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Abstract. We consider the time-dependent Navier–Stokes system coupled with the heat equation governed by the nonlinear
Tresca boundary conditions. We propose a discretization of these equations that combines Euler implicit scheme in time
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1. Introduction

Let Ω be a connected bounded open set in R
d, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω

divided in two parts S and Γ = ∂Ω\S̄ with Γ̄ ∩ S̄ = ∅. And let [0, T ] denote an interval in R where T is
a positive real number.

We consider the time-dependent Navier–Stokes problem coupled with the heat equation,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
− div (2ν(θ)Du) + (u · ∇)u + ∇p = f in Ω × [0, T ],

div u = 0 in Ω × [0, T ],
∂θ

∂t
− div (μ(θ)∇θ) + (u. ∇)θ = k in Ω × [0, T ].

(1.1)

The unknowns in (1.1) are the velocity u, the pressure p and the temperature θ. The function f represents
the external volumic forces and the function k represents the external heat source. They depends only on
the position vector (x, t) ∈ R

d × [0, T ]. The functions ν and μ represents respectively the viscosity and
the diffusion coefficient, they are both positive, bounded and depends on the temperature.

The first equation in (1.1) represents the balance of forces in the system, while the second equation is
the incompressibility of the fluid. The third equation is the heat exchange in the system.

The force within the fluid is the Cauchy stress tensor σ given by the relation σ = σ(θ,u, p) given as:

σ = 2ν(θ)Du − pI.

Such that I is the identity matrix in Md(R) and Du is the symmetric tensor defined by

Du =
1
2
(∇u + ∇uTr).

The system of equations (1.1) is supplemented by the boundary conditions on the velocity and tempera-
ture. For that purpose, we impose the following initial conditions

u(x, 0) = u0, θ(x, 0) = θ0 on Ω̄. (1.2)
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We assume the Dirichlet conditions

u(x, t) = 0 on Γ × (0, T ) and θ(x, t) = θb on ∂Ω × (0, T ), (1.3)

θb being given and non-negative.
On the part of the boundary S, the velocity is decomposed following its normal and tangential part.

We assume the impermeability condition

uN := u · n = 0 on S × (0, T ). (1.4)

Such that n is the outward unit normal on the boundary ∂Ω and uN is the normal component of the
velocity. Then the tangential component of the velocity is defined by uτ = u − uNn, such that τ is the
tangent vector orthogonal to n.

Additionally to (1.4), we also impose on S a threshold slip condition. The threshold slip condition is
formulated through a positive function g : S → (0,∞) which is called the barrier of threshold function
and the tangential part of σn as follows:

If |(σn)τ | < g then uτ = 0,

If |(σn)τ | = g then uτ �= 0 and − (σn)τ = g
uτ

|uτ |

}

on S × (0, T ). (1.5)

Many works have been carried out for the system (1.1) with different boundary conditions and different
discretization method. In [1] as well in [6], a similar model provided by the homogeneous Dirichlet
conditions has been studied. And the authors treated the coupled system by using a spectral discretization.
Furthermore, many works have examined the numerical analysis (see for instance [2,7,12]).

In this article, the novelty of our work compared to the existence ones is to propose an unsteady
problem under non linear boundary condition by adding an explicit dependency to the temperature for
the viscosity and the diffusion coefficient. One of the major challenges in this work is the presence of
variational inequality in our problem. Its numerical solutions have been examined by many researchers,
see for example, [9,16,19] for a first breakthrough for a systematic mathematical analysis of problems
formulated as variational inequalities.

The point of departure of this study related to the numerical part is the work of J.K. and Djoko
[8] where some new numerical methods for the Stokes and Navier–Stokes flow driven by nonlinear slip
boundary conditions was discussed. To solve the Stokes system, they first reduced the related variational
inequality into a saddle-point problem for a well chosen augmented Lagrangian. And to solve this saddle
point problem they suggested an alternating direction method of multiplier together with finite element
approximations. The solution of the Navier–Stokes was solved by operator splitting. The numerical ex-
periments showed that these methods are scalable, i.e. the number of iterations required for convergence
is virtually independent of mesh size.

In this article, the problem is discretized in time by Euler implicit scheme and in order to facilitate
its resolution we have used the operator splitting technique. Indeed, it makes it possible to remove the
complexity of a problem by reducing it to several simpler sub-problems.

The outline of the paper is as follows:

• In Sect. 2, we introduce some notations and functional spaces useful for the studies of the problem.
Then, we study the variational formulation.

• Sect. 3 is devoted to introduce and study the descretized problem then perform the a priori corre-
sponding error analysis for d = 2.

• In Sect. 4, we introduce an operator-splitting method based on the Marchuk-Yanenko’s scheme.
• Some numerical experiments are presented in Sect. 5.
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2. Analysis of the Continuous Problem

2.1. Variational Formulation

To write the system (1.1) in a variational form, we need some preliminaries. We use the standard defini-
tions for the sobolev spaces [5] and for boldface characters we denote vector quantities

H1(Ω) = (H1(Ω))d, L2(Ω) = (L2(Ω))d and L2
+(S) = L2(S) ∩ R+.

We claim that H1/2(∂Ω) is the space of trace for elements of H1(Ω). We introduce the space

L2
0(Ω) =

{
q ∈ L2(Ω);

∫

Ω

q(x)dx = 0
}
. (2.1)

And we define the following functional spaces

V (Ω) =
{
v ∈ H1(Ω) v|Γ

= 0, v · n|S
= 0
}
, (2.2)

And,

V div(Ω) =
{
v ∈ V (Ω) divv = 0 on Ω

}
. (2.3)

Lemma 2.1. For d = 2, we have the relation

‖v‖2
L4(Ω) ≤ c‖v‖L2(Ω)|v|H 1

0(Ω). (2.4)

For the mathematical investigations of (1.1) we assume the following hypotheses:
Hypothesis H1. We assume that the viscosity ν(θ) and the heat diffusion coefficient μ(θ) are two functions
which depend on the temperature θ and which satisfy:

{
∀s ∈ R, 0 < ν0 ≤ ν(s) ≤ ν1,
∀s ∈ R, 0 < μ0 ≤ μ(s) ≤ μ1.

