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Abstract. In this paper, we prove that the maximum norm of velocity divergence controls the breakdown of smooth (strong)
solutions to the two-dimensional (2D) Cauchy problem of the full compressible Navier–Stokes equations with zero heat
conduction. The results indicate that the nature of the blowup for the full compressible Navier–Stokes equations with zero
heat conduction of viscous flow is similar to the barotropic compressible Navier–Stokes equations and does not depend on
the temperature field. The main ingredient of the proof is a priori estimate to the pressure field instead of the temperature
field and weighted energy estimates under the assumption that velocity divergence remains bounded. Furthermore, the
initial vacuum states are allowed, and the viscosity coefficients are only restricted by the physical conditions.
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1. Introduction and Main Results

The motion of a compressible viscous, heat-conducting fluid is governed by the following compressible
Navier–Stokes system ([35]):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μΔu − (μ + λ)∇divu + ∇P = 0,

cυ[∂t(ρθ) + div(ρuθ)] + Pdivu − κΔθ = 2μ|D(u)|2 + λ(divu)2,

(1.1)

where u = (u1, u2), ρ, θ and P = Rρθ (R > 0) denote the velocity, density, absolute temperature and
pressure, respectively. The constant viscosity coefficient μ > 0. The positive constants cυ and κ as the
heat capacity and the coefficient of heat conduction, respectively.

The deformation tensor D(u) denotes as

D(u) =
1
2

(∇u + (∇u)tr
)
.

The constant viscosity coefficient μ and λ satisfy the physical restrictions

μ > 0, μ + λ ≥ 0. (1.2)

The compressible Navier–Stokes system (1.1) consists of the conservation of mass, momentum and
energy. There is a large amount of literature on the wellposedness and illposedness to compressible vis-
cous flows in multi-dimensional, see [3,4,9–11,13,14,18,19,23,28,29,32,33,35,39,40]) and the references
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cited therein. The local existence and uniqueness of classical solutions were established in [40,43] in
the absence of vacuum. When initial data close to a non-vacuum equilibrium in some Sobolev space,
Matsumura-Nishida first obtained [39] the global classical solutions. Later, Hoff [14] studied the global
weak solutions with strictly positive initial density and temperature for discontinuous initial data. The
major breakthrough is due to Lions [35], he obtained a global weak solution to 3D compressible barotropic
Navier–Stokes equations, when solutions have finite energy and the pressure P (ρ) = ργ with γ ≥ 9

5 , and
Feireisl [13] extended the results with γ > 3

2 . Based on the frameworks, Jiang–Zhang [28] constructed
the global existence of weak solution for γ > 1 with the symmetric initial data. Hu-Wang [15,16] ex-
tended the Lion’s weak solution to the full compressible Navier–Stokes equations and magnetohydro-
dynamic equations with general large initial data. Moreover, Cho-Kim [3] obtained the local existence
and uniqueness of strong solutions with nonnegative initial density in three-dimensional space. Recently,
Huang–Li–Xin [18,23,33] and Li–Xu–Zhang [31] established the global existence of the classical solution
to multi-dimensional compressible Navier–Stokes equations and magnetohydrodynamic equations when
the initial total energy is small but possibly large oscillations, respectively.

In particular, Xin [50] and Xin-Yan [51] showed that the smooth solutions to the compressible viscous
flows without heat-conductive will blow up in finite time when the initial density has compact support
or contains an isolated mass group. Therefore, it should be noted that one would not expect too much
regularity of Lions’s weak solutions in general. It is thus important to study the mechanism of blowup
and structure of possible singularities of strong (or smooth) solutions to the compressible Navier–Stokes
system. In the recent years, there has been some progress along this lines to the multi-dimensional com-
pressible Navier–Stokes equation. The pioneering work can be traced to the incompressible Euler equa-
tions, Beale-Kato-Majda (BKM-type) in [1] established a well-known blowup criterion, roughly speaking,
that if T ∗ < ∞ is the life span of a strong (or classical) solution, then

lim
T→T ∗

‖∇ × u‖L1(0,T ;L∞) = ∞, (BKM-type). (1.3)

Later, Ponce [42] rephrased the BKM-type criterion in terms of deformation tensor D(u) for 3D incom-
pressible Euler equations, namely,

lim
T→T ∗

‖D(u)‖L1(0,T ;L∞) = ∞. (1.4)

Recently, Huang and Xin [24] established the following blow-up criterion in a 3-D smooth bounded
domain for compressible Navier-Stokes equations, similar to the Beale-Kato-Majda criterion for ideal
incompressible flows, namely,

lim
T→T ∗

‖∇u‖L1(0,T ;L∞) = ∞, (1.5)

provided

7μ > λ. (1.6)

Very recently, Huang–Li–Xin [22] extended the BKM-type blowup criterion (1.4) to the viscous bara-
tropic Navier–Stokes equations in R

3 or a bounded domain of R3.
For the non-isentropic compressible Navier–Stokes equations, Jiang–Ou [27] obtained a BKM-type

blowup criterion for full Navier-Stokes equations (1.1) over a periodic domain or unit square domain of
R

2.
Furthermore, Fan–Jiang–Ou [12] proved that if the strong solution blows up at T ∗ to (1.1) in a bounded

domain of R3, then

lim
T→T ∗

(‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞)

)
= ∞,

under the assumption (1.6). More recently, in the absence of a vacuum and 7μ > λ, Sun–Wang–Zhang
[46] showed that

lim
T→T ∗

(‖θ‖L∞(0,T ;L∞) + ‖(ρ−1, ρ)‖L∞(0,T ;L∞)

)
= ∞.
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On the other side, Wang [48] established a blowup criterion only in term of the divergence of the
velocity field in two dimension bounded domain, namely,

lim
T→T ∗

(‖divu‖L1(0,T ;L∞)

)
= ∞.

Indeed, due to the significant works of Xin [50] and Xin–Yan [51] to compressible viscous flows without
heat-conductive, the aim of this paper is to investigate the further blowup mechanism to the 2D full
compressible Navier–Stokes equations without heat-conductivity. We will assume that κ = 0, and without
loss of generality, take cυ = R = 1, the system (1.1) is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μΔu − (μ + λ)∇divu + ∇P = 0,

Pt + div(Pu) + Pdivu = 2μ|D(u)|2 + λ(divu)2.

(1.7)

We consider the Cauchy problem to (1.7) with initial conditions

(ρ, u, P )(x, 0) = (ρ0, u0, P0)(x), x ∈ R
2, (1.8)

and the far-field conditions

(ρ, u, P )(x, t) → (0, 0, 0) as |x| → ∞. (1.9)

Before stating the main result, we will use the following notations and conventions. For 1 ≤ r ≤ ∞ and
integer k ≥ 1, we denote the standard Lebesgue and Sobolev spaces as follows,

∫

fdx =
∫

R2
fdx,

and

Lr = Lr(R2), W k,r = W k,r(R2), Hk = W k,2(R2), Dk,r =
{
u ∈ L1

loc | ∇ku ∈ Lr
}

.

