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Abstract. We show that if v is a weak solution to the Navier–Stokes equations in the class
L∞(0, T ; L3(Ω)3) then the set of all possible singular points of v in Ω, at every time t0 ∈ (0, T ),
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1. Introduction

Suppose that Ω is either R3 or a bounded domain in R3 with its boundary ∂Ω of the
class C2+µ for some µ > 0. Let T be a positive number. Denote QT = Ω× (0, T ).
We shall deal with the Navier–Stokes initial-boundary value problem for viscous
incompressible fluids

∂v

∂t
+ v · ∇v = f −∇p+ ν∆v in QT , (1)

div v = 0 in QT , (2)

v = 0 on ∂Ω× (0, T ), (3)

v|t=0 = v0 (4)

where v = (v1, v2, v3) and p denote the unknown velocity and pressure. f is the
external body force and ν > 0 is the viscosity coefficient.

There exists an extensive literature dealing with the qualitative properties of
the problem (1)–(4) and particularly with its weak solutions. The detailed surveys
of the most of the known results on the existence and regularity of weak solutions

The research was supported by the University of Pittsburgh, USA, and by the Grant Agency
of the Czech Republic (grant No. 201/96/0313).



310 J. Neustupa JMFM

can be found e.g. in the recent works of H. Kozono [13] and G. P. Galdi [6].
The main facts say that the existence of the weak solutions, satisfying the energy
inequality, is known already for a long time (see J. Leray [15] and E. Hopf [9]),
however their uniqueness and regularity (if all the input data are regular) still
remain an open problem. The uniqueness is known to hold only for the weak
solutions that find themselves in the class Lr(0, T ; Ls(Ω)3), where r ∈ [2,+∞],
s ∈ [3,+∞] and 2/r+3/s ≤ 1 (see e.g. G. Prodi [16], H. Sohr & W. von Wahl [20],
H. Kozono & H. Sohr [12], H. Kozono [13], G. P. Galdi [6]). As to regularity, it
is known that a weak solution v of the problem (1)–(4) is regular either if v0 and
f are “smooth” and T is “small enough” (K. K. Kiselev & O. A. Ladyzhenskaya
[11], G. P. Galdi [6]) or v0 and f are “small enough” in certain norms (O. A.
Ladyzhenskaya [14], J. G. Heywood [8], G. P. Galdi [6]) or if v ∈ Lr(0, T ; Ls(Ω)3)
where r ∈ [2,+∞], s ∈ (3,+∞] and 2/r + 3/s ≤ 1 (S. Kaniel & M. Shinbrot
[10], Y. Giga [7], G. P. Galdi [6]). There also exist many partial regularity results
which give estimates of the measure or the dimension of the set of possible singular
points of all weak solutions or only of so called suitable weak solutions even if they
do not belong to the class Lr(0, T ; Ls(Ω)3) mentioned above (V. Scheffer [17],
[18], [19], C. Foias & R. Temam [4], L. Caffarelli, R. Kohn & L. Nirenberg [2], M.
Struwe [21]). The full regularity of the weak solution v that belongs to the class
L∞(0, T ; L3(Ω)3) is still an open question. There are reasons why it seems that the
possible positive answer could be a fundamental step on the way to the proof of the
full regularity of all weak solutions (with the “smooth” input data v0 and f). Thus,
our result on the partial regularity of the weak solution v ∈ L∞(0, T ; L3(Ω)3) is
the contribution to the solution of the problem of full regularity of this solution.

The norm in Lr(Ω)3 (for r ∈ (1,+∞)) will be denoted by ‖ . ‖r. C∞0 (Ω)3

denotes the set of all infinitely differentiable vector-functions defined in Ω, with a
compact support in Ω. C∞0,σ(Ω)3 is a subset of C∞0 (Ω)3 which contains only the
divergence-free vector functions. We shall denote by Hm,r

0 (Ω)3 (for m ∈ N and
r ∈ (1,+∞)) the completion of C∞0 (Ω)3 in the norm

‖v‖m,r =
∑
|α|≤m

‖Dαv‖r.

Lrσ(Ω)3 will be the closure of C∞0,σ(Ω)3 in Lr(Ω)3.

Ukρ (A) (for k = 3 or k = 4) will denote a k-dimensional ρ-neighbourhood of
set A ⊂ Rk. Bkρ (P ) will be a k-dimensional open ball with the center P ∈ Rk and
radius ρ.

Let v0 ∈ L2
σ(Ω)3 and f ∈ L2(QT )3. A measurable vector-function v on QT is

said to be a weak solution of the problem (1)–(4) if

1. v ∈ L2(0, T ; H1,2
0 (Ω)3) ∩ L∞(0, T ; L2

σ(Ω)3),
2. v satisfies∫ T

0

∫
Ω

[
v · ϕt − ν∇v · ∇ϕ− (v · ∇v) · ϕ+ f · ϕ] dx dt = −

∫
Ω
v0 · ϕ(. , 0) dx
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for all infinitely differentiable divergence-free vector functions ϕ on QT that
vanish on {[x, t] ∈ QT ; x ∈ ∂Ω or t = T}.
A point [x, t] ∈ Ω × (0, T ) is called a regular point of the weak solution v if

there exists a ball B4
ρ(x, t) in QT such that v is essentially bounded on this ball.

Points which are not regular are called singular. Let us denote by S(v) the set of
all singular points of v. If t0 ∈ (0, T ) then we put St0(v) = {x ∈ Ω; [x, t0] ∈ S(v)}.
It is obvious that the sets S(v) and St0(v) are closed in QT , respectively in Ω.

The main result of this paper is the following:

Theorem 1. Suppose that v ∈ L∞(0, T ; L3(Ω)3) is a weak solution of the problem
(1)–(4) and the external force f satisfies

f ∈ L2(QT )3 ∩ Lqloc(QT )3 for some q > 5
2 and divf = 0.