(2.5)

And

∀s, t ∈ R, |ν(s) − ν(t)| ≤ ν∗|s − t|,
|μ(s) − μ(t)| ≤ μ∗|s − t|. (2.6)

where ν0, ν1, μ0, μ1, ν∗ and μ∗ are strictly positive constants.
Hypothesis H2. We assume that:

f ∈ L∞(0, T ;L2(Ω)), k ∈ L2(0, T ;H−1(Ω)), θb ∈ L2(0, T ;H1/2(∂Ω)) and g ∈ L2
+(S). (2.7)

Hypothesis H3. The data θ0 belongs to L2(Ω) and the data u0 belongs to L2(Ω) satisfying the following
compatibility condition

divu0 = 0 in Ω. (2.8)
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We introduce the following functionals that will be used to write the weak form on the problem in abstract
setting.

a1 : H1(Ω) × H1(Ω) −→ R

(θ : u,v) �−→ a1(θ : u,v) =
∫

Ω

2ν(θ)Du : Dv dx.

a2 : H1(Ω) × H1(Ω) −→ R

(θ : θ, ρ) �−→ a2(θ : θ, ρ) =
∫

Ω

μ(θ)∇θ · ∇ρ dx.

b : H1(Ω) × L2
0(Ω) −→ R

(u, q) �−→ b(u, q) = −
∫

Ω

divu q dx.

d1 : H1(Ω) × H1(Ω) × H1(Ω) −→ R

(u,u,v) �−→ d1(u,u,v) =
∫

Ω

(u · ∇)u v dx,

d2 : H1(Ω) × H1(Ω) × H1(Ω) −→ R

(v, θ, ρ) �−→ d2(v, θ, ρ) =
∫

Ω

(v · ∇)θρ dx,

J : H1(Ω) −→ R

u �−→ J(u) =
∫

S

g|uτ | dS.

(2.9)

where dS being the measure on the surface S.
In order to simplify, we note by

V := L2(0, T ;V (Ω)) ∩ L∞(0, T ;L2(Ω)), M := L2(0, T ;L2
0(Ω)) and Q := L2(0, T ;H1(Ω)).

We consider the variational problem: For θb ∈ L2(0, T ;H1/2(∂Ω)), f ∈ L∞(0, T ;L2(Ω)),
k ∈ L2(0, T ;H−1(Ω)),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p, θ) ∈ V × M × Q such that:
u(., 0) = u0 and θ(., 0) = θ0 in Ω,

θ(., t) = θb(., t) on ∂Ω, ∀ 0 ≤ t ≤ T,

∀ (v, q, ρ) ∈ V (Ω) × L2
0(Ω) × H1

0 (Ω),
(
∂tu,v − u

)
+ a1(θ : u,v − u) + b(v − u, p) + d1(u,u,v − u) + J(v) − J(u) ≥ 〈f ,v − u〉,

b(u, q) = 0,
(
∂tθ, ρ
)

+ a2(θ : θ, ρ) + d2(u, θ, ρ) = 〈k, ρ〉,

(2.10)

Such that, 〈., .〉 being the duality pairing between H−1(Ω) and H1
0 (Ω).

Proposition 2.1. Problems (2.10) and (1.1–1.5) are equivalent. Indeed, any triplet (u, p, θ) ∈ V × M × Q
is a solution of (1.1–1.5) in the sense of distribution if and only if it is a solution of (2.10).

The following standard results will be used for the analysis of problem (2.10) and its corresponding
finite element discretization [5,9,21].

The following Poincaré-Friedrich’s inequality holds: there is a positive constant c depending on the
domain Ω such that

for all v ∈ V (Ω), ‖v‖H1(Ω) ≤ c|v|H1(Ω), (2.11)
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which ensures that the norms ‖.‖H1(Ω) and |.|H1(Ω)are equivalent on V (Ω). We also recall Korn’s in-
equality [9]: there exists c(Ω) such that

‖Dv‖L2(Ω) ≥ c(Ω)‖∇v‖L2(Ω) for all v ∈ V (Ω). (2.12)

We deduce from (2.12) and (2.9) that a1(. : ., .) is continuous and elliptic on V (Ω). This means that for
(v,w) element of V (Ω) × V (Ω),

a1(θ : v,w) ≤ ν1‖v‖H 1(Ω)‖w‖H 1(Ω), a1(θ : v,v) ≥ cν0‖v‖2
H 1(Ω). (2.13)

From (2.11) and (2.9), we deduce that a2(. : ., .) is continuous and elliptic on H1
0(Ω), this means that for

(θ, ρ) element of H1
0 (Ω) × H1

0 (Ω),

a2(θ : θ, ρ) ≤ cμ1‖θ‖H1(Ω)‖ρ‖H1(Ω), a2(θ : ρ, ρ) ≥ cμ0‖ρ‖2
H1(Ω). (2.14)

The space V div(Ω) defined in (2.3) characterize the kernel of b(., .). One easily check that b(., .) is con-
tinuous. That is, for all (v, q) ∈ H1(Ω) × L2(Ω)

b(v, q) ≤ ‖v‖H 1(Ω)‖q‖L2
0(Ω). (2.15)

The compatibility between velocity and pressure require the inf-sup condition for the study of (2.10), its
proof can be seen in [3,13]: there exist a constant c > 0 such that

∀v ∈ V (Ω), sup
v∈V (Ω)

b(v, q)
‖v‖H 1(Ω)

≥ c‖q‖L2
0(Ω). (2.16)

Lemma 2.2. [17,20] (i) When d = 2, for all u,v,w ∈ H1(Ω) it holds that

|d1(u,v,w)| ≤ C‖u‖1/2

L2(Ω)
‖u‖1/2

H 1(Ω)
‖v‖H 1(Ω)‖w‖1/2

L2(Ω)
‖w‖1/2

H 1(Ω)
(2.17)

(ii) When d = 3, for all u,v,w ∈ H1(Ω) it holds that

|d1(u,v,w)| ≤ C‖u‖1/4

L2(Ω)
‖u‖3/4

H 1(Ω)
‖v‖H 1(Ω)‖w‖1/4

L2(Ω)
‖w‖3/4

H 1(Ω)
(2.18)

From (2.17) and (2.18), we get

|d1(u,v,w)| ≤ C‖u‖H 1(Ω)‖v‖H 1(Ω)‖w‖H 1(Ω). (2.19)

Lemma 2.3. For all u ∈ V div(Ω),v ∈ H1(Ω) and η, φ ∈ H1(Ω), we have (see [14])
∫

Ω

(u · ∇)v.v dx = 0,

∫

Ω

(u · ∇)φ φ dx = 0,

∫

Ω

(u · ∇)η φ dx = −
∫

Ω

(u · ∇)φ η dx. (2.20)

From (2.20), the trilinear form d2(., ., .) enjoys for all (v, θ, ρ) ∈ V div(Ω) × H1(Ω) × H1(Ω),

d2(v, θ, ρ) = −d2(v, ρ, θ) and d2(v, ρ, ρ) = 0. (2.21)