We denote the material derivative of f by

ḟ := ft + u · ∇f.

We begin with the local existence of strong (or classical) solutions. The existence and uniqueness of
local strong (or classical) solutions for the system (1.7)–(1.9) are proved recently in [34,36], which the
initial vacuum states are allowed. The strong solutions to the Cauchy problem (1.7)–(1.9) are defined as
follows.

Definition 1.1 (Strong solutions). (ρ, u, P ) is called a strong solution to (1.7) in R
2 × (0, T ), if for some

r0 > 2 and a > 1,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ ≥ 0, ρx̄a ∈ C([0, T ];L1 ∩ H1 ∩ W 1,r0),

u ∈ C([0, T ];D1,2 ∩ D2,2) ∩ L2
(
0, T ;D2,r0

)
,

√
ρu̇ ∈ L∞(0, T ;L2), u̇ ∈ L2(0, T ;D1,2),

P ≥ 0, P ∈ C([0, T ];L1 ∩ H1 ∩ W 1,r0),

(1.10)

where (ρ, u, P ) satisfies (1.7) almost everywhere in R
2 × (0, T ). Here

x̄ �
(
e + |x|2)

1
2 ln1+η0

(
e + |x|2) , (1.11)

where η0 is a positive constant.



51 Page 4 of 21 Y. Wang JMFM

Without loss of generality, we assume that the initial density ρ0 satisfies
∫

ρ0dx = 1. (1.12)

Our main result of this paper can be stated as follows.

Theorem 1.1. For given positive constants η0, q̃ > 2 and a > 1, the initial data satisfies (1.12) and

ρ0 ≥ 0, P0 ≥ 0, ρ0x̄
a ∈ L1 ∩ H1 ∩ W 1,q̃,

P0 ∈ L1 ∩ H1 ∩ W 1,q̃, ∇u0 ∈ H1,
√

ρu0 ∈ L2,
(1.13)

and the compatibility conditions

− μΔu0 − (μ + λ)∇divu0 + ∇P0 =
√

ρ0g, (1.14)

for some g ∈ L2. Suppose (ρ, u, P ) be a strong solution to the Cauchy problem (1.7)–(1.9). If T ∗ < ∞ is
the maximal existence time of the strong solution, then

lim
T→T ∗

∫ T

0

‖divu‖s
L∞dt = ∞, (1.15)

for all s ≥ 1.

Remark 1.1. Under the conditions of Theorem 1.1, the local existence of a strong solution was established
in [34,36]. Hence, the maximal time T ∗ is well-defined.

Remark 1.2. In view of the standard Hölder inequality and ‖divu‖Lq1 (0,T ;L∞) ≤ C for q1 > 1, we obtain
the bound of ‖divu‖Lq2 (0,T ;L∞) ≤ C for any q2 ∈ [1, q1). Hence, it suffices to prove the main Theorem 1.1
holds for s = 1.

Remark 1.3. Very recently, the authors [26] establish a blowup criterion in terms of the integrability of
the density for strong solutions to the compressible viscous baratropic Navier–Stokes equations in R

2

with vacuum. It would be interesting to study whether the integrability of the density can guarantee the
global regularity of the system (1.7)–(1.9).

Remark 1.4. Recently, Zhong [54,55] obtained a blowup criterion to system (1.7)–(1.9), if T ∗ < ∞ is the
maximal time for the existence of a strong (or classical) solution, then

lim
T→T ∗

(‖ρ‖L∞(0,T ;L∞) + ‖P‖L∞(0,T ;L∞)

)
= ∞.

For the 3D Cauchy problem of non-isentropic Navier–Stokes equations with zero heat conduction, Huang–
Xin [25] proved that

lim
T→T ∗

(‖ρ‖L∞(0,T ;L∞) + ‖θ‖L∞(0,T ;L∞)

)
= ∞,

under the assumption μ > 4λ. In particular, Duan [8], Zhong [53] and Wang [47] established a some blowup
criteria for the 3D compressible non-isentropic magnetohydrodynamic (MHD) equations with zero heat-
conductivity. It would be interesting to study whether the maximum norm of velocity divergence can
guarantee the global regularity of the 3D system (1.7)–(1.9).

Remark 1.5. We would like to mention the recent works on the well-known Serrin-type blowup criteria
for compressible flows in [17,20,21,52] for more details. The pioneering work can be traced to Serrin’s
criterion was first established by J. Serrin in [44] for three-dimensional incompressible Navier–Stokes
flows. Some similar blowup criteria for the compressible flows and liquid–gas two-phase flow model have
been established in the recent papers, see [5–7,45,49] and references therein.
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We now comment on the analysis of this paper.
Compared with [27,48] for 2D the full compressible Navier–Stokes equations in bounded domain, some

new difficulties arise for the Cauchy problem of the compressible non-isentropic Navier–Stokes equations
with zero heat conduction. First, it seems difficult to bound the norm ‖u‖Lq(R2) for any q > 1 just in terms
of ‖√

ρu‖L2(R2) and ‖∇u‖L2(R2), since the Brezis-Waigner’s inequality [2] fails for unbounded domain R
2.

Inspired by [37,38], one way to overcome this difficulty is to estimate the momentum ρu instead of the
velocity u provided that ρ decays for large x. Moreover, in order to estimate L∞

t L∞
x -norm of P , we first

show a priori estimate L∞
t Lq

x-norm of P for any 1 < q < ∞. Next, we use logarithmic type Gronwall’s
inequality and a finer estimate for ρ, u and P , and obtain the estimates L∞

t L2
x, L∞

t Lq̃
x-norm of (∇ρ,∇P )

(q̃ > 2). Finally, we can obtain the spatial weighted estimate of density. Furthermore, the initial density
vacuum is allowed in this paper. bound the norm ‖u‖Lq(R2) for any q > 1 just in terms of ‖√ρu‖L2(R2)

and ‖∇u‖L2(R2), since the Brezis-Waigner’s inequality [2] fails for unbounded domain R
2. Inspired by

[37,38], one way to overcome this difficulty is to estimate the momentum ρu instead of the velocity u
provided that ρ decays for large x.

The remain of this paper is organized as follows. First, some important inequalities and auxiliary
lemmas will be given in Sect. 2. Moreover, we prove the main result Theorem 1.1 in Sect. 3.

2. Preliminaries

In this section, we will recall some elementary lemmas and inequalities that will be used later.
First, we will give the result on the local existence of the strong solution to the full Navier–Stokes

system (1.7)–(1.9), and the proof can be found in [34].

Proposition 2.1 (Local existence of strong solution). Assume that the initial data (ρ0, u0, P0) satisfy (1.13)
and (1.14). Then there exists a positive constant T0 and unique strong solution (ρ, u, P ) to the Cauchy
problem (1.7)–(1.9) on R

2 × (0, T0).

Next, the following well-known Gagliardo-Nirenberg inequalities, which will be used later frequently
(see [41] for the detailed proof).