Then the set St0(v) of all singular points of v developed at any time t0 ∈ (0, T )
contains no more than K3/ε35 points, where

K = sup
t∈(0,T )

ess
(∫

Ω
|v(. , t)|3 dx

)1/3

and ε5 is the number given by Lemma 9.

2. Auxiliary results and proof of Theorem 1

We shall use the notion of a 1-dimensional Hausdorff measure. The Hausdorff
measure is explained in detail e.g. in H. Federer [3] or in L. Caffarelli, R. Kohn &
L. Nirenberg [2]. We shall denote the 1-dimensional Hausdorff measure of a set
X ⊂ Rk (where k ∈ N) by H1(X). The 3-dimensional Lebesgue measure of a set
X ∈ R3 will be denoted by m3(X).

Suppose in the following that v ∈ L∞(0, T ; L3(Ω)3) is a weak solution of the
problem (1)–(4) whose external force f satisfies the assumptions of Theorem 1 and
t0 ∈ (0, T ). The reason why we assume function f to be in L2(QT )3 ∩ Lqloc(QT )3

for some q > 5
2 is that we wish to apply results from paper [2] and this kind of

integrability of f is needed in [2].

Lemma 1. The 1-dimensional Hausdorff measure of the set S(v) ∩
(

Ω × [σ, T )
)

is zero for every σ ∈ (0, T ).

Proof. If Ω = R3 then due to L. Caffarelli, R. Kohn & L. Nirenberg [2], pp. 772–773
and 784, there exists a so called “suitable” weak solution u of the problem (1)–(4).
Its singular set S(u) satisfies H1(S(u)) = 0. The “suitable” weak solution u satis-
fies the energy inequality (even the so called strong energy inequality — see [2], pp.
779–780). Thus, the uniqueness theorem for weak solutions from L∞(0, T ; L3(Ω)3)
(see H. Kozono & H. Sohr [12], pp. 258–259) says that u = v and so S(v) = S(u).
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The only difference in the case when Ω is a bounded domain is that the proof of
existence of a “suitable” weak solution u of (1)–(4) requires fractional derivatives
of v0 of the order 2

5 to be in L5/4(Ω)3 (see [2], pp. 772, 773). We do not assume
this regularity of our initial data v0. However, since v(. , t∗) ∈ H1,2

0 (Ω)3 at a.a.
times t∗ ∈ (0, σ), v(. , t∗) already has this higher regularity and so v is a “suitable”
weak solution of (1)–(4) on the time interval (t∗, T ). t∗ can surely be found such
that [σ, T ) ⊂ (t∗, T ). Then the results of [2], pp. 772–773, 784, give the equality
H1
[
S(v) ∩

(
Ω× [σ, T )

)]
= 0. �

A set A ⊂ St0(v) will be called a separated subset of St0(v) if either A = St0(v)
or U3

ε (A)∩U3
ε

(
St0(v)−A

)
= ∅ for some ε > 0. It is obvious that every separated

subset of St0(v) is closed in Ω. A nonempty separated subset A0 of St0(v) will be
called a component of St0(v) if A0 cannot be expressed as a union of two disjoint
non-empty separated subsets of St0(v).

Lemma 2. If A0 is a component of St0(v) then A0 contains just one point.

Proof. Let x0 ∈ A0 and G be an open bounded set such that x0 ∈ G ⊂ G ⊂ Ω.
Then A0 ∩G is obviously compact.

1. Suppose that A0 ⊂ G at first. Assume that A0 contains point y0, different from
x0. Let z be a point on the line segment x0 y0 and σz be a plane perpendicular
to this segment and intersecting it at point z. To every k ∈ N there exists a
sequence of points x1, . . . , xm in A0 such that |x0 − x1| < 1/k, |x1 − x2| < 1/k.
. . . , |xm − y0| < 1/k. The distance of at least one of these points from σz is less
than 1/k. Let us denote this point by zk. The sequence {zk}+∞k=1 is bounded and
so it contains a convergent subsequence. Let z′ be the limit of this subsequence.
Obviously, z′ ∈ σz ∩A0.

Denote by (x0 y0)′ the union of all such points z′ over all z from the line segment
x0 y0. Since H1((x0 y0)′) = 0, there exists a covering B3

ρi(x
′
i) (i = 1, 2, . . . ) of

(x0 y0)′ by balls with centers x′i and radii ρi such that

+∞∑
i=1

ρi <
1
4
|x0 − y0|. (5)

Denote by xi the orthogonal projection of point x′i to the line segment x0 y0. The
orthogonal projection of the set (x0 y0)′ to the line segment x0 y0 is the whole
segment x0 y0. The balls B3

ρi(xi) (i = 1, 2, . . . ) (i.e. the balls B3
ρi(x

′
i) “shifted” so

that their centers are the points xi) form a covering of the segment x0 y0. However,
this is a contradiction with (5). Thus, A0 cannot have two different points.

2. Suppose now that A0 6⊂ G. Let us define Jε(x0) (for ε > 0) as a set of all points
x ∈ A0 ∩ G such that there exist other points x1, x2, . . . , xm ∈ A0 ∩G such that
|x0 − x1| ≤ ε, |x1 − x2| ≤ ε, . . . , |xm − x| ≤ ε. In other words, Jε(x0) is the set
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of those points x ∈ A0 ∩ G that one can get from x0 to x, jumping on points of
A0∩G, by jumps whose length does not exceed ε. It is clear that Jε(x0) is a closed
subset of A0 ∩G. The set

Mn = J1/n(x0) ∩ U3
1/n(∂G)

is non-empty for every n ∈ N. (If it were empty for some n ∈ N then it would
not be possible to get from x0 to y ∈ A0 −G by jumps of the length at most 1/n.
This would be the contradiction with the assumption that A0 is a component of
St0(v).) Since Mn+1 ⊂Mn, there exists y0 ∈ ∩+∞

n=1 Mn. Then y0 ∈ A0∩G and one
can get from x0 to y0, jumping on points of A0 ∩ G, by arbitrarily short jumps.
However, it can be shown that this leads to the contradiction with the equality
H1(A0 ∩G) = 0 in the same way as in part 1 of this proof. �

Lemma 3. Let x0 ∈ St0(v) and a > 0. Then there exists a separated subset A of
St0(v) such that x0 ∈ A, diamA < a and A ⊂ Ω.