The functional J(.) is convexe, lower semi continuous on V (Ω) but not differentiable at zero.
We define the space

Λ =
{
α such as α ∈ L∞(S), |α| � 1 a.e on S

}
. (2.22)
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It can be shown that the solution (u, p) of (2.10) is characterized by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p, θ, λ) ∈ V × M × Q × Λ such that:
u(., 0) = u0 and θ(., 0) = θ0 in Ω,

θ(., t) = θb(., t) on ∂Ω, ∀ 0 ≤ t ≤ T,

∀ (v, q, ρ) ∈ V (Ω) × L2
0(Ω) × H1

0 (Ω),
(
∂tu,v
)

+ a1(θ : u,v) + d1(u,u,v) + b(v, p) +
∫

S

gλ · vτ dS = 〈f ,v〉,

b(u, q) = 0,
λ · uτ = |uτ |,
(
∂tθ, ρ
)

+ a2(θ : θ, ρ) + d2(u, θ, ρ) = 〈k, ρ〉.

(2.23)

Remark 2.1. The existence of λ is proved by using the Hahn-Banach theorem in (see [15], page 80,
Theorem 5.3) and also by an approach based on a constructive regularization in (see [15], page 96,
Theorem 6.3).

Next, we state the following result established in [13]: Let R denote a lifting operator, i.e., a continuous
operator from H1/2(∂Ω) into H1(Ω). Since θb belongs to L2(0, T ;H1/2(∂Ω)), we denote by θ̃b the function
defined for a.e. t, 0 ≤ t ≤ T,by

θ̃b(t) = Rθb(t).

Clearly θ̃b belongs to L2(0, T ;H1(Ω)) and satisfies the following inequality

∀t ∈ [0, T ], ‖θ̃b‖L2(0,T ;H1(Ω)) ≤ c‖θb‖L2(0,T ;H1/2(∂Ω)), (2.24)

where the positive constant c depends only on Ω and R. By taking a reading on the temperature at the
system (2.10) and setting θ∗ = θ − θ̃b, note that θ∗|∂Ω = 0 and (u, p, θ∗) is the solution of the following
variational problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p, θ∗) ∈ V × M × Q0 such that :
u(., 0) = u0 et θ∗(., 0) = θ0 − θ̃b(., 0) in Ω,

∀ (v, q, ρ) ∈ V (Ω) × L2
0(Ω) × H1

0 (Ω),
(∂tu,v − u) + a1(θ∗ + θ̃b : u,v − u) + b(v − u, p) + d1(u,u,v − u) + J(v) − J(u) ≥ 〈f ,v − u〉,
b(u, q) = 0,
(∂tθ

∗, ρ) + a2(θ∗ + θ̃b : θ∗ + θ̃b, ρ) + d2(u, θ∗, ρ) = 〈k, ρ〉 − (∂tθ̃b, ρ) − d2(u, θ̃b, ρ).

(2.25)

Such that, Q0 = L2(0, T,H1
0 (Ω)).

Moreover, the pair (u, θ∗) is a solution of the variational problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find (u, θ∗) ∈ V div × M × Q0 such that :
u(., 0) = u0 et θ∗(., 0) = θ0 − θ̃b(., 0) in Ω,

∀ (v, ρ) ∈ V div(Ω) × H1
0 (Ω),

(∂tu,v − u) + a1(θ∗ + θ̃b : u,v − u) + d1(u,u,v − u) + J(v) − J(u) ≥ 〈f ,v − u〉,
(∂tθ

∗, ρ) + a2(θ∗ + θ̃b : θ∗ + θ̃b, ρ) + d2(u, θ∗, ρ) = 〈k, ρ〉 − (∂tθ̃b, ρ) − d2(u, θ̃b, ρ).

(2.26)

Such that, V div = L2(0, T ;V div(Ω)) ∩ L∞(0, T ;L2(Ω)).
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2.2. A Priori Estimates

Proposition 2.2. Assume hypothesis H1–H3, with u0 ∈ H1(Ω), such that (2.8) hold true. Then the fol-
lowing a priori estimate holds for any t ∈]0, T [.

(1) ‖u‖L2(0,T ;H1(Ω)) ≤ c
(
‖u0‖L2(Ω) + ‖f‖L2(0,T ;L2(Ω))

)
. (2.27)

(2) ‖∂tu‖2
L2(0,T ;L2(Ω)) ≤ ‖f‖2

L2(0,T ;L2(Ω)) + c‖u0‖2
H 1(Ω) + c‖g‖2

L∞(S) + c‖g‖L∞(S). (2.28)

(3) ν0‖∇u‖2
L∞(0,T ;L2(Ω)) ≤ ‖f‖2

L2(0,T ;L2(Ω)) + c‖u0‖2
H 1(Ω) + c‖g‖2

L∞(S) + c‖g‖L∞(S). (2.29)

(4) ‖p‖2
L2(0,T ;L2

0(Ω)) ≤ c
(
‖f‖2

L2(0,T ;L2(Ω)) + ‖u0‖2
H 1(Ω) + ‖g‖2

L∞(S) + ‖g‖L∞(S)

)
. (2.30)

(5) ‖θ∗‖L2(0,T ;H1(Ω)) ≤ c

[

‖θ0‖L2(Ω) + ‖k‖L2(0,T ;H−1(Ω)) + ‖∂tθ̃b‖L2(0,T ;L2(Ω))

+‖θ̃b‖L2(0,T ;H1/2(∂Ω)) + ‖θ̃b‖2
H1(0,T ;H1/2(∂Ω)) + ‖f‖2

L2(0,T ;H −1(Ω)) + ‖u0‖2
L(Ω)

]

. (2.31)

Proof. (1) We take successively in (2.26) v = 0 and v = 2u. Comparing the two inequalities, we obtain

1
2

d

dt
‖u‖2

L2(Ω) + a1(θ∗ + θ̃b : u,u) + J(u) = 〈f ,u〉, (2.32)

which after dropping the positive term J(.) and application of the proprieties of a1(. :, ., .) in (2.13) and
Hölder’s inequality, we get

d

dt
‖u‖2

L2(Ω) + 2ν0‖u‖2
H 1(Ω) ≤ 1

ν0
‖f‖2

H −1(Ω) + ν0‖u‖2
H 1(Ω). (2.33)

It follows that,
d

dt
‖u‖2

L2(Ω) + ν0‖u‖2
H 1(Ω) ≤ 1

ν0
‖f‖2

H −1(Ω). (2.34)