Lemma 2.2. For p ∈ [2,∞), m ∈ (1,∞), and n ∈ (2,∞), there exists a generic positive constant C which
may depend on m, n such that for any f ∈ H1, g ∈ Lm ∩ D1,n, there holds

‖f‖p
Lp ≤ C ‖f‖2L2 ‖∇f‖p−2

L2 , (2.1)

and

‖g‖L∞ ≤ C‖g‖Lm + C‖∇g‖Ln . (2.2)

The effective viscous flux G, and vorticity ω are defined as follows.

G = (2μ + λ) divu − P, ω = ∇ × u = ∂x1u
2 − ∂x2u

1. (2.3)

It follows from the momentum equations (1.7)2 that we can obtain two key elliptic system of G and
ω,

ΔG = div (ρu̇) , μΔω = ∇ × (ρu̇) . (2.4)

In view of the standard Lp-estimate of elliptic system (2.4), we obtain the following estimate.

Lemma 2.3. Let (ρ, u, P ) be a smooth solution of (2.4) and p ≥ 2. Then there exists a generic positive
constant C depending only on μ, λ and p, such that

‖∇G‖Lp + ‖∇ω‖Lp ≤ C‖ρu̇‖Lp , (2.5)

‖G‖Lp + ‖ω‖Lp ≤ C‖ρu̇‖1− 2
p

L2 (‖∇u‖L2 + ‖P‖L2)
2
p , (2.6)
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and

‖∇u‖Lp ≤ C‖ρu̇‖1− 2
p

L2 (‖∇u‖L2 + ‖P‖L2)
2
p + C‖P‖Lp . (2.7)

Proof. The standard Lp-estimate for elliptic system (2.4) yields (2.5).
In view of (2.1), (2.3) and (2.5), one has (2.6).
Using the similar arguments as Lemma 2.5 in [33], we obtain the desired estimate (2.7).

�

The following Hardy-type inequality plays a crucial role in the estimate, the detailed proofs can be
found in [32].

Lemma 2.4. Let x̄ and η0 be as in (1.11) and BN1 = {x | |x| < N1} ⊂ R
2 with N1 ≥ 1. Assume that

ρ ∈ L1(R2) ∩ L∞(R2) is a non-negative function such that

‖ρ‖L1(BN1 )
≥ M1, ‖ρ‖L∞(R2) ≤ M2,

for positive constants M1 and M2. Then there exists a positive constant C depending on M1, M2, γ, N1

and η0 such that
∥
∥vx̄−1

∥
∥

L2 ≤ C (‖√ρv‖L2 + ‖∇v‖L2) , (2.8)

for any v ∈ D̃1,2 � {v ∈ H1
loc(R

2) | ∇v ∈ L2(R2)}. Furthermore, for ε > 0 and η > 0, there exists a
positive constant C depending on ε, η, M1, M2, γ, N1 and η0 such that every function v ∈ D̃1,2 satisfies

∥
∥vx̄−η

∥
∥

L
2+ε

η̃
≤ C (‖√ρv‖L2 + ‖∇v‖L2) , (2.9)

with η̃ = min{1, η}.
In addition, in order to estimate ‖∇u‖Lp , we introduce the following inequality, which is crucial to

the velocity field for 2D Cauchy problem (see [30] for the detailed proof).

Lemma 2.5. Suppose that u ∈ C∞
0 (R2) for any p ∈ (1,∞). There exists a constant C depending only on

p, such that

‖∇u‖Lp ≤ C (‖divu‖Lp + ‖ω‖Lp) . (2.10)

In order to improve the regularity of the velocity field, we introduce some regularity estimates to the
following so-called Lamé system,

⎧
⎪⎪⎨

⎪⎪⎩

μΔU + (μ + λ)∇divU = F, x ∈ R
2,

U(x) → 0, |x| → ∞,

(2.11)

where U = (U1, U2), F = (F1, F2) and μ, λ satisfy the condition (1.2). The following Lemma can be found
in [17,45].

Lemma 2.6. Let r ∈ (1,∞), q ∈ (2,∞). Suppose U ∈ D1,r ∩ D2,q is a weak solution to the system (2.11).
Then there exists some constant C depending only on λ, μ, q and r such that the following estimates
hold:

(1) If F ∈ Lr, then

‖∇2U‖Lr ≤ C‖F‖Lr . (2.12)

(2) If F = divf with f = (fij)2×2 ∈ Lr ∩ D1,q, then

‖∇U‖Lr ≤ C‖f‖Lr , (2.13)

and

‖∇U‖L∞ ≤ C (1 + ln(e + ‖∇f‖Lq )‖f‖L∞ + ‖f‖Lr ) . (2.14)
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3. Proof of The Main Results

Let (ρ, u, P ) be a strong solution of (1.7)–(1.9) on R
2 × [0, T ∗). Suppose that (1.15) was false, for s = 1,

namely, there exists a constant M > 0 such that

lim
T→T ∗

∫ T

0

‖divu‖L∞dt ≤ M < ∞. (3.1)

First, we have the following upper uniform estimates of the density.

Lemma 3.1. Under the assumption (3.1), it holds that for 0 ≤ T < T ∗,

ρ ≥ 0, P ≥ 0, (3.2)

and

sup
0≤T≤T ∗

‖ρ‖L1∩L∞ ≤ C. (3.3)

Here and after, c, C and Ci (i = 0, 1) denote generic positive constants depending only on M , μ, λ, T ∗

and the initial data.

Proof. The particle path can be defined before blowup time as follows:
⎧
⎨

⎩

d

dt
X(x, t) = u(X(x, t), t),

X(x, 0) = x.
(3.4)

It follows from the continuity equation and along the particle path that the density can be expressed
by

d

dt
ρ(X(x, t), t) = −ρ(X(x, t), t)divu(X(x, t), t),

implies

ρ(X(x, t), t) = ρ0(x) exp
{

−
∫ t

0

divu(X(x, s), s)ds

}

,

which together with ρ0 ≥ 0, (3.1) and Lemma 2.1 in [22] implies ρ ≥ 0 and (3.3).
Indeed, in view of the continuity equation, we obtain ‖ρ‖L1 = ‖ρ0‖L1 .
Furthermore, one has

Pt + u · ∇P = −2Pdivu + F, (3.5)

where F = 2μ|D(u)|2 + λ(divu)2.
Thus, along particle path (3.4) and (3.5), we obtain

d

dt
P (X(x, t), t) = −2Pdivu + F,

which implies

P (X(x, t), t) =
(

P0 +
∫ t

0

exp
(

2
∫ s

0

divudτ

)

Fds

)

exp
{

−2
∫ t

0

divuds

}

≥ 0. (3.6)

Hence, we finish the proof of Lemma 3.1.
�

Next, we will give the standard energy estimates as follows.
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Lemma 3.2. Under the assumption (3.1), there exists a positive constant N1 such that

sup
0≤t≤T

(‖P‖L1 + ‖√
ρu‖2L2

)
+

∫ T

0

‖∇u‖2L2dt ≤ C, (3.7)

and

inf
0≤t≤T

∫

BN1

ρdx ≥ 1
4
, (3.8)

for any 0 ≤ T < T ∗.