Proof. Define Kε(x0) (for ε > 0) as a set of points x ∈ St0(v) such that there exists
a sequence {x1, x2, . . . , xm} in St0(v) satisfying the inequalities |x0 − x1| ≤ ε,
|x1−x2| ≤ ε, . . . , |xm−x| ≤ ε. Obviously, Kε(x0) is a separated subset of St0(v),
closed in Ω.

1. Suppose at first that there exists n ∈ N such that diam K1/n(x0) < a and
K1/n(x0) ⊂ Ω. Then we can put A = K1/n(x0).

2. Suppose now the opposite, i.e. for every n ∈ N, diam K1/n(x0) ≥ a or
K1/n(x0) 6⊂ Ω. Let G be an open subset of Ω such that x0 ∈ G ⊂ G ⊂ Ω and
diam G < a. The sets K1/n(x0)∩G are compact. (This follows from the closedness
of K1/n(x0) in Ω.) The sets

Mn = K1/n(x0) ∩ G ∩ U3
1/n(∂G)

are non-empty, compact and Mn+1 ⊂ Mn. Let y0 ∈ ∩+∞
n=1Mn. y0 is a point on

∂G∩ St0(v) such that one can get from x0 to y0, jumping on points of G∩ St0(v),
by arbitrarily short jumps. However, using the same argument as in part 1 of the
proof of Lemma 2, we can show that this is the contradiction with the fact that
H1(St0(v)) = 0. Thus, the assumption of part 2 of this proof cannot be true. �

Lemma 4. Let A be a bounded separated subset of St0(v) such that A ⊂ Ω. Then
to any given ε1 > 0, r > 0 and σ0 > 0 (such that [t0 − σ0, t0 + σ0] ⊂ (0, T )) there
exist ξ > 0 and an infinitely differentiable function η on R3 such that

1. m3(U3
ξ (A)) < ε1,

2. 0 ≤ η(x) ≤ 1 for all x ∈ R3,
3. η(x) = 1 for all x ∈ U3

ξ (A),
4. supp η ⊂ U3

r (A),
5. if we put E = {x ∈ Ω; 0 < η(x) < 1} then

(
E× [t0−σ0, t0 +σ0]

)
∩S(v)=∅.
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Proof. The boundedness of A, the closedness of A in Ω and the assumption A ⊂
Ω imply that A is compact. Let r0 ∈ (0, r) be such a number that U3

r0(A) ∩
U3
r0(St0(v)−A) = ∅ and U3

r0(A) ∩ ∂Ω = ∅.
Put δ = 1

2r0. A can be covered by a finite number of balls B3
ai(xi) (i = 1, . . . , n)

such that their centers xi are in A, their radii ai satisfy ai < δ and if we put

M =
n⋃
i=1

B3
ai(xi)

then m3(M) < ε1. Denote d = dist (A, ∂M). We claim that

∃ ρ ∈ (0, δ) :
(
∂B3

ai+ρ(xi)× [t0 − σ0, t0 + σ0]
)
∩ S(v) = ∅ (i = 1, . . . , n). (6)

To prove (6), we show that H1(Ji) = 0 (i = 1, . . . , n) where

Ji =
{
ρ ∈ (0, δ);

(
∂B3

ai+ρ(xi)× [t0 − σ0, t0 + σ0]
)
∩ S(v) 6= ∅

}
.

Due to Lemma 1, the 1-dimensional Hausdorff measure of the set⋃
ρ∈(0,δ)

(
∂B3

ai+ρ(xi)× [t0 − σ0, t0 + σ0]
)
∩ S(v) (7)

is zero. Thus, to any given α > 0 there exists a covering of set (7) by balls
B4
rj (yj , tj) (j = 1, 2, . . . ) with the centers [yj , tj ] ∈ R4 and radii rj such that∑
j rj < α. The intervals Iij =

(
|yj−xi|−ai−rj , |yj−xi|−ai+rj

)
(j = 1, 2, . . . )

form a covering of Ji. (Indeed, if ρ′ ∈ Ji then there exists [y′, t′] ∈
(
∂B3

ai+ρ′(xi)×

[t0 − σ0, t0 + σ0]
)
∩ S(v). The point [y′, t′] belongs to B4

rj (yj , tj) for some j ∈

{1; 2; . . .} and so we have
∣∣∣ρ′−(|yj−xi|−ai)

∣∣∣ =
∣∣∣|y′−xi|−|yj−xi|∣∣∣ ≤ |y′−yj| < rj .