Integrating between 0 and T , we get

‖u(., T )‖2
L2(Ω) + ν0

T∫

0

‖u(., s)‖2
H 1(Ω)ds ≤ ‖u(., 0)‖2

L2(Ω) +
1
ν0

T∫

0

‖f(., s)‖2
H −1(Ω)ds. (2.35)

Then

‖u‖L2(0,T ;H1(Ω)) ≤ c

ν0

(
‖u0‖L2(Ω) + ‖f‖L2(0,T ;L2(Ω))

)
, (2.36)

(2) Taking successively in (2.26) v = u − ∂tu and v = u + ∂tu. Comparing the two inequalities,

‖∂tu‖2
L2(Ω) + a1(θ∗ + θ̃b : u, ∂tu) + J(∂tu) = 〈f , ∂tu〉, (2.37)

Then

‖∂tu‖2
L2(Ω) +

1
dt

[
ν0

2
a1(. : u,u) + J(u)

]

≤ 1
2

‖f‖2
L2(Ω) +

1
2
‖∂tu‖2

L2(Ω). (2.38)

So
1
2
‖∂tu‖2

L2(Ω) +
1
dt

[
ν0

2
a1(. : u,u) + J(u)

]

≤ 1
2

‖f‖2
L2(Ω). (2.39)

Integration over the time interval (0, T ) yields

1
2
‖∂tu‖2

L2(0,T ;L2(Ω)) +
ν0

2
a1(. : u(T ),u(T )) + J(u(T ))

≤ 1
2
‖f‖2

L2(0,T ;L2(Ω)) +
ν0

2
a1(. : u0,u0) + J(u0). (2.40)
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Owing to the positivity of a1(· : ·, ·) and J(·) defined in (2.9), we get

‖∂tu‖2
L2(0,T ;L2(Ω)) ≤ ‖f‖2

L2(0,T ;L2(Ω)) + ν0‖∇u0‖2
L2(Ω) + 2

∫

S

g (|u0,τ | + 1) dS. (2.41)

So

‖∂tu‖2
L2(0,T ;L2(Ω)) ≤ ‖f‖2

L2(0,T ;L2(Ω)) + c‖u0‖2
H 1(Ω) + c‖g‖2

L∞(S) + c‖g‖L∞(S). (2.42)

(3) Back to (2.40), we have

ν0‖Du‖2
L∞(0,T ;L2(Ω)) + 2J(u(T )) ≤ ‖f‖2

L2(0,T ;L2(Ω)) + ν0‖∇u0‖2
L2(Ω) + 2

∫

S

g (|u0,τ | + 1) dS. (2.43)

So

ν0‖∇u‖2
L∞(0,T ;L2(Ω)) ≤ ‖f‖2

L2(0,T ;L2(Ω)) + c‖u0‖2
H 1(Ω) + c‖g‖2

L∞(S) + c‖g‖L∞(S). (2.44)

(4) As for the pressure, we take successively in (2.25) v = 0 and v = 2u, such that u ∈ H1
0(Ω). Comparing

the two inequalities,

b(u, p) = 〈f ,u〉 − (∂tu,u) − a1(θ∗ + θ̃b : u,u), (2.45)

which with the inf-sup condition and the proprieties of a1(. :, ., .) in (2.13) gives

c‖p‖L2
0(Ω) ≤ sup

v∈H 1
0(Ω)

b(u, p)
‖u‖H 1(Ω)

≤ ‖f‖H −1(Ω) + ‖∂tu‖L2(Ω) + 2ν1‖u‖H 1(Ω). (2.46)

(5) Concerning the temperature, by taking ρ = θ∗ in (2.26) we find
(
∂tθ

∗, θ∗) + a2(θ∗ + θ̃b, : θ∗ + θ̃b,, θ
∗) + d2(u, θ∗, θ∗) = 〈k, θ∗〉 −

(
∂tθ̃b, θ

∗) − d2(u, θ̃b, θ
∗). (2.47)

From (2.20) and application of the proprieties of a2(. :, ., .) in (2.14), one finds

(∂tθ
∗, θ∗) + (μ(θ∗ + θ̃b)∇θ∗,∇θ∗) = 〈k, θ∗〉 − (∂tθ̃b , θ∗) − ((u · ∇)θ̃b, θ

∗) − (μ(θ∗ + θ̃b)∇θ̃b,∇θ∗).

Using Hölder’s inequality on the right-hand side yields

1
2

d

dt
‖θ∗‖2

L2(Ω) + μ0c‖θ∗‖2
H1(Ω) ≤ c

(

‖k‖H−1(Ω)‖θ∗‖H1(Ω) + ‖∂tθ̃b‖L2(Ω)‖θ∗‖L2(Ω)

+‖u‖H 1(Ω)‖θ̃b‖H1(Ω)‖θ∗‖H1(Ω) + μ1‖θ̃b‖H1(Ω)‖θ∗‖H1(Ω)

)

. (2.48)

Young’s inequality yields the following bounds

‖k‖H−1(Ω)‖θ∗‖H1(Ω) ≤ 1
2

[

‖k‖2
H−1(Ω) + ‖θ∗‖2

H1(Ω)

]

, (2.49)

‖∂tθ̃b‖L2(Ω)‖θ∗‖L2(Ω) ≤ ‖∂tθ̃b‖L2(Ω)‖θ∗‖H1(Ω) ≤ 1
2

(

‖∂tθ̃b‖2
L2(Ω) + ‖θ∗‖2

H1(Ω)

)

, (2.50)

‖u‖H 1(Ω)‖θ̃b‖H1(Ω)‖θ∗‖H1(Ω) ≤ c′

2

[
‖u‖2

H 1(Ω) + ‖θ̃b‖2
H1(Ω)

]2
+

‖θ∗‖2
H1(Ω)

2
, (2.51)

and

μ1‖θ̃b‖H1(Ω)‖θ∗‖H1(Ω) ≤ μ1

2

[
‖θ̃b‖2

H1(Ω) + ‖θ∗‖2
H1(Ω)

]
. (2.52)

So returning to (2.48), one gets

d

dt
‖θ∗‖2

L2(Ω) + c‖θ∗‖2
H1(Ω) ≤ c

(

‖k‖2
H−1(Ω) + ‖∂tθ̃b‖2

L2(Ω) + ‖θ̃b‖2
H1(Ω) +

c′

2

[
‖u‖2

H 1(Ω) + ‖θ̃b‖2
H1(Ω)

]2
)

.
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Integrating between 0 and T and recalling (2.24), we obtain

‖θ∗(., T )‖2
L2(Ω) + c

T∫

0

‖θ∗(., s)‖2
H1(Ω)ds ≤ c

⎛

⎝‖θ∗(., 0)‖2
L2(Ω) +

T∫

0

‖k(., s)‖2
H−1(Ω)ds

+

T∫

0

‖∂tθ̃b(., s)‖2
L2(Ω)ds +

T∫

0

‖θ̃b(., s)‖2
H1/2(∂Ω)ds

+
c′

2

⎡

⎣

T∫

0

‖u(., s)‖2
H 1(Ω)ds +

T∫

0

‖θ̃b(., s)‖2
H1/2(∂Ω)ds

⎤

⎦

2
⎞

⎟
⎠ .