Proof. Indeed, multiplying (1.7)2 by u, we obtain after integrating over R2 and integrating by parts that
1
2

d

dt

∫

ρ|u|2dx +
∫

(
μ|∇u|2 + (μ + λ)(divu)2

)
dx =

∫

Pdivudx

≤ C‖divu‖L∞

∫

Pdx.

(3.9)

Integrating the pressure equation in (1.7)3 over R
2 yields to

d

dt

∫

Pdx = −
∫

Pdivudx +
∫

(
2μ|D(u)|2 + λ(divu)2

)
dx

≤ C‖divu‖L∞

∫

Pdx + C0

∫

|∇u|2dx.

(3.10)

Set C1 = C0+1
μ , adding (3.9) multiplied by C1 to (3.10), one has

d

dt

∫ (

P +
C1

2
ρ|u|2

)

dx +
∫

|∇u|2dx

≤C‖divu‖L∞

∫

Pdx,

which together with (3.1) and Gronwall’s inequality gives

sup
0≤t≤T

∫ (

P +
C1

2
ρ|u|2

)

dx +
∫ T

0

∫

|∇u|2dxdt ≤ C. (3.11)

Next, for N1 > 1, a cutoff function ηN1(x) ∈ C∞
0 (R2) is defined by

0 ≤ ηN1(x) ≤ 1, ηN1(x) =

{
1, if |x| ≤ N1,

0, if |x| ≥ 2N1,
|∇ηN1 | ≤ 2

N1
.

Multiplying (1.7)1 by ηN1 and integrating by parts give that
d

dt

∫

ρηN1dx =
∫

ρu · ∇ηN1dx

≥ −2N1
−1

(∫

ρdx

) 1
2

(∫

ρ|u|2dx

) 1
2

≥ −CN−1
1 ,

due to Hölder’s inequality and (3.11). This gives

inf
0≤t≤T

∫

ρηN1dx ≥
∫

ρ0ηN1dx − CN1
−1T,

which together with (1.12) imply that

inf
0≤t≤T

∫

BN1

ρdx ≥ 1
4
, (3.12)

for N1 suitably large.
Therefore, in view of (3.11) and (3.12), we complete the proof of the Lemma 3.2. �



JMFM Blowup Criterion for Viscous Non-baratropic Flows Page 9 of 21 51

We can prove the following key estimate on ∇u, which is crucial for deriving the higher order estimates
to the solution.

Lemma 3.3. Under condition (3.1), it holds that for 0 ≤ T < T ∗,

sup
0≤t≤T

(‖∇u‖2L2 + ‖P‖2L2 + ‖ρx̄a‖L1

)
+

∫ T

0

‖√
ρu̇‖2L2dt ≤ C. (3.13)

Proof. Multiplying the momentum equation (1.7)2 by u̇, integrating the resulting equation over R
2 and

integrating by parts yield to
∫

ρ|u̇|2dx =
∫

(μΔu + (μ + λ)∇divu) u̇dx −
∫

∇P · u̇dx

=
2∑

i=1

Ii.

(3.14)

Indeed, for ∇⊥ � (−∂2, ∂1), and −Δu = −∇divu − ∇⊥ω, integrating by parts, we have the following
estimates to I1.

I1 =
∫

(ut + u · ∇u) (μΔu + (μ + λ)∇divu) dx

= − 1
2

d

dt

∫
(
μ|∇u|2 + (μ + λ)(divu)2

)
dx

+ μ

∫

u · ∇u · ∇⊥ωdx + (2μ + λ)
∫

u · ∇u · ∇divudx

≤ − 1
2

d

dt

∫
(
μ|∇u|2 + (μ + λ)(divu)2

)
dx + C‖divu‖L∞

∫

|∇u|2dx,

(3.15)

where we have used the following facts.
∫

u · ∇u · ∇⊥ωdx =
∫

(
∂2(ui∂iu

1) − ∂1(ui∂iu
2)

)
ωdx

= −1
2

∫

ω2divudx,

and
∫

u · ∇u · ∇divudx

= −
∫

∂iu
j∂ju

idivudx +
1
2

∫

(divu)3dx.

On the other hand, using Young’s inequality and integrating by parts, one has

I2 =
∫

(Pdivut − (u · ∇u) · ∇P ) dx

=
d

dt

∫

Pdivudx −
∫

(Ptdivu + (u · ∇u) · ∇P ) dx

=
d

dt

∫

Pdivudx +
∫

(
P (divu)2 − 2μ|D(u)|2divu − λ(divu)3 + P∂ju

i∂iu
j
)
dx

≤ d

dt

∫

Pdivudx + C

∫
(
P |∇u| + |∇u|2) |divu|dx + C

∫

|∇u|2Pdx.

(3.16)



51 Page 10 of 21 Y. Wang JMFM

Furthermore, using Young’s inequality, Lemmas 2.2, 2.3 and 2.5 lead to
∫

P |∇u|2dx ≤C‖P‖L2‖∇u‖2L4

≤C‖P‖L2

(‖divu‖2L4 + ‖ω‖2L4

)

≤C‖P‖L2 (‖divu‖L∞‖divu‖L2 + ‖ω‖L2‖∇ω‖L2)

≤C‖P‖L2 (‖divu‖L∞‖∇u‖L2 + ‖∇u‖L2‖∇ω‖L2)

≤C‖P‖L2 (‖divu‖L∞‖∇u‖L2 + ‖∇u‖L2‖√
ρu̇‖L2)

≤C
(‖divu‖L∞ + ‖∇u‖2L2

) (‖P‖2L2 + ‖∇u‖2L2

)
+ Cε‖√ρu̇‖2L2 ,

(3.17)

which together with (3.16) and choosing ε suitable small yields to

I2 ≤ d

dt

∫

Pdivudx + C
(‖divu‖L∞ + ‖∇u‖2L2

)
(∫

|∇u|2dx +
∫

P 2dx

)

+
1
2
‖√

ρu̇‖2L2 . (3.18)

Substituting (3.15) and (3.18) into (3.14), we obtain

d

dt

∫
(
μ|∇u|2 + (μ + λ)(divu)2 − 2Pdivu

)
dx +

∫

ρ|u̇|2dx

≤C
(‖divu‖L∞ + ‖∇u‖2L2

)
(∫

|∇u|2dx +
∫

P 2dx

)

.

