ‖vq(t)‖Hsq,0,σ = 0. (11.4)

Moreover,
vq ∈ C(J̇+

q ,H
2
q,0,σ) ∩C1(J̇+

q , Lq,σ). (11.5)

By Remark 5.7(a), vq is a mild solution on J+
q of (7.9) in C(J+

q ,H
s
q,0,σ), hence

in C(J+
q ,H

−1+m/q
q,0,σ ), since s > −1 +m/q. Thus vq is a very weak q-solution on J+

q
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of the Navier–Stokes equations by Theorem 7.2. Hence, by Theorem 8.2, it is the
only one in C(J+

q ,H
−1+m/q
q,0,σ ).

Theorem 3.10 implies

Hs−2j
q,0,σ ↪→ H−2j

r,0,σ, j = 0, 1.

Since, by (1.3) and Corollary 3.11,

H
−1+m/q
q,0,σ ↪→ n

−1+m/q
q,0,σ ↪→ n

−1+m/r
r,0,σ ,

we deduce from (11.3) and (11.4) that

vq ∈ C(J+
q , n

−1+m/r
r,0,σ ) ∩C(J̇+

q , Lr,σ) ∩C1(J̇+
q ,H

−2
r,0,σ) (11.6)

and

lim
t→0

t(1−m/r)/2 ‖vq(t)‖Lr = 0.

From this it follows (cf. the proof of Proposition 6.5) that vq ⊂ vr, where vr is
defined as in (a). Now the assertion is an obvious consequence of (11.5) and (a).�

Corollary 11.2. Let the hypotheses of Theorem 11.1 be satisfied. If

v0 ∈ H(−1+m/q)+
q,0,σ (11.7)

then the maximal strong solution v := v(·, v0, f) satisfies

lim
t→0

v(t) = v0 in H
(−1+m/q)+
q,0,σ (11.8)

and it is unique in this class. If, in addition,

v0 ∈ F sq,0,σ ∈ {Hs
q,0,σ, B

s
q,r,0,σ, n

s
q,0,σ ; 1 ≤ r <∞}

for some s ∈
(
(−1 +m/q)+, 2

]
then

lim
t→0

v(t) = v0 in F sq,0,σ. (11.9)

Proof. Using the notations of Theorem 11.1, we know that v ⊃ vq. From (11.7) and
Theorem 6.1 we infer that vq ∈ C(J+

q ,H
(−1+m/q)+
q,0,σ ). Hence Theorems 7.2 and 8.2

imply the uniqueness of vq in this class. Now the proof of Theorem 11.1 shows
that v is the only maximal strong solution satisfying (11.8). If v0 ∈ F sq,0,σ then
vq ∈ C(J+

q , F
s
q,0,σ) by Theorem 6.1. Hence (11.9) follows from v ⊃ vq. �

Remarks 11.3. Let the hypotheses of Theorem 11.1 be satisfied and denote by
v := v(·, v0, f) the unique maximal strong solution of the Navier–Stokes equations.

(a) If there exist s ∈ (−1, 2] and r > m/(s+ 1) with r ≥ q such that

sup
0<t<t+r

‖v(t)‖Hsr,0,σ <∞
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then t+ := t+(v0, f) =∞.

Proof. Using the notations of Theorem 11.1, it follows from Theorem 6.1(iv) that
t+r =∞. Hence t+ = supp>q t+p =∞. �

(b) Suppose that r > m with r ≥ q and −1 +m/r < s ≤ 0. Then

t+ − t > 1 ∧ c
(
‖v(t)‖Hsr,0,σ + sup

τ>t
(τ − t)α ‖f(τ)‖

N
−1−m/r
r,0

)−1/β

for 0 ≤ t < t+, where α := (−s+ 1−m/r)/2 and β := (s+ 1−m/r)/2, and where
c > 0 is independent of v and f .

Proof. Note that (11.6) and (6.30) imply that v(t) ∈ Lr,σ. Thus the assertion fol-
lows by applying Theorem 6.1(iii) (with s := 0, r := s, and q := r) to vr on the
interval [t,∞). �

(c) Suppose that v0 ∈ H(−1+m/q)+
q,0,σ . Then

v ∈ Lr
(
(0, T ), Ls

)
, 0 < T < t+q∨m,

if (1−m/q)+ ≤ 2/r ≤ (1−m/q)+ + 2/mwith r ≥ 2 andm ∨ q ≤ s <∞ such that
2/r +m/s = 1.