Thus from (2.36), it results

‖θ∗‖L2(0,T ;H1(Ω)) ≤ c

[

‖θ0‖L2(Ω) + ‖k‖L2(0,T ;H−1(Ω)) + ‖∂tθ̃b‖L2(0,T ;L2(Ω))

+‖θ̃b‖L2(0,T ;H1/2(∂Ω)) + ‖θ̃b‖2
H1(0,T ;H1/2(∂Ω)) + ‖f‖2

L2(0,T ;H −1(Ω)) + ‖u0‖2
L2(Ω)

]

. (2.53)

Which completes the proof. �

Theorem 2.1. Assume that the data (f , k, θb, g) satisfying (2.7) and the initial velocity u0 belongs to
H1(Ω) and checks (2.8). That the initial temperature in L2(Ω) and the temperature on the boundary θb

in H1/2(∂Ω). Then the problem (2.10) admits at least one solution (u, p, θ) such that

u ∈ L∞(0, T ;V (Ω)), p ∈ L2(0, T ;L2
0(Ω)), θ ∈ L2(0, T ;H1

0 (Ω)),

∂u

∂t
∈ L2(0, T ;V

′
(Ω)) if d = 2, (2.54)

and
∂u

∂t
∈ L4/3(0, T ;V

′
(Ω)) if d = 3. (2.55)

Proof. Step 1: Regularization:
Problem (2.10) is equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find (u, θ∗) ∈ V div × Q0 such that:
u(., 0) = u0 and θ∗(., 0) = θ0 − θ̄b(., 0) in Ω,

∀ (v, ρ) ∈ V div(Ω) × H1
0 (Ω),

(
∂tu,v − u

)
+ a1(θ∗ + θ̄b : u,v − u) + d1(u,u,v − u) + J(v) − J(u) ≥ 〈f ,v − u〉,

(
∂tθ

∗, ρ
)

+ a2(θ∗ + θ̄b : θ∗ + θ̄b, ρ) + d2(u, θ∗, ρ) = 〈k, ρ〉 −
(
∂tθ̄b, ρ
)

− d2(u, θ̄b, ρ).

(2.56)

We introduce the functional

Jε : V (Ω) −→ R

v −→ Jε(v) =
∫

S

g
√

|vτ |2 + ε2 dS, 0 < ε << 1. (2.57)

We observe that
(a) Jε is convex and differentiable, with Gateaux-derivative J

′
ε : V (Ω) −→ V

′
(Ω) given by

〈J ′
ε(u),v〉 =

∫

S

g
uτ · vτ
√

|uτ |2 + ε2
dS. (2.58)

.



49 Page 10 of 30 D. Ati et al. JMFM

(b) J
′
ε is monotone, that is

∀u,v ∈ V (Ω), 〈J ′
ε(u) − J

′
ε(v),u − v〉 ≥ 0.

(c) For all v ∈ V (Ω), Jε(v) −−−−→
ε−→0

J(v).
Indeed,

Jε(v) − J(v) =
∫

S

g
ε2

√
|vτ |2 + ε2 + |vτ |

dS.

The regularized problem then takes the following form:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find (uε, θ
∗
ε) ∈ V div × Q0 such that:

uε(., 0) = u0 and θ∗
ε(., 0) = θ0 − θ̄b(., 0) in Ω,

∀ (v, ρ) ∈ V div(Ω) × H1
0 (Ω),

(
∂tuε,v

)
+ a1(θ∗

ε + θ̄b : uε,v) + d1(uε,uε,v) + 〈J ′
ε(uε),v〉 = 〈f ,v〉,

(
∂tθ

∗
ε , ρ
)

+ a2(θ∗
ε + θ̄b : θ∗

ε + θ̄b, ρ) + d2(uε, θ
∗
ε , ρ) = 〈k, ρ〉 −

(
∂tθ̄b, ρ
)

− d2(uε, θ̄b, ρ).

(2.59)

Step 2: Galerkin approximation:
The spaces V div(Ω) and H1

0 (Ω) are separable, there exists an increasing sequence (V m
div(Ω))m of finite

dimensional subspaces of V div(Ω) and an increasing sequence (Wm(Ω))m of finite-dimensional subspaces
of H1

0 (Ω) such that
⋃

m∈N

V m
div(Ω) × Wm(Ω) is dense in V div(Ω) × H1

0 (Ω). The Galerkin Problem is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find (um
ε , θ∗m

ε ) ∈ L2(0, T ;V m
div(Ω)) ∩ L∞(0, T ;L2(Ω)) × L2(0, T ;Wm(Ω)) such that:

um
ε (., 0) = u0 and θ∗m

ε (., 0) = θ0 − θ̄b(., 0) in Ω,

∀ (v, ρ) ∈ V m
div(Ω) × Wm(Ω),

(
∂tu

m
ε ,v
)

+ a1(θ∗m
ε + θ̄b : um

ε ,v) + d1(um
ε ,um

ε ,v) + 〈J ′
ε(u

m
ε ),v〉 = 〈f ,v〉,

(
∂tθ

∗m
ε , ρ
)

+ a2(θ∗m
ε + θ̄b : θ∗m

ε + θ̄b, ρ) + d2(um
ε , θ∗m

ε , ρ) = 〈k, ρ〉 −
(
∂tθ̄b, ρ
)

− d2(um
ε , θ̄b, ρ).

(2.60)

The mapping

(w, z) �→
(

f + div (2ν(z + θ̄b)Dw) − (w · ∇)w − J
′
ε(w)

k − ∂tθ̄b − (w · ∇)θ̄b − div (μ(z + θ̄b)∇(z + θ̄b)) − (w · ∇)z

)

(2.61)

is locally Lipschitz in H1(Ω) × H1(Ω). It follows then from Cauchy-Lipschitz’s theorem that (2.60) has
a unique solution (um

ε , θ∗m
ε ).