(3.19)

Next, we will estimate the term ‖P‖2L2 . Multiplying (1.7)3 by P , and integrating it over R
2, after

integration by parts together with (3.17) show that

1
2

d

dt

∫

P 2dx =
∫

(
2μ|D(u)|2 + λ(divu)2 − div(Pu) − Pdivu

)
Pdx

=
∫ (

2μ|D(u)|2 + λ(divu)2 − 3
2
Pdivu

)

Pdx

≤C
(‖divu‖L∞ + ‖∇u‖2L2

)
(∫

|∇u|2dx +
∫

P 2dx

)

+ Cε‖√ρu̇‖2L2 ,

(3.20)

due to Hölder’s inequality.
Noting that

∣
∣
∣
∣

∫

Pdivudx

∣
∣
∣
∣ ≤ μ

4

∫

|∇u|2dx +
C1

2

∫

P 2dx. (3.21)

Then, adding (3.20) multiplied by 2(C1 + 1) to (3.19) and choosing ε suitable small, we obtain that

d

dt

∫
(
μ|∇u|2 + (μ + λ)(divu)2 − 2Pdivu + (C1 + 1)P 2

)
dx +

1
2

∫

ρ|u̇|2dx

≤C
(‖divu‖L∞ + ‖∇u‖2L2

)
(∫

|∇u|2dx +
∫

P 2dx

)

,

with together with (3.1), (3.21) and Gronwall’s inequality yields

sup
0≤t≤T

∫
(|∇u|2 + P 2

)
dx +

∫ T

0

∫

ρ|u̇|2dxdt ≤ C. (3.22)
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Finally, multiplying (1.7)1 by x̄a and integrating the resulting equation over R
2 and integrating by

parts yield that

d

dt

∫

ρx̄adx ≤ C

∫

ρ|u|x̄a−1 ln1+η0
(
e + |x|2) dx

≤ C

∫

ρ
7+a
8+a x̄

a2+7a
8+a x̄− 4

8+a |u|x̄− 4
8+a ln1+η0(e + |x|2)dx

≤ C
∥
∥
∥x̄− 4

8+a ln1+η0(e + |x|2)
∥
∥
∥

L∞

∥
∥
∥ux̄− 4

8+a

∥
∥
∥

L8+a

(∫

ρx̄adx

) 7+a
8+a

≤ C (‖√ρu‖L2 + ‖∇u‖L2)
(∫

ρx̄adx

) 7+a
8+a

≤ C
(
1 + ‖∇u‖2L2

)
(∫

ρx̄adx + 1
)

,

due to (2.9). This together with Gronwall’s inequality and (3.7) gives

sup
0≤t≤T

∫

ρx̄adx ≤ C.

This completes the proof of Lemma 3.3. �

Next, we have the following estimates on the material derivatives of the velocity.

Lemma 3.4. Under the condition (3.1), it holds that for 0 ≤ T < T ∗,

sup
0≤t≤T

(‖√
ρu̇‖2L2 + ‖P‖4L4

)
+

∫ T

0

‖∇u̇‖2L2dt ≤ C. (3.23)

Proof. Applying u̇j(∂t + div(u·)) to the j-th equation in the momentum equations (j = 1, 2), integrating
the resulting equation over R

2 and integration by parts, we get

1
2

d

dt

∫

ρ|u̇|2dx = −
∫

u̇j(∂jPt + div(u∂jP ))dx + μ

∫

u̇j
(
Δuj

t + div(uΔuj)
)

dx

+ (μ + λ)
∫

u̇j (∂jdivut + div(u∂jdivu)) dx

=
3∑

j=1

Ji.

(3.24)

For the first term on the right-hand side of (3.24), using (1.7)3, Young’s inequality, and integration by
parts yields to

J1 = −
∫

u̇j (∂jPt + div(u∂jP )) dx

=
∫

∂j u̇
j
(
2μ|D(u)|2 + λ(divu)2 − div(Pu) − Pdivu

)
dx +

∫

∂ku̇j∂jPukdx

=
∫

∂j u̇
j
(
2μ|D(u)|2 + λ(divu)2 − Pdivu

)
dx −

∫

P∂ku̇j∂ju
kdx

≤C

∫

|∇u̇||∇u|(|∇u| + P ) dx

≤μ

8

∫

|∇u̇|2dx + C

∫

|∇u|4dx + C

∫

P 4dx.

(3.25)
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Next, after integrating by parts, it follows from Young’s inequality that

J2 =μ

∫

u̇j(Δuj
t + div(uΔuj))dx

= − μ

∫ (
∂iu̇

j∂iu
j
t + Δuju · ∇u̇j

)
dx

= − μ

∫
(|∇u̇|2 − ∂iu̇

juk∂k∂iu
j − ∂iu̇

j∂iu
k∂kuj + ∂i∂iu

juk∂ku̇j
)
dx

= − μ

∫
(|∇u̇|2 + ∂iu̇

j∂iu
jdivu − ∂iu̇

j∂iu
k∂kuj − ∂ku̇j∂iu

k∂iu
j
)
dx

≤ − 5μ

8

∫

|∇u̇|2dx + C

∫

|∇u|4dx.

(3.26)

Similarly,

J3 ≤ −5
8
(μ + λ)

∫

(divu̇)2dx + C

∫

|∇u|4dx ≤ C

∫

|∇u|4dx. (3.27)

Putting (3.25)–(3.27) into (3.24), we obtain

d

dt

∫

ρ|u̇|2dx + μ

∫

|∇u̇|2dx ≤ C

∫

|∇u|4dx + C

∫

P 4dx. (3.28)

Furthermore, we multiply (1.7)3 by 4P 3, and integrating it over R2, after integration by parts, Hölder’s
inequality, (3.13), Lemmas 2.2, 2.3 and 2.5 yield to

d

dt

∫

P 4dx =4
∫

(
2μ|D(u)|2 + λ(divu)2 − ∇P · u − 2Pdivu

)
P 3dx

=4
∫ (

2μ|D(u)|2 + λ(divu)2 − 7
4
Pdivu

)

P 3dx

≤C

∫
(
(divu)2P 3 + |divu|P 4 + |∇u|2P 3

)
dx

≤C‖divu‖L∞

(∫

|∇u|4dx +
∫

P 4dx

)

+ C‖∇u‖2L8‖P‖3L4

≤C‖divu‖L∞

(∫

|∇u|4dx +
∫

P 4dx

)

+ C
(‖divu‖2L8 + ‖ω‖2L8

) ‖P‖3L4

≤C‖divu‖L∞

(∫

|∇u|4dx +
∫

P 4dx

)

+ C
(‖divu‖2L8 + ‖ω‖2L8

) ‖P‖3L4

≤C‖divu‖L∞

(∫

|∇u|4dx +
∫

P 4dx

)

+ C
(
‖divu‖L∞‖divu‖L4 + ‖ω‖ 1

2
L2‖∇ω‖ 3

2
L2

)
‖P‖3L4

≤C‖divu‖L∞

(∫

|∇u|4dx +
∫

P 4dx

)

+ C
(
‖divu‖L∞‖∇u‖L4 + ‖∇u‖ 1

2
L2‖√

ρu̇‖ 3
2
L2

)
‖P‖3L4

≤C‖divu‖L∞

(∫

|∇u|4dx +
∫

P 4dx

)

+ C
(‖√

ρu̇‖2L2 + 1
) (‖P‖4L4 + 1

)

≤C
(‖divu‖L∞ + ‖√

ρu̇‖2L2 + 1
)
(∫

|∇u|4dx +
∫

P 4dx + 1
)

.