This implies that ρ′ ∈ Iij .) The total length of the intervals Iij (j = 1, 2, . . . ) is∑
j 2rj < 2α. α > 0 was chosen arbitrarily, hence H1(Ji) = 0 (i = 1, . . . , n) and

consequently, H1(∪ni=1 Ji) = 0. This proves (6).
Furthermore, each of the intervals Ji is closed in (0, δ). Hence its complement

in (0, δ) is open and statement (6) can be extended: There exist ρ1, ρ2 ∈ (0, δ)
such that ρ1 < ρ2 and⋃

ρ∈[ρ1, ρ2]

(
∂B3

ai+ρ(xi)× [t0 − σ0, t0 + σ0]
)
∩ S(v) =

=
([
B3
ai+ρ2

(xi)−B3
ai+ρ1

(xi)
]
× [t0 − σ0, t0 + σ0]

)
∩ S(v) = ∅ (8)

for all i = 1, . . . , n.
Put ρ0 = (ρ1 + ρ2)/2 and M0 = ∪ni=1 B

3
ai+ρ0

(xi). Let χ be the characteristic
function of set M0. Choose ξ > 0 such that ξ < (ρ2 − ρ1)/2 and ξ < 1

2d. (The
last condition guarantees the validity of statement 1 of the lemma.) Put η = Rξχ
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where Rξ is the mollifier with the kernel different from zero on a ball with the
radius ξ. The validity of statement 2 is now obvious. Since dist (A; ∂M0) > 2ξ,
χ(x) = 1 for all x ∈ U3

2ξ(A) and so statement 3 is also true. Statement 4 follows
from the inclusions

supp η =
n⋃
i=1

B3
ai+ρ0+ξ(xi) ⊂

n⋃
i=1

B3
ai+ρ2

(xi) ⊂ U3
r0(A) ⊂ U3

r (A).

Further, we have

E ⊂
n⋃
i=1

B3
ai+ρ0+ξ(xi)−

n⋃
i=1

B3
ai+ρ0−ξ(xi) ⊂

n⋃
i=1

[
B3
ai+ρ2

(xi)−B3
ai+ρ1

(xi)
]
.

Due to (8), the cartesian product of the last set with the time interval [t0−σ0, t0 +
σ0] has the empty intersection with S(v). This proves statement 5. �

Lemma 5. Let D be a bounded Lipschitz domain in R3. Let further 1 < r < +∞,
m ∈ N0. Then there exists a linear operator R from Hm,r

0 (D) into Hm+1,r
0 (D)3

with the following properties:

1. divRf = f for all f ∈ Hm,r
0 (D) with

∫
D f dx = 0,

2. ‖∇m+1Rf‖r ≤ c1 ‖∇mf‖r for all f ∈ Hm,r
0 (D).

Lemma 5 follows from W. Borchers & H. Sohr [1, Theorem 2.4] and G. P.
Galdi [5, Theorem 3.2, Chap. III.3]. All the mentioned norms are the norms in
function spaces on D. Moreover, it also follows from G. P. Galdi [5, Theorem 3.3,
Chap. III.3] that

‖Rf‖r ≤ c2 ‖g‖r (9)

for f = div g with g having a compact support in D and such that g ∈ Lr(D)3

and div g ∈ Lr(D).

Lemma 6. There exists a constant ε2 > 0 with this property: If v satisfies

sup
t∈(t0−σ, t0+σ)

(∫
B3
r (x0)

|v(. , t)|3 dx
)1/3

≤ ε2 (10)

for some r > 0 and σ > 0 then [x0, t0] is a regular point of v.

Lemma 6 is a modified version of Theorem 7 in H. Kozono [13]. In Theorem 7
of [13], f is supposed to be zero and instead of (10), the supremum over t ∈
(t0 − σ, t0 + σ) of a weak L3-norm of v on B3

r (x0) is supposed to be “small
enough”. However, since the weak L3-norm can be dominated by the L3-norm, our
assumption (10) is still stronger. The fact that our f need not be zero represents
only a technical difficulty which does not remarkably influence the proof.
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Lemma 7. There exists ε3 > 0 such that if A is a nonempty subset of St0(v) then

lim
r→0+

lim
t→t0

sup

(∫
U3
r (A)
|v(. , t)|3 dx

)1/3

≥ ε3. (11)

Proof. By contradiction. Suppose that to every ε3 > 0 there exists a nonempty
subset A of St0(v) such that

lim
r→0+

lim
t→t0

sup

(∫
U3
r (A)
|v(. , t)|3 dx

)1/3

< ε3.

This means that there exist r0 > 0 and σ > 0 such that

sup
t∈(t0−σ, t0+σ)

(∫
B3
r (x0)

|v(. , t)|3 dx
)1/3

< 2ε3

for all r ∈ (0, r0) and for each point x0 ∈ A. If ε3 is small enough then Lemma 6
says that x0 is a regular point of v. This is the desired contradiction. �

Let a be a fixed positive number in the rest of this paper.

Lemma 8. There exists δ0 > 0 such that IF A is a nonempty separated subset
of St0(v) such that diam A < a, A ⊂ Ω and ε4 > 0, r > 0 and σ0 > 0 (such that
[t0 − σ0, t0 + σ0] ⊂ (0, T )) are given numbers THEN there exist c3 > 0, ρ > 0
and τ > 0 such that for each t∗ ∈ [t0 − σ0, t0 + σ0) the inequality∫

U3
r (A)
|v(. , t∗)|3 dx < δ0 (12)

implies ∫
U3
ρ(A)
|v(. , t)|3 dx ≤ c3

∫
U3
r (A)
|v(. , t∗)|3 dx+ ε4 (13)

for all t ∈ (t∗, t∗ + τ) ∩ (t0 − σ0, t0 + σ0).

Proof. The proof is based on a cut-off function techniques which was also used e.g.
by H. Kozono in [13].

There exists a ball B3
a(z0) in R3 such that A ⊂ B3

a(z0). Put either D = Ω (if Ω
is bounded) or D = B3

a(z0) (if Ω = R3). The norms ‖ . ‖r and ‖ . ‖m,r will denote
the norms in function spaces on D in this proof. Since A ⊂ D, A has a positive
distance from ∂D.