Step 3: A priori estimates and passage to the limit:

The a priori estimates obtained in proposition 2.2 will also hold in the discrete setting V m
div(Ω) ×

Wm(Ω). Hence one can pass to the limit exactly as in reference [1] with respect to m.
The result will give us now a sequence depending only on ε, that is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find (uε, θ
∗
ε) ∈ V div × Q0 such that:

uε(., 0) = u0 and θ∗
ε(., 0) = θ0 − θ̄b(., 0) in Ω,

∀ (v, ρ) ∈ V div(Ω) × H1
0 (Ω),

(
∂tuε,v − uε

)
+ a1(θ∗

ε + θ̄b : uε,v − uε) + d1(uε,uε,v − uε) + Jε(v) − 〈f ,v − uε〉 ≥ Jε(uε),
(
∂t(θ∗

ε + θ̄b), ρ
)

+ a2(θ∗
ε + θ̄b : θ∗

ε + θ̄b, ρ) + d2(uε, θ
∗
ε + θ̄b, ρ) = 〈k, ρ〉.

(2.62)

which is equivalent to (2.59).
Again the a priori estimates obtained in Proposition 2.2 are valid. Hence one can pass to the limit as

ε → 0 with the same process in [10]. And by arguing as in [11] (see p 56–57), we ensure the existence of
solutions claimed in Theorem 2.1. �
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3. Discretization

In this section, we propose a space-time discretization of the problem (2.10), derive and prove an a priori
error estimation. To discretize the time derivative of velocity and temperature, we did call to the semi-
implicit Euler method. We introduce a partition of the interval [0, T ] into intervals [tn−1, tn], n ≥ 1 and
we denote by

Δt = tn − tn−1

the time discretization step such that tn = nΔt. We approximate the derivative ∂tu(tn) and ∂tθ(tn) by
the differential quotient of order Δt,

∂tu
n ≈ un − un−1

Δt
and ∂tθ

n ≈ θn − θn−1

Δt
. (3.1)

For the space discretization, we propose the finite element method. We assume that Ω is a polygon when
d = 2 or polyhedron when d = 3, so it can be completely meshed. We denote by Th a regular family of
triangulations of Ω by closed triangles K. The elements Th is a set of closed non degenerate triangles or
tetrahedra, satisfying,

• For each h, Ω is the union of all elements of Th,
• The intersection of two distinct elements of Th is either empty, a common vertex, or an entire

common edge or face,
• The ratio of the diameter of an element K in Th to the diameter of its inscribed circle or ball is

bounded by a constant independent of h such that h = max
K∈Th

diamK denotes the mesh size.

We define the space Pl(K) of polynomials of degree less than or equal to l on K. And we use “P2/P1”
pair of finite element, that is

V h(Ω) =
{
vh ∈ C(Ω̄)2 ∩ V (Ω), for all K ∈ Th, vh|K ∈ P2(K)2

}
,

L2
h(Ω) =

{
qh ∈ L2(Ω) ∩ C(Ω̄), for all K ∈ Th, qh|K ∈ P1(K)

}
,

H1
h(Ω) =

{
ρh ∈ H1(Ω) ∩ C(Ω̄), for all K ∈ Th, ρh|K ∈ P1(K)

}
.

We let

L2
0h(Ω) = L2

h(Ω) ∩ L2
0(Ω) and H1

0h(Ω) = H1
h(Ω) ∩ H1

0 (Ω).

We introduce the interpolation operator Ih such that, for any function ϕ continue on Ω̄, Ih checks

Ihϕ(x, .) = ϕ(x, .)

We note i∂Ω
h the lagrange interpolation operator such that, for any function ϕ continue on ∂Ω, i∂Ω

h checks

i∂Ω
h ϕ(x, .) = ϕ(x, .)

There exists an approximation operator Ph ∈ L(H1
0(Ω),V h(Ω)) and Qh ∈ L(H1(Ω), L2

0h(Ω)) such that
(see for instance Takahito in [22] and V.Girault and P.Raviart in [14])

∀v ∈ H1
0 (Ω), ∀qh ∈ L2

h(Ω),
∫

Ω

qhdiv(Ph(v) − v) dx = 0. (3.2)

For k = 0 or k = 1,

∀v ∈ [H1+k(Ω) ∩ H1
0(Ω)], ‖Ph(v) − v‖L2(Ω) ≤ C1h

1+k|v|H 1+k(Ω). (3.3)

For all r ≥ 2, k = 0 or k = 1,

∀v ∈ [W 1+k,r(Ω) ∩ H1
0(Ω)], |Ph(v) − v|W 1,r(Ω) ≤ C2h

k|v|W 1+k,r(Ω). (3.4)

∀q ∈ H1(Ω), ‖Qhq − q‖L2(Ω) ≤ C3h|q|H1(Ω). (3.5)
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In addition, there exists an approximation operator Rh in L(W 1,p(Ω),H1
h(Ω)),(see for instance, Scott and

Zhang [18]) such that for m = 0, 1, l = 0, 1 and for all p ≥ 2,

∀ρ ∈ W l+1,p(Ω), |Rh(ρ) − ρ|Wm,p(Ω) ≤ C3h
l+1−m|ρ|W l+1,p(Ω). (3.6)

In order to introduce the discrete scheme, we define the following forms:
For all uh,vh,wh ∈ V h(Ω) and θh, ρh ∈ H1

h(Ω)

d1h (uh,vh,wh) = d1 (uh,vh,wh) +
1
2

((div uh) vh,wh) ,

d2h (uh, θh, ρh) = d2 (uh, θh, ρh) +
1
2

((div uh) θh, ρh) .

The finite element problem reads;
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Findun
h ∈ V h(Ω), pn

h ∈ L2
0h(Ω) and θn ∈ H1

h(Ω) such that:
u0

h = Ihu0 and θ0
h = Ihθ0 in Ω,

θn
h = i∂Ω

h θn
b in ∂Ω, ∀ 1 ≤ n ≤ N,

∀ (vh, qh, ρh) ∈ V h(Ω) × L2
0h(Ω) × H1

0h(Ω),
1

Δt
(un

h,vh − un
h) + a1(θn−1

h : un
h,vh − un

h) + b(vh − un
h, pn

h)

+d1h(un−1
h ,un

h,vh − un
h) + J(vh) − J(un

h) ≥ 〈fn,vh − un
h〉 − 1

Δt
(un−1

h ,vh − un
h),

b(un
h, qh) = 0,

1
Δt

(θn
h , ρh) + a2(θn−1

h : θn
h , ρh) + d2h(un

h, θn
h , ρh) = 〈kn, ρh〉 − 1

Δt
(θn−1

h , ρh).