This together with (3.28) gives that
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d

dt

∫
(
ρ|u̇|2 + P 4

)
dx + μ

∫

|∇u̇|2dx

≤C
(‖divu‖L∞ + ‖√

ρu̇‖2L2 + 1
)
(∫

|∇u|4dx +
∫

P 4dx + 1
)

.

(3.29)

To deal with the right-hand side of (3.29), using (2.7) and (3.13), one has
∫

|∇u|4dx ≤ C‖ρu̇‖2L2 (‖∇u‖L2 + ‖P‖L2)2 + C‖P‖4L4

≤ C

∫

ρ|u̇|2dx + C

∫

P 4dx.

(3.30)

This together with (3.29), we obtain
d

dt

∫
(
ρ|u̇|2 + P 4

)
dx + μ

∫

|∇u̇|2dx

≤C
(‖divu‖L∞ + ‖√

ρu̇‖2L2 + 1
)
(∫

ρ|u̇|2dx +
∫

P 4dx + 1
)

,

which together with (3.1) and (3.13), we immediately obtain (3.23) by applying Gronwall’s inequality.
The proof of Lemma 3.4 is finished.

�

Next, in view of Lemmas 3.1–3.4, we will prove the higher order integrability of P .

Lemma 3.5. Under the condition (3.1), for any 0 ≤ T < T ∗ and q ∈ [2,∞), it holds that

sup
0≤t≤T

‖P (·, t)‖Lq ≤ C, (3.31)

and
∫ T

0

‖P (·, t)‖L∞dt ≤ C. (3.32)

Proof. For any q ∈ [2,∞), multiplying (1.7)3 by qP q−1 and integrating by parts over R
2 lead to

d

dt

∫

P qdx =
∫

(
2μq|D(u)|2P q−1 + λq(divu)2P q−1 − u · ∇P q − 2qP qdivu

)
dx

=(1 − 2q)
∫

P qdivudx + q

∫
(
2μ|D(u)|2 + λ(divu)2

)
P q−1dx

≤C

∫

P q|divu|dx + Cq

∫
(
(divu)2 + |∇u|2) P q−1dx

≤C‖divu‖L∞

(∫

P qdx +
∫

|∇u|qdx

)

+ C‖∇u‖2L2q‖P‖q−1
Lq

≤C‖divu‖L∞

(∫

P qdx +
∫

|∇u|qdx

)

+ C
(‖divu‖2L2q + ‖ω‖2L2q

) ‖P‖q−1
Lq

≤C‖divu‖L∞

(∫

P qdx +
∫

|∇u|qdx

)

+ C

(

‖divu‖L∞‖divu‖Lq + ‖ω‖
2
q

L2‖∇ω‖2− 2
q

L2

)

‖P‖q−1
Lq

≤C‖divu‖L∞

(∫

P qdx +
∫

|∇u|qdx

)

+ C‖√ρu̇‖2− 2
q

L2 ‖P‖q−1
Lq

≤C (‖divu‖L∞ + 1)
(∫

P qdx +
∫

|∇u|qdx + 1
)

,

(3.33)
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where have used (2.1), (2.5), (2.10), (3.13), (3.23), Hölder’s inequality and the following facts.

‖∇u‖Lq ≤ C‖ρu̇‖1− 2
q

L2 (‖∇u‖L2 + ‖P‖L2)
2
q + C‖P‖Lq

≤ C + C‖P‖Lq ,

due to (2.7) and (3.23). This together with (3.33) yield that

d

dt
‖P‖Lq ≤ C (‖divu‖L∞ + 1) (‖P‖Lq + 1) , (3.34)

with constant C only depending on μ, λ and q.
Combining (3.34) with (3.1) and using Gronwall’s inequality, one has

sup
0≤t≤T

‖P (·, t)‖Lq ≤ C.

Moreover, for some q̃ > 2, in view of (2.1), (2.5), (2.9), (3.3), (3.13), (3.23) and Hölder’s inequality,
we have

‖G‖L∞ ≤ C‖G‖L2 + C‖∇G‖Lq̃

≤ C‖∇G‖Lq̃ + C

≤ C‖ρu̇‖Lq̃ + C

≤ C ‖√
ρu̇‖

2(q̃−1)
q̃2−2

L2 ‖√
ρu̇‖

q̃(q̃−2)
q̃2−2

Lq̃2 + C

≤ C
∥
∥
∥ρq̃2

x̄a
∥
∥
∥

q̃−2
2q̃(q̃2−2)

L1

∥
∥
∥u̇x̄

− a
2q̃2

∥
∥
∥

q̃(q̃−2)
q̃2−2

L2q̃2
+ C

≤ C ‖ρx̄a‖
q̃−2

2q̃(q̃2−2)

L1

∥
∥
∥u̇x̄

− a
2q̃2

∥
∥
∥

q̃(q̃−2)
q̃2−2

L2q̃2
+ C

≤ C

(

1 + ‖∇u̇‖
q̃(q̃−2)
q̃2−2

L2

)

≤ C (1 + ‖∇u̇‖L2) ,

(3.35)

due to q̃(q̃−2)
q̃2−−2 ≤ 1. This together with G = (2μ + λ) divu − P and (3.23) yield to

∫ T

0

‖P‖L∞dt ≤ C

∫ T

0

(‖divu‖L∞ + ‖G‖L∞) dt ≤ C.

Hence, the proof of Lemma 3.5 is completed. �

The following lemma is to prove the higher-order derivatives of strong solution (ρ, u, P ). In particular,
we obtain the second spatial derivatives of u and the L2 ∩ Lq̃-norm (q̃ > 2) of the first spatial derivative
of ρ and P .

Lemma 3.6. Suppose that the conditions (3.1) holds, and let q̃ > 2 be defined in Theorem 1.1, we have
that

sup
0≤t≤T

(‖∇u‖H1 + ‖ρ‖H1∩W 1,q̃ + ‖P‖H1∩W 1,q̃ ) +
∫ T

0

‖∇2u‖2Lq̃dt ≤ C, (3.36)

and

sup
0≤t≤T

‖P‖L∞ ≤ C, (3.37)

for any 0 ≤ T < T ∗.
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Proof. Indeed, |∇ρ|r (2 ≤ r ≤ q̃) satisfies

(|∇ρ|r)t + div(|∇ρ|ru) + (r − 1)|∇ρ|rdivu

+ r|∇ρ|r−2(∇ρ)tr∇u(∇ρ) + rρ|∇ρ|r−2∇ρ · ∇divu = 0,

which together with integrating the resulting equation over R
2 and Hölder’s inequality gives that

d

dt
‖∇ρ‖Lr ≤ C (1 + ‖∇u‖L∞) ‖∇ρ‖Lr + C

∥
∥∇2u

∥
∥

Lr . (3.38)

Furthermore, in view of (1.7)3, |∇P |r satisfies

(|∇P |r)t + div(|∇P |ru) + (2r − 1)|∇P |rdivu

+ r|∇P |r−2(∇P )tr∇u(∇P ) + 2rP |∇P |r−2∇P · ∇divu

− 2rμ|∇P |r−2∇P · ∇|D(u)|2 − λr|∇P |r−2∇P · ∇(divu)2 = 0,

which together with effective viscous flux G = (2μ + λ) divu − P yields

(|∇P |r)t + div(|∇P |ru) + (2r − 1)|∇P |rdivu + r|∇P |r−2(∇P )tr∇u(∇P )

+
2r

2μ + λ
P |∇P |r−2∇P · ∇G +

2r

2μ + λ
P |∇P |r

− 2rμ|∇P |r−2∇P · ∇|D(u)|2 − λr|∇P |r−2∇P · ∇(divu)2 = 0.