Suppose that ε4, r > 0 and σ0 > 0 are given numbers and σ0 is so small that
[t0 − σ0, t0 + σ0] ⊂ (0, T ). We can suppose without loss of generality that r is so
small that U3

r (A)∩∂D = ∅ and if St0(v)−A 6= ∅ then U3
r (A)∩U3

r (St0(v)−A) = ∅.
Let ε1 be a positive number. (Its value will be specified later.)
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Let ξ, η be the number (respectively the function) given by Lemma 4. We set
V (. , t) = R

(
∇η · v(. , t)

)
where R is the operator from Lemma 5. We have∫

D

∇η · v(. , t) dx =
∫
D

div [η v(. , t)] dx =
∫
∂D

η v(. , t) · ndS = 0

where n is the outer normal vector to ∂D. Thus, div V = ∇η · v in
D × (t0 − σ0, t0 + σ0). Moreover, we have at least

V ∈ L∞(t0 − σ0, t0 + σ0; H1,3
0 (D)3) ∩ L2(t0 − σ0, t0 + σ0; H2,2

0 (D)3), (14)
∂V

∂t
∈ Ls(t0 − σ0, t0 + σ0; H1,q

0 (D)3) (15)

for 2/s+ 3/q = 4 with 1 < s ≤ 2, 1 < q < 3
2 . (14) and (15) follow from Lemma 5

and the results of Y. Taniuchi [22, Lemma 5.1] and H. Kozono [13, Lemma 7.2].
Further, it follows from the proof of Lemma 5 (see W. Borchers & H. Sohr [1,
Theorem 2.4], pp. 73–76) that since ∇η has a compact support in D, V also has
a compact support in D. Put w = ηv − V . It can be verified that w is the weak
solution of the following problem in D × (t0 − σ0, t0 + σ0):

∂w

∂t
+ w · ∇w + [(1− η)v + V ] · ∇w = −∇(ηp) + ν∆w + g, (16)

divw = 0, (17)

w = 0 on ∂D × (t0 − σ0, t0 + σ0) (18)

where

g = (v · ∇η)v + p∇η + fη − 2ν∇η · ∇v − ν∆η v − ∂V

∂t
− v · ∇V + ν∆V.

w has a compact support in D and moreover, due to the relation between w and
v and (14), we also have

w ∈ L∞(t0 − σ0, t0 + σ0; L3
σ(D)3) ∩ L2(t0 − σ0, t0 + σ0; H1,2

0 (D)3). (19)

p is a pressure associated with the weak solution v. It follows from Y. Taniuchi
[22, Lemma 5.1] and H. Kozono [13, Lemma 7.2] that p can be taken so that

p ∈ Ls(t0 − σ0, t0 + σ0; Lq(D)) (20)

for 2/s+ 3/q = 3 with 1 < s < 2, 1 < q < 3.
Let us denote by Π the orthogonal projector of L2(D)3 onto L2

σ(D)3. Its
detailed analysis can be found e.g. in G. P. Galdi [5]. We shall especially use
the fact that its closure in Lq(D)3 (for 1 < q < 2) or restriction to Lq(D)3 (for
q > 2) is bounded in Lq(D)3. Further, we have Πw = w, Π(∂w/∂t) = ∂w/∂t and
Π(∆w) = ∆w.

The interval [t0 − σ0, t0 + σ0) can be expressed as ∪γ∈Γ [aγ , bγ) where set Γ is
at most countable, [aγ , bγ) (for γ ∈ Γ) are disjoint intervals and the restriction of
v to [aγ , bγ) is in BC([aγ , bγ); L3(Ω)3) for every γ ∈ Γ (see H. Kozono & H. Sohr
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[12]). It follows from H. Kozono [13, Theorem 5] and G. P. Galdi [6, Lemma 5.4]
that

∂v

∂t
∈ L2(aγ + ϑ, bγ − ϑ; L2

σ(D)3), v ∈ L2(aγ + ϑ, βγ − ϑ; W 2,2(D)3) (21)

for every γ ∈ Γ and ϑ > 0 such that aγ + ϑ < bγ − ϑ. (In fact, the mentioned
results of H. Kozono and G. P. Galdi concern only the case f ≡ 0. However,
using the same approaches, (21) can also be extended to the situation when f 6≡ 0
and f ∈ L2(QT )3.) The L2(Ω)3-weak continuity of v on [t0 − σ0, t0 + σ0] (which
follows relatively easily from the definition of the weak solution — see e.g. G. P.
Galdi [6]) and the L3(Ω)3-essential boundedness of v on [t0−σ0, t0 +σ0] imply the
L3(Ω)3-weak continuity of v on [t0−σ0, t0 +σ0]. Thus, function w is L3(D)3-right
continuous and L3(D)3-weakly continuous on [t0 − σ0, t0 + σ0] and it is also in
BC([aγ , bγ); L3(D)3) for every γ ∈ Γ. Hence it satisfies except others

lim
t→bγ−

sup
∫
D

|w(. , t)|3 dx ≥
∫
D

|w(. , bγ)|3 dx (22)

at every point bγ (for γ ∈ Γ). It is obvious that function w also satisfies (21).

Suppose now that t ∈ (aγ , bγ) for some γ ∈ Γ. For simplicity, we will often write
only w instead of w(. , t). Multiplying equation (16) by Π(w|w|) and integrating
over D, we obtain

1
3
d

dt

∫
D

|w|3 dx+
∫
D

(w ·∇w) ·Π(w|w|) dx+
∫
D

(
[(1−η)v+V ] ·∇w

)
·Π(w|w|) dx =

= −ν
∫
D

|∇w|2 |w| dx− 4
9
ν

∫
D

∣∣∣∇|w|3/2∣∣∣2 dx+
∫
D

g · Π(w|w|) dx. (23)

Since function v is locally essentially bounded on QT −S(v), it follows from state-
ment 5 of Lemma 4 that it is essentially bounded on E× [t0−σ0, t0 +σ0]. We will
now estimate the integrals in (23). c4 and c5 will be generic constants, i.e. constants
whose values may change from one line to the next and which depend only on D,
the essential bound of v on E × (t0 − σ0, t0 + σ0) and sup ess t∈(0,T ) ‖v(. , t)‖3,
sup ess t∈(0,T ) ‖w(. , t)‖3 and sup ess t∈(0,T ) ‖V (. , t)‖1,3 . (The norms mean the
norms on D.) Moreover, c5 will also depend on a certain number δ whose exact
value will be specified later. c4 and c5 do not depend on t.∣∣∣∣∫