(3.7)

where fn and kn are given as

fn =
1

Δt

tn∫

tn−1

f(s)ds and kn =
1

Δt

tn∫

tn−1

k(s)ds. (3.8)

with

Remark 3.1. The trilinear forms d1 h(·, ·, ·) and d2 h(·, ·, ·) enjoys due to the stability relations

d1h (uh,vh,vh) = d2h (uh, θh, θh) = 0 ∀ (uh,vh) ∈ V h(Ω)2, θh ∈ H1
h(Ω).

� We recall that the discrete version of inf-sup condition (2.46) holds: there exists C > 0 independent of
h such that

sup
vh∈V h(Ω)

b(vh, qh)
‖vh‖V h(Ω)

� C‖qh‖L2(Ω) ∀qh ∈ L2
0h(Ω). (3.9)

Theorem 3.1. Under hypothesis H1–H3, at each time step n, for a given un−1
h ∈ V h(Ω), pn−1

h ∈ L2
0 h(Ω)

and θn−1
h ∈ H1

h(Ω), the variational problem (3.7) admits at least one solution (un
h, pn

h, θn
h) which verifies,

for m = 1, ..., N the following bounds

‖um‖2
H 1(Ω) + 2γν0CΩΔt

m∑

n=1

‖Dun‖2
L2(Ω) ≤ ‖u0‖2

H 1(Ω) +
2γΔt

ν0

m∑

n=1

‖θn−1‖2
H 1(Ω). (3.10)

and

‖θm‖2
H1(Ω) + CΩμ0Δt

m∑

n=1

‖θn‖2
H1(Ω) ≤ ‖θ0‖2

H1(Ω) +
Δt

CΩμ0

m∑

n=1

‖k‖2
H−1(Ω). (3.11)
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Similar to the continuous problem, the following characterization of the solution (u, p, θ) of the problem
(2.23) holds. Then, problem (3.7) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Findun
h ∈ V h(Ω), pn

h ∈ L2
0h(Ω), θn

h ∈ H1
h(Ω) and λn

h ∈ Λhsuch that:
u0

h = Ihu0 and θ0
h = Ihθ0 in Ω,

θn
h = i∂Ω

h θn
b in ∂Ω, ∀ 1 ≤ n ≤ N,

∀ (vh, qh, ρh) ∈ V h(Ω) × L2
0h(Ω) × H1

0h(Ω),
1

Δt
(un

h,vh) + a1(θn−1
h : un

h,vh) + b(vh, pn
h) + d1h(un−1

h ,un
h,vh)

= 〈fn−1,vh〉 −
∫

S

gλn−1
h · vτ dS − 1

Δt
(un−1

h ,vh),

b(un
h, qh) = 0,

un
h · λn−1

h = |λn
h|,

1
Δt

(θn
h , ρh) + a2(θn−1

h : θn
h , ρh) + d2h(un

h, θn
h , ρh) = 〈k, ρh〉 − 1

Δt
(θn−1

h , ρh).

And we let Λh = Λ ∩ Lh.

Such that,

Lh =
{
αh|αh,αh =

∑

e

αeIe,αe ∈ R
2, ∀ edge e in S

}
,

where Ie is the characteristic function of edge e.

3.1. A Priori Error Estimate

In this section, we establish the a priori estimates corresponding to the proposed numerical schemes. We
begin by establishing the error estimates corresponding to the temperature, and then we will establish
the corresponding to the velocity and the pressure.

In all the rest of the paper, we denote by un = u(tn), pn = p(tn) and θn = θ(tn). And for the
simplicity of the establishment of the a priori error estimates, we consider from now on θ0

h = Rhθ(0) and
u0

h = Phu(0).

Theorem 3.2. Let (u, p, θ) be the solution of problem (2.10) and (un
h, pn

h, θn
h) be the solution of problem

(3.7). Under hypothesis H1−H3, there exist two positive constants Cθ
1 and Cθ

2 independent on h and Δt
such that, for all m ≤ N ,

1
2

‖θm
h − Rhθm‖2

L2(Ω) + μ0

m∑

n=1

Δt |θn
h − Rhθn|2H1(Ω)

+
1
2

m∑

n=1

∥
∥θn

h − Rhθn −
(
θn−1

h − Rhθn−1
)∥
∥2

L2(Ω)

≤ Cθ
1

(
h2 + Δt2

)
+ Cθ

2

m∑

n=1

Δt |un
h − Phun|2H 1(Ω) (3.12)

Proof. We consider the heat equation of the continuous variational problem (2.10), for all ρh ∈ H1
0h(Ω):

(
∂θ

∂t
, ρh

)

+ a2(θ : θ, ρh) + d2(u, θ, ρh) = 〈k, ρh〉. (3.13)
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Setting ρh = ρn
h = θn

h − Rhθn in (3.13) integrated over [tn−1, tn] by the definition of the operator Rh

gives

(
θn − θn−1, ρn

h

)
+

⎛

⎝

tn∫

tn−1

μ(θ)∇θ(t)dt,∇ρn
h

⎞

⎠+

⎛

⎝

tn∫

tn−1

(u(t)∇) · θ(t)dt, ρn
h

⎞

⎠ =

⎛

⎝

tn∫

tn−1

k(t)dt, ρn
h

⎞

⎠ (3.14)

Then, we subtract (3.14) with the third equation of (3.7) after multiplying it by the time step Δt and by
using the definition of kn by (3.8), we obtain

((
θn

h − θn−1
h

)
−
(
θn − θn−1

)
, ρn

h

)
+

⎧
⎨

⎩
Δt a2(θn−1

h : θn
h , ρn

h) −

⎛

⎝

tn∫

tn−1

μ(θ)∇θ(t)dt,∇ρn
h

⎞

⎠

⎫
⎬

⎭

+

⎧
⎨

⎩
Δt d2h(un

h, θn
h , ρn

h) −

⎛

⎝

tn∫

tn−1

(u(t)∇) · θ(t)dt, ρn
h

⎞

⎠

⎫
⎬

⎭
= 0. (3.15)

We denote respectively by b1, b2 and b3 the terms in the left-hand side of (3.15) as following:

b1 =
((

θn
h − θn−1

h

)
−
(
θn − θn−1

)
, ρn

h

)
,

b2 = Δt a2(θn−1
h : θn

h , ρn
h) −

⎛

⎝

tn∫

tn−1

μ(θ)∇θ(t)dt,∇ρn
h

⎞

⎠ ,

and

b3 = Δt d2h(un
h, θn

h , ρn
h) −

⎛

⎝

tn∫

tn−1

(u(t)∇) · θ(t)dt, ρn
h

⎞

⎠ .