In view of (2.5) and (3.31), one has
d

dt
‖∇P‖r

Lr ≤C‖∇u‖L∞‖∇P‖r
Lr + C‖P‖L2r‖∇G‖L2r‖∇P‖r−1

Lr

+ C‖∇u‖L∞‖∇2u‖Lr‖∇P‖r−1
Lr

≤C‖∇u‖L∞‖∇P‖r
Lr + C‖ρu̇‖L2r‖∇P‖r−1

Lr + C‖∇u‖L∞‖∇2u‖Lr‖∇P‖r−1
Lr

≤C‖∇u‖L∞
(‖∇2u‖Lr + ‖∇P‖Lr

) ‖∇P‖r−1
Lr + C‖ρu̇‖L2r‖∇P‖r−1

Lr .

(3.39)

where have used the fact
∫

P |∇P |rdx ≥ 0.

It follows from (3.39) that
d

dt
‖∇P‖Lr ≤ C‖∇u‖L∞

(‖∇2u‖Lr + ‖∇P‖Lr

)
+ C‖ρu̇‖L2r . (3.40)

Combined with (3.38) and (3.40) gives directly that
d

dt
(‖∇ρ‖Lr + ‖∇P‖Lr )

≤C (‖∇u‖L∞ + 1)
(‖∇2u‖Lr + ‖∇P‖Lr + ‖∇ρ‖Lr

)
+ C‖ρu̇‖L2r .

(3.41)

In order to estimate ‖∇u‖L∞ , we decompose the velocity field into two parts, namely u = v + w,
which satisfy the following equations with null boundary Dirichlet conditions, respectively,

μΔv + (μ + λ)∇divv = ∇P, (3.42)

and

μΔw + (μ + λ)∇divw = ρu̇. (3.43)

In view of Lemmas 2.6, 3.3–Lemma 3.5 and (3.35), we obtain

‖∇2w‖Lr ≤ C‖ρu̇‖Lr ≤ C (‖ρu̇‖L2 + ‖ρu̇‖Lq̃ ) ≤ C (1 + ‖∇u̇‖L2) , (3.44)

‖∇v‖Lr ≤ C‖P‖Lr ≤ C, (3.45)
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and
‖∇v‖L∞ ≤ C (1 + ln(e + ‖∇P‖Lq̃ )‖P‖L∞ + ‖P‖Lr )

≤ C (1 + ln(e + ‖∇P‖Lq̃ )‖P‖L∞) .
(3.46)

It follows from (2.2), (3.35), (3.41), (3.44)–(3.46) that

d

dt
(‖∇ρ‖Lr + ‖∇P‖Lr )

≤C (‖∇u‖L∞ + 1)
(‖∇2u‖Lr + ‖∇P‖Lr + ‖∇ρ‖Lr

)
+ C‖ρu̇‖L2r

≤C (‖∇w‖L∞ + ‖∇v‖L∞ + 1)
(‖∇2u‖Lr + ‖∇P‖Lr + ‖∇ρ‖Lr

)
+ C (1 + ‖∇u̇‖L2)

≤C
(‖∇w‖L2 + ‖∇2w‖Lq̃ + ‖∇v‖L∞ + ‖∇u̇‖L2 + 1

) (‖∇2u‖Lr + ‖∇P‖Lr + ‖∇ρ‖Lr + 1
)

≤C (‖ρu̇‖Lq̃ + ‖∇v‖L∞ + ‖∇u̇‖L2 + 1)
(‖∇2u‖Lr + ‖∇P‖Lr + ‖∇ρ‖Lr + 1

)

≤C (ln(e + ‖∇P‖Lq̃ )‖P‖L∞ + ‖∇u̇‖L2 + 1)
(‖∇2u‖Lr + ‖∇P‖Lr + ‖∇ρ‖Lr + 1

)
.

(3.47)

Set r = q̃, the standard Lq̃-estimate of elliptic system (1.7)2, (2.9), (3.23) and (3.42) give to

‖∇2u‖Lq̃ ≤ C (‖ρu̇‖Lq̃ + ‖∇P‖Lq̃ )

≤ C (1 + ‖∇u̇‖L2 + ‖∇P‖Lq̃ ) .
(3.48)

Inserting (3.48) into (3.47), one has
d

dt
(‖∇ρ‖Lq̃ + ‖∇P‖Lq̃ )

≤C (ln(e + ‖∇P‖Lq̃ )‖P‖L∞ + ‖∇u̇‖L2 + 1) (‖∇P‖Lq̃ + ‖∇ρ‖Lq̃ + 1)

+ C (ln(e + ‖∇P‖Lq̃ )‖P‖L∞ + ‖∇u̇‖L2 + 1) ‖∇u̇‖L2

≤C (ln(e + ‖∇P‖Lq̃ )‖P‖L∞ + ‖∇u̇‖L2 + 1) (‖∇P‖Lq̃ + ‖∇ρ‖Lq̃ + 1)

+ C (ln(e + ‖∇P‖Lq̃ )(1 + ‖∇P‖Lq̃ ) + ‖∇u̇‖L2 + 1) ‖∇u̇‖L2

≤C
(
1 + ‖P‖L∞ + ‖∇u̇‖2L2

)
(e + ‖∇ρ‖Lq̃ + ‖∇P‖Lq̃ ) ln (e + ‖∇ρ‖Lq̃ + ‖∇P‖Lq̃ ) .

(3.49)

Set f(t) = e + ‖∇ρ‖Lq̃ + ‖∇P‖Lq̃ and g(t) = 1 + ‖P‖L∞ + ‖∇u̇‖2L2 , together with (3.49), we obtain

f ′(t) ≤ Cg(t)f(t) ln f(t),

which implies

(ln f(t))′ ≤ Cg(t) ln f(t).

This together with (3.23), (3.32) and Gronwall’s inequality yields to

sup
0≤t≤T

(‖∇ρ‖Lq̃ + ‖∇P‖Lq̃ ) ≤ C. (3.50)

It follows from (2.2), (3.13), (3.48) and (3.50) that

‖∇u‖L∞ ≤C
(‖∇u‖L2 + ‖∇2u‖Lq̃

)

≤C (1 + ‖∇u̇‖L2 + ‖∇P‖Lq̃ )

≤C
(
1 + ‖∇u̇‖2L2

)
,

which together with (3.23) yields to
∫ T

0

‖∇u‖L∞dt ≤ C. (3.51)

Taking r = 2, we obtain
d

dt
(‖∇ρ‖L2 + ‖∇P‖L2) ≤ C (1 + ‖∇u‖L∞) (‖∇ρ‖L2 + ‖∇P‖L2 + 1) + C‖∇u̇‖L2 , (3.52)
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where we have used the following facts.