D

(w · ∇w) · Π(w|w|) dx
∣∣∣∣ ≤ δ ∫

D

|w| |∇w|2 dx+ c5(δ)
∫
D

|w|
∣∣∣Π(w|w|)

∣∣∣2 dx ≤
≤ δ

∫
D

|w| |∇w|2 dx+ c5(δ)
(∫

D

|w|3 dx
)2/3(∫

D

|w|9 dx
)1/3

≤

≤ δ

∫
D

|w| |∇w|2 dx+
[
δ + c5(δ)

∫
D

|w|3 dx
] ∫

D

∣∣∣∇|w|3/2∣∣∣2 dx, (24)
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∣∣∣∣∫
D

(1− η)(v · ∇w) · Π(w|w|) dx
∣∣∣∣ =

∣∣∣∣∫
E

(1− η)[v · ∇(ηv − V )] ·Π(w|w|) dx
∣∣∣∣ ≤

≤
∣∣∣∣∫
E

(1− η)[v · ∇(ηv)] · Π(w|w|) dx
∣∣∣∣ +

∣∣∣∣∫
E

(1− η)[v · ∇V ] ·Π(w|w|) dx
∣∣∣∣ ≤

≤ c4

∫
E

|∇(ηv)|
∣∣∣Π(w|w|)

∣∣∣ dx+ c4

∫
E

|∇V |
∣∣∣Π(w|w|)

∣∣∣ dx ≤ c4 ∫
E

|∇(ηv)|2 dx +

+ c4

∫
E

∣∣∣Π(w|w|)
∣∣∣2 dx + c4

(∫
E

|∇V |3 dx
)1/3 (∫

D

∣∣∣Π(w|w|)
∣∣∣3/2 dx)2/3

≤

≤ c4

∫
D

|∇v|2 dx+ c4 + c4

∫
D

|w|4 dx+ c4

(∫
D

|w|3 dx
)2/3

≤

≤ c4

∫
D

|∇v|2 dx+ c4 + c4

(∫
D

|w|3 dx
)5/6(∫

D

|w|9 dx
)1/6

≤

≤ c4

∫
D

|∇v|2 dx+ δ

(∫
D

|w|9 dx
)1/3

+ c5(δ) ≤

≤ c4

∫
D

|∇v|2 dx+ δ c4

∫
D

∣∣∣∇|w|3/2∣∣∣2 dx + c5(δ), (25)

∣∣∣∣∫
D

(V ·∇w)·Π(w|w|) dx
∣∣∣∣≤

≤ c4

(∫
D

|V |6dx
)1/6(∫

D

|∇w|2 dx
)1/2(∫

D

|w|6 dx
)1/3

≤

≤ c4

∫
D

|∇w|2 dx+ c4

(∫
D

|w|6 dx
)2/3

≤

≤ c4

∫
D

|∇w|2 dx+ c4

(∫
D

|w|3 dx
)1/3(∫

D

|w|9 dx
)1/3

≤

≤ c4

∫
D

|∇w|2 dx+
[
δ + c5(δ)

∫
D

|w|3 dx
] ∫

D

∣∣∣∇|w|3/2∣∣∣2 dx. (26)

In order to estimate the integral of g·Π(w|w|) onD, we shall also need the following
inequalities:∣∣∣∣∫

D

[(v · ∇η) · v] ·Π(w|w|) dx
∣∣∣∣ =

∣∣∣∣∫
E

[(v · ∇η) · v] · Π(w|w|) dx
∣∣∣∣ ≤

≤ c4

∫
E

∣∣∣Π(w|w|)
∣∣∣ dx ≤ c4 ∫

D

∣∣∣Π(w|w|)
∣∣∣3/2 dx+ c4 ≤

≤ c4

∫
D

|w|3 dx+ c4 ≤ c4, (27)
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D

p∇η · Π(w|w|) dx
∣∣∣∣ =

∣∣∣∣∫
E

p∇η ·Π(w|w|) dx
∣∣∣∣ ≤ c4 ∫

E

|p|
∣∣∣Π(w|w|)

∣∣∣ dx ≤
≤ c4

(∫
D

|p|13/8 dx

)8/13(∫
D

∣∣∣Π(w|w|)
∣∣∣13/5

dx

)5/13

≤

≤ c4

(∫
D

|p|13/8 dx

)16/15

+ c4

(∫
D

|w|26/5 dx

)10/11

≤

≤ c4

(∫
D

|p|13/8 dx

)16/15

+ c4

(∫
D

|w|3 dx
)19/33(∫

D

|w|9 dx
)1/3

≤

≤ c4

(∫
D

|p|13/8 dx

)16/15

+
[
δ + c5(δ)

∫
D

|w|3 dx
] ∫

D

∣∣∣∇|w|3/2∣∣∣2 dx, (28)∣∣∣∣∫
D

fη · Π(w|w|) dx
∣∣∣∣ ≤ c4 ∫

D

|f |2 dx+ c4

∫
D

|w|4 dx.