Proof. If q ≥ m then this follows from v ⊃ vq and Remark 9.5(b) since v0 ∈ Lq,σ.
If q < m then v0 ∈ H−1+m/q

q,0,σ ↪→ Lm,σ and the assertion follows once more from
Remark 9.5(b) and v ⊃ vm. �

(d) Suppose that v0 ∈ L2,σ ∩H(−1+m/q)+
q,0,σ . Then v is a weak solution on [0, T ] for

every T < t+ and v ∈ C
(
[0, t+), L2,σ

)
.

Proof. The embedding

H
(−1+m/q)+
q,0,σ ↪→ Lq∨m,σ entails v0 ∈ L2,σ ∩ Lq∨m,σ. (11.10)

Hence Theorem 10.1 implies the assertion for all T < t+q∨m. Fix t0 ∈ (0, t+q∨m) and
note that

v(t0) ∈ H2
q∨m,0,σ ↪→ Lp,σ, p > q ∨m. (11.11)

Thus, by applying Theorem 10.1 to the Navier–Stokes equations on the inter-
val (t0,∞) with initial value v(t0), we find that t 7→ v(t+ t0) is a weak solu-
tion on [0, T ] for every positive T < t+p − t0. Consequently, v is a weak solution
on [0, T ] for every T < t+p and every p ≥ q ∨m, which, thanks to (10.3), proves
the assertion. �

(e) Suppose that f ∈ C∞
(
(0,∞)× Ω,Rm

)
and ∂Ω is uniformly regular of class

C∞. Then v ∈ C∞
(
(0, t+)× Ω,Rm

)
.
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Proof. This is a consequence of Theorem 6.1(vi). �

Our next theorem shows that each global weak solution of (0.1) satisfying the
energy inequality coincides on [0, t+) with v, provided v0 is suitably regular.

Theorem 11.4. Let hypotheses (i)–(iii) of Theorem 11.1 be satisfied and suppose
that

v0 ∈ L2,σ ∩H(−1+m/q)+
q,0,σ .

Denote by v the unique maximal strong solution of the Navier–Stokes equations
satisfying

lim
t→0

v(t) = v0 in H(−1+m/q)+
q .

If u is any Leray–Hopf weak solution then u ⊃ v.

Proof. Fix T ∈ (0, t+) and t0 ∈ (0, t+q∨m). Then (11.10) and Theorem 10.3 imply
that u and v coincide on [0, t0]. From the last part of Theorem 10.1, that is, from
(10.3), and from (11.11) we infer that v(t0) ∈ L2,σ ∩ Lp,σ for any given p > q ∨m.
Thus, fixing such a p with t+p > T , we find that u and v coincide on [t0, T ] by apply-
ing Theorem 10.3 to the Navier–Stokes equations on [t0,∞) with initial value v(t0).
Since this is true for every T ∈ (0, t+) it follows that u = v on [0, t+). �

Corollary 11.5. Given the hypotheses of Theorem 11.4, suppose that v is global.
Then there exists exactly one Leray–Hopf weak solution. It is smooth for t > 0 if
f is smooth for t > 0.

Next we prove that the unique maximal strong solution is global if Ω is bounded
and the data are sufficiently small.

Theorem 11.6. Let hypotheses (ii)–(iv) of Theorem 11.1 be satisfied and suppose
that Ω is bounded. Denote by λ0 the smallest eigenvalue of the Stokes operator
and fix ω ∈ [0, λ0). Then, given any r > m with r ≥ q, there exists a constant R
such that v(·, v0, f) exists globally and satisfies

sup
t>0

t(1−m/r)/2eωt ‖v(t, v0, f)‖Lr <∞

whenever

‖v0‖
N
−1+m/r
r,0,σ

+ sup
t>0

t1−m/reωt ‖f(t)‖
N
−1−m/r
r,0

≤ R.

Proof. Thanks to (6.30) and v ⊃ vr the assertion follows by applying Theorem 6.2
(with q := r and s := 0) to vr. �
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[54] A. Kufner, O. John and S. Fučik, Function Spaces, Academia, Prague, 1977.
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