‖∇2u‖L2 ≤ C (‖ρu̇‖L2 + ‖∇P‖L2)

≤ C (1 + ‖∇P‖L2) .
(3.53)

Using (3.23), (3.51) and Gronwall’s inequality yield to

sup
0≤t≤T

(‖∇ρ‖L2 + ‖∇P‖L2) ≤ C, (3.54)

which together with (3.53) yields to

sup
0≤t≤T

‖∇2u‖L2 ≤ C. (3.55)

In view of (3.48), (3.23) and (3.50), we obtain
∫ T

0

‖∇2u‖2Lq̃dt ≤ C

∫ T

0

(
1 + ‖∇u̇‖L2 + ‖∇P‖2Lq̃

)
dt

≤ C

∫ T

0

(
1 + ‖∇u̇‖2L2 + ‖∇P‖2Lq̃

)
dt

≤ C.

(3.56)

Finally, due to (2.2), one has

‖P‖L∞ ≤ C‖P‖L2 + C‖∇P‖Lq̃ ,

which together with (3.50) gives to

sup
0≤t≤T

‖P‖L∞ ≤ C. (3.57)

Thus the desired (3.36) and (3.37) follows from (3.50), (3.54), (3.55), (3.56) and (3.57). We complete
the proof of Lemma 3.6.

�

We have the following spatial weighted estimate on the density.

Lemma 3.7. With the assumption (3.1), and let q̃ > 2 be defined in Theorem 1.1, it holds

sup
0≤t≤T

‖ρx̄a‖H1∩W 1,q̃ ≤ C. (3.58)

Proof. Indeed, in view of (1.7)1, ρx̄a satisfies

(ρx̄a)t + u · ∇ (ρx̄a) − aρx̄au · ∇ ln x̄ + ρx̄adivu = 0.

Thus, |∇ (ρx̄a)|p (p ∈ [2, r]) satisfies

(|∇ (ρx̄a) |p)t + div(|∇ (ρx̄a) |pu) + (p − 1)|∇ (ρx̄a) |pdivu

+ p|∇ (ρx̄a) |p−2(∇ (ρx̄a))tr∇u(∇ (ρx̄a)) + pρx̄a|∇ (ρx̄a) |p−2∇ (ρx̄a) · ∇divu

− ap|∇ (ρx̄a) |pu · ∇ ln x̄ − apρx̄a|∇ (ρx̄a) |p−2 (∇ (ρx̄a))tr (∇u∇ ln x̄ + u∇2 ln x̄
)

= 0.

Integrating this equality over R
2, using (2.1), (2.9), (3.13) and (3.36), we obtain

d

dt
‖∇ (ρx̄a) ‖Lp ≤C (1 + ‖∇u‖L∞ + ‖u · ∇ ln x̄‖L∞) ‖∇ (ρx̄a) ‖Lp

+ C‖ρx̄a‖L∞
(‖∇u∇ ln x̄‖Lp + ‖u∇2 ln x̄‖Lp +

∥
∥∇2u

∥
∥

Lp

)

≤C (1 + ‖∇u‖W 1,r ) ‖∇ (ρx̄a) ‖Lp

+ C‖ρx̄a‖L∞
(
‖∇u‖Lp + ‖ux̄− 1

2 ‖Lp +
∥
∥∇2u

∥
∥

Lp

)

≤C
(
1 +

∥
∥∇2u

∥
∥

Lp + ‖∇u‖W 1,r

)
(1 + ‖∇ (ρx̄a) ‖Lp + ‖∇ (ρx̄a) ‖Lr ) ,

(3.59)
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where we have used the following facts. In fact, it follows from (2.1), (2.9) and (3.36) that

‖u · ∇ ln x̄‖L∞ ≤ C‖ux̄− 1
2 ‖L∞

≤ C
(
‖ux̄− 1

2 ‖L6 +
∥
∥
∥∇

(
ux̄− 1

2

)∥
∥
∥

L6

)

≤ C
(
‖ux̄− 1

2 ‖L6 + ‖∇u‖L6

)

≤ C (1 + ‖∇u‖H1)
≤ C,

and

‖ρx̄a‖L∞ ≤C (‖ρx̄a‖L2 + ‖∇ (ρx̄a)‖Lq̃ )

≤C
(
‖ρx̄a‖ 1

2
L1‖ρx̄a‖ 1

2
L∞ + ‖∇ (ρx̄a)‖Lq̃

)

≤C (‖ρx̄a‖L1 + ε‖ρx̄a‖L∞ + ‖∇ (ρx̄a)‖Lq̃ )

≤C (1 + ε‖ρx̄a‖L∞ + ‖∇ (ρx̄a)‖Lq̃ ) ,

choosing ε suitably small yields to

‖ρx̄a‖L∞ ≤ C (1 + ‖∇ (ρx̄a)‖Lq̃ ) .

Letting p = q̃ in (3.59), together with Gronwall’s inequality and (3.36) gives

sup
0≤t≤T

‖∇ (ρx̄a) ‖Lq̃ ≤ C. (3.60)

Furthermore, taking p = 2 in (3.57), we deduce from (3.36) and (3.60) that

sup
0≤t≤T

‖∇ (ρx̄a) ‖L2 ≤ C.

This combined with (3.60) gives (3.58). This finishes the proof of Lemma 3.7. �

Proof of Theorem 1.1 Suppose that (1.15) was false, namely, (3.1) holds.
With the aid of the a priori estimates Lemma 3.1–Lemma 3.7, the functions (ρ, u, P )(x, T ∗) =

limt→T ∗(ρ, u, P )(x, t) satisfy the conditions imposed on the initial data at the time t = T ∗. Hence,
we obtain ρu̇ ∈ C([0, T ∗];L2), which implies

ρu̇(x, T ∗) = lim
t→T ∗

ρu̇(x, t) ∈ L2.

It follows from (3.36) that

(−μΔu − (μ + λ)∇divu + ∇P ) |t=T ∗ =
√

ρ(x, T ∗)g(x, T ∗),

where

g(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ− 1
2 (x, T ∗)(ρu̇)(x, T ∗), for x ∈ {x|ρ(x, T ∗) > 0},

0, for x ∈ {x|ρ(x, T ∗) = 0},

satisfying g ∈ L2. This implies that (ρ, u, P )(x, T ∗) satisfy compatibility conditions (1.14). Therefore, one
can take (ρ, u, P )(x, T ∗) as the initial data and apply Proposition 2.1 to extend the local strong solution
beyond T ∗, which contradicts the assumption on T ∗. We thus finish the proof of Theorem 1.1.
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