The integral of |w|4 can now be estimated in the same way as in (25). So we get∣∣∣∣∫
D

fη ·Π(w|w|) dx
∣∣∣∣ ≤ c4 ∫

D

|f |2 dx + δ c4

∫
D

∣∣∣∇|w|3/2∣∣∣2 dx+ c5(δ). (29)

Further, we have∣∣∣∣2ν ∫
D

(∇η · ∇v) ·Π(w|w|) dx
∣∣∣∣ ≤

≤ c4

∫
D

|∇v|
∣∣∣Π(w|w|)

∣∣∣ dx ≤ c4 ∫
D

|∇v|2 dx+ c4

∫
D

|w|4 dx ≤

≤ c4

∫
D

|∇v|2 dx + δ c4

∫
D

∣∣∣∇|w|3/2∣∣∣2 dx+ c5(δ), (30)

∣∣∣∣ν ∫
D

∆η v ·Π(w|w|) dx
∣∣∣∣ =

∣∣∣∣ν ∫
E

∆η v ·Π(w|w|) dx
∣∣∣∣ ≤

≤ c4

∫
E

∣∣∣Π(w|w|)
∣∣∣ dx ≤ c4, (31)

∣∣∣∣∫
D

∂V

∂t
· Π(w|w|) dx

∣∣∣∣ ≤
(∫

D

∣∣∣∣∂V∂t
∣∣∣∣9/5 dx

)5/9(∫
D

∣∣∣Π(w|w|)
∣∣∣9/4 dx)4/9

≤

≤ c4

∥∥∥∥∂V∂t
∥∥∥∥

1, 9/8

(∫
D

|w|9/2 dx
)4/9

≤ c4
∥∥∥∥∂V∂t

∥∥∥∥3/2

1, 9/8
+ c4

(∫
D

|w|9/2 dx
)4/3

≤

≤ c4

∥∥∥∥∂V∂t
∥∥∥∥3/2

1, 9/8
+ c4

(∫
D

|w|3 dx
)(∫

D

|w|9 dx
)1/3

≤

≤ c4

∥∥∥∥∂V∂t
∥∥∥∥3/2

1, 9/8
+ c4

(∫
D

|w|3 dx
)(∫

D

∣∣∣∇|w|3/2∣∣∣2 dx) , (32)
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D

(v · ∇V ) · Π(w|w|) dx
∣∣∣∣ ≤

≤
(∫

D

|v|3 dx
)1/3 (∫

D

|∇V |3 dx
)1/3 (∫

D

|w|6 dx
)1/3

≤

≤ c4

(∫
D

|w|3 dx
)1/6(∫

D

|w|9 dx
)1/6

≤ c4
(∫

D

|w|9 dx
)1/6

≤

≤ δ

(∫
D

|w|9 dx
)1/3

+ c5(δ) ≤ δ c4
∫
D

∣∣∣∇|w|3/2∣∣∣2 dx+ c5(δ), (33)

∣∣∣∣ν ∫
D

∆V ·Π(w|w|) dx
∣∣∣∣ ≤ ∫

D

|∆V |2 dx+ c4

∫
D

|w|4 dx ≤

≤
∫
D

|∆V |2 dx+ δ c4

∫
D

∣∣∣∇|w|3/2∣∣∣2 dx+ c5(δ). (34)

Substituting from (25)–(34) to (23), we obtain

1
3

d

dt

∫
D

|w|3 dx+ (ν − δ c4)
∫
D

|∇w|2 |w| dx +

+
[

4
9
ν − δ c4 − c4

∫
D

|w|3 dx
]
·
∫
D

∣∣∣∇|w|3/2∣∣∣2 dx ≤ c5(δ) + F (35)

where

F = c4

∫
D

(
|∇v|2 + |∇w|2 + |f |2 + |∆V |2

)
dx+ c4

(∫
D

|p|13/8 dx

)16/15

+ c4

∥∥∥∥∂V∂t
∥∥∥∥3/2

1, 9/8
.

It follows from (14), (15), (19) and (20) that F , as a function of t, is integrable on
(t0 − σ0, t0 + σ0). Now we choose δ so that δ c4 = 2

9 ν. Suppose from now that c4
and c5 are no more generic, i.e. that their values are fixed. If

c4

∫
D

|w(. , t∗)|3 dx <
1
9
ν (36)

then due to the right continuity of w in L3(D)3 there exists τ > 0 such that

c4

∫
D

|w(. , t)|3 dx <
2
9
ν for t ∈ [t∗, t∗ + τ) ∩ [t0 − σ0, t0 + σ0]. (37)

We will now show that τ can be chosen independent on t∗ and we will derive a
more accurate estimate of the integral of |w(. , t)|3 on D for t ∈ (t∗, t∗+ τ)∩ (t0−
σ0, t0 + σ0). Inequality (35) implies

1
3
d

dt

∫
D

|w(. , t)|3 dx ≤ c5 + F (t) (38)



322 J. Neustupa JMFM

for a.a. t ∈ (t∗, t∗+τ)∩(t0−σ0, t0+σ0). Integrating this inequality on the interval
(t∗, t) and using (22) and the L3(D)3-right continuity of w on [t0 − σ0, t0 + σ0),
we obtain∫
D

|w(. , t)|3 dx ≤
∫
D

|w(. , t∗)|3 dx+ 3
∫ t

t∗
(c5+F (s)) ds ≤ ν

9c4
+3
∫ t

t∗
(c5+F (s)) ds.

(39)
Now it is seen that if τ > 0 is chosen so that the right hand side of (39) is less
than 2ν/(9c4) whenever t∗, t ∈ [t0 − σ0, t0 + σ0] and |t− t∗| < τ then (37) holds
and this further implies the validity of (39) on (t∗, t∗ + τ) ∩ (t0 − σ0, t0 + σ0).

Put ρ = ξ. Using the relation between w and v (i.e. w = ηv−V ), the fact that
V = R(div (ηv)) and inequality (9), we can derive the estimate∫

D

| w(. , t∗)|3 dx ≤
∫
D

|ηv(. , t∗)|3 dx+
∫
D

|V (. , t∗)|3 dx ≤

≤
∫
U3
r (A)
|v(. , t∗)|3 dx+ c6

∫
D

|η v(. , t∗)|3 dx ≤ c7

∫
U3
r (A)
|v(. , t∗)|3 dx. (40)

Thus, there exists δ0 > 0 such that the inequality (12) implies (36). Further, due
to (14), the first part of (39) and (40), we have:∫

U3
ρ (A)

| v(. , t)|3 dx =
∫
U3
ρ (A)
|η v(. , t)|3 dx ≤

≤ c8

∫
U3
ρ (A)

(
|w(. , t)|3 + |V (. , t)|3

)
dx ≤

≤ c8

∫
D

|w(. , t)|3 dx+ c8

(∫
U3
ρ (A)

dx

)1/2 (∫
U3
ρ (A)
|V (. , t)|6 dx

)1/2

≤

≤ c8

∫
D

|w(. , t∗)|3 dx+ 3c8
∫ t

t∗
(c5 + F (s)) ds +

+c8m3(U3
ξ (A))1/2 ‖V (. , t)‖31,2 ≤

≤ c8 c7

∫
U3
r (A)
|v(. , t∗)|3 dx+ 3c8

∫ t

t∗
(c5 + F (s)) ds+ c9 ε

1/2
1 . (41)

If ε1 is so small that c9 ε
1/2
1 < 1

2 ε4 and τ is, in addition, chosen so small that∣∣∣∣3c8 ∫ t2

t1

(c5 + F (s)) ds
∣∣∣∣ < 1

2
ε4

for all t1, t2 ∈ [t0 − σ0, t0 + σ0] such that |t2 − t1| < τ then estimate (41) implies
(13). �

Lemma 9. There exists ε5 > 0 such that if A is a nonempty separated subset of
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St0(v) such that diam A < a and A ⊂ Ω then

lim
r→0+

lim
t→t0−

inf

(∫
U3
r (A)
|v(. , t)|3 dx

)1/3

≥ ε5. (42)

Proof. By contradiction. Suppose that to every ε5 > 0 there exists a nonempty
separated subset A of St0(v) such that diam A < a, A ⊂ Ω and

lim
r→0+

lim
t→t0−

inf

(∫
U3
r (A)
|v(. , t)|3 dx

)1/3

≤ ε5.

Thus, there exist r0 > 0 and an increasing sequence tn → t0− such that for all
r ∈ (0, r0) and all n ∈ N, one has(∫

U3
r (A)
|v(. , tn)|3 dx

)1/3

≤ 2ε5.

Suppose that ε5 is chosen so small that (2ε5)3 < δ0. (δ0 is the number from Lemma
8.) Then∫

U3
ρ (A)
|v(. , t)|3 dx ≤ c3

∫
U3
r (A)
|v(. , tn)|3 dx+ ε4 ≤ c3 (2ε5)3 + ε4

for all t ∈ (tn, tn+ τ)∩ (t0−σ0, t0 +σ0). (ρ, c3, ε4 and τ are the numbers given by
Lemma 8.) Since tn → t0− and τ does not depend on n, the intervals (tn, tn + τ)
(n = 1, 2, . . . ) cover an interval (t0 − σ, t0 + σ) for some σ > 0. So

lim
t→t0

sup

(∫
U3
ρ (A)
|v(. , t)|3 dx

)1/3

≤
[
c3 (2ε5)3 + ε4

]1/3
.

If ε4 and ε5 are chosen small enough then this is in contradiction with inequality
(11) in Lemma 7. �

Proof of Theorem 1. St0(v) can be expressed in the form

St0(v) =
(⋃
i∈I

Ci
)
∪ P

where Ci (i ∈ I) are all components of St0(v) and (∪i∈I Ci) ∩ P = ∅. Set I is at
most countable. It follows from Lemma 2 that every component consists of just
one point. Thus, Ci = {ci} (i ∈ I).

Since every component is a separated subset of St0(v), there exist numbers ri
(i ∈ I) such that B3

ri(ci)∩St0(v) = {ci} (i ∈ I). The numbers ri can be chosen so
that the balls Bri(ci) are disjoint. Suppose that {c1; . . . ; cn} is a finite subset of
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∪i∈I ci. Then we have:

K3 ≥ sup
t∈(0,T )

ess
n∑
i=1

∫
B3
ri

(ci)
|v(. , t)|3 dx ≥ lim

t→t0−
inf

n∑
i=1

∫
B3
ri

(ci)
|v(. , t)|3 dx ≥

≥
n∑
i=1

lim
t→t0−

inf
∫
B3
ri

(ci)
|v(. , t)|3 dx ≥

n∑
i=1

ε35 = n ε35.

(The last inequality follows from Lemma 9.) This implies:

n ≤ K3/ε35 (43)

Thus, the total number of all components Ci of St0(v) cannot exceed K3/ε35.
Further, we claim that P = ∅. Suppose the opposite. Let x0 ∈ P and a > 0.

Due to Lemma 3, there exists a separated subset A of St0(v) such that diamA < a,
A ⊂ Ω, the intersection of A with all components of St0(v) is empty, and x0 ∈ A.
A cannot be a component, so A = A1∪A2 where A1 and A2 are disjoint non-empty
separated subsets of St0(v). The same argument can now be applied to each of
the sets A1 and A2. After m such steps, we have:

A =
2m⋃
i=1

Ai

where Ai (i = 1, . . . , 2m) are disjoint non-empty separated subsets of St0(v). Thus,
there exist numbers ρi > 0 (i = 1, . . . , 2m) such that U3

ρi(Ai) ∩ St0(v) = Ai
(i = 1, . . . , 2m). Using Lemma 9, we obtain:

K3 ≥ sup
t∈(0,T )

ess
2m∑
i=1

∫
U3
ρi

(Ai)
|v(. , t)|3 dx ≥ lim

t→t0−
inf

2m∑
i=1

∫
U3
ρi

(Ai)
|v(. , t)|3 dx ≥

≥
2m∑
i=1

lim
t→t0−

inf
∫
U3
ρi

(Ai)
|v(. , t)|3 dx ≥

2m∑
i=1

ε35 = 2m ε35.

However, this inequality cannot hold if m is chosen large enough. Thus, P = ∅.
�
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