The first term b1 can be bounded by inserting ±Rhθn and ±Rhθn−1, we obtain
((

θn
h − θn−1

h

)
−
(
θn − θn−1

)
, ρn

h

)
=

1
2

‖ρn
h‖2

L2(Ω) − 1
2

∥
∥ρn−1

h

∥
∥2

L2(Ω)
+

1
2

∥
∥ρn

h − ρn−1
h

∥
∥2

L2(Ω)

+
((

θn−1 − Rhθn−1
)

− (θn − Rhθn) , ρn
h

)
. (3.16)

Noting that (Rhθ)′ = Rhθ′, the last term of the previous equality can be bounded for any ε̃1 > 0 as
follows:

∣
∣
((

θn−1 − Rhθn−1
)

− (θn − Rhθn) , ρn
h

)∣
∣ =

∣
∣
∣
∣
∣
∣
−

⎛

⎝

tn∫

tn−1

(Rhθ′ − θ′) (t)dt, ρn
h

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ c2
1h

2

2ε̃1

tn∫

tn−1

‖θ′(t)‖2
H1(Ω) dt +

Δt ε̃1

2
‖ρn

h‖2
L2(Ω)

≤ c2
1h

2

2ε̃1

∥
∥
∥
∥

∂θ

∂t

∥
∥
∥
∥

2

L2(tn−1,tn;H1(Ω))

+ CΩ
Δt ε̃1

2
|ρn

h|2H1
0 (Ω) .

where C1
Ω is the square of the norm of the imbedding of H1

0 (Ω) into L2(Ω).
The second term b2 can be bounded, by inserting

±
(
Δt μ
(
θn−1

h

)
∇Rhθn,∇ρn

h

)
,±

⎛

⎝

tn∫

tn−1

μ
(
θn−1

h

)
∇Rhθ(t),∇ρn

h

⎞

⎠ and ±

⎛

⎝

tn∫

tn−1

μ(θ(t))∇Rhθ(t)dt,∇ρn
h

⎞

⎠ .
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Then

b2 =
(
Δt μ
(
θn−1

h

)
∇ (θn

h − Rhθn) ,∇ρn
h

)

+

⎛

⎝Δt μ
(
θn−1

h

)
∇Rhθn −

tn∫

tn−1

μ
(
θn−1

h

)
∇Rhθ(t)dt,∇ρn

h

⎞

⎠

+

⎛

⎝

tn∫

tn−1

μ
(
θn−1

h

)
∇Rhθ(t)dt −

tn∫

tn−1

μ(θ(t))∇Rhθ(t)dt,∇ρn
h

⎞

⎠

+

⎛

⎝

tn∫

tn−1

μ(θ(t))∇Rhθ(t)dt −
tn∫

tn−1

μ(θ(t))∇θ(t)dt,∇ρn
h

⎞

⎠

= b2,1 + b2,2 + b2,3 + b2,4.

Thus,

b2,1 =
(
Δt μ
(
θn−1

h

)
∇ρn

h,∇ρn
h

)
≥ Δt μ0 |ρn

h|2H1(Ω) .

For the term b2,2,

|b2,2| =

∣
∣
∣
∣
∣
∣

⎛

⎝

tn∫

tn−1

μ
(
θn−1

h

)
∇Rhθn dt −

tn∫

tn−1

μ
(
θn−1

h

)
∇Rhθ(t)dt,∇ρn

h

⎞

⎠

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

⎛

⎝

tn∫

tn−1

μ
(
θn−1

h

)
tn∫

t

∇Rhθ′(s) ds dt,∇ρn
h

⎞

⎠

∣
∣
∣
∣
∣
∣
,

by applying Fubini’s theorem and using Hölder’s inequalities

|b2,2| ≤ μ1

tn∫

tn−1

|Rhθ′(s)|H1(Ω) |ρn
h|H1(Ω)

(
s − tn−1

)
ds.

The Cauchy Schwarz’s inequality yields for any ε̃1 > 0

|b2,2| ≤ 1
6ε̃2

μ2
1c

2
2Δt2 ‖θ′‖2

L2(tn−1,tn;H1(Ω)) +
Δt ε̃2

2
|ρn

h|2H1(Ω) .

We now deal with the term b2,3 :

By inserting ±

⎛

⎝

tn∫

tn−1

μ
(
θn−1
)
∇Rhθ(t)dt,∇ρn

h

⎞

⎠, then ±

⎛

⎝

tn∫

tn−1

(
μ
(
θn−1

h

)
− μ
(
θn−1
))

∇θ(t)dt,∇ρn
h

⎞

⎠ and

±

⎛

⎝

tn∫

tn−1

(
μ
(
θn−1

h

)
− μ (θ(t))

)
∇θ(t)dt,∇ρn

h

⎞

⎠, we get

|b2,3| ≤

⎛

⎝

tn∫

tn−1

(
μ
(
θn−1

h

)
− μ
(
θn−1
))

∇ (Rhθ(t) − θ(t)) dt,∇ρn
h

⎞

⎠

+

∣
∣
∣
∣
∣
∣

⎛

⎝

tn∫

tn−1

(
μ
(
θn−1

h

)
− μ
(
θn−1
))

∇θ(t)dt,∇ρn
h

⎞

⎠

∣
∣
∣
∣
∣
∣
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+

∣
∣
∣
∣
∣
∣

⎛

⎝

tn∫

tn−1

(
μ
(
θn−1
)

− μ(θ(t))
)
∇ (Rhθ(t) − θ(t)) dt,∇ρn

h

⎞

⎠

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

⎛

⎝

tn∫

tn−1

(
μ
(
θn−1
)

− μ(θ(t))
)
∇θ(t)dt,∇ρn

h

⎞

⎠

∣
∣
∣
∣
∣
∣

Since μ satisfies the propreties (2.5) and (2.6) we get for any ε̃3 > 0 and ε̃4 > 0 the following:

|b2,3| ≤ 1
ε̃3

8μ2
1c

2
3h

2‖θ‖2
L2(0,T ;H2(Ω)) +

Δt ε̃3

2
|ρn

h|2H1(Ω)

+
1

2ε̃4
(μ∗)2 Δt‖θ‖2

L∞(0,T ;W 1,d(Ω))

∥
∥θn−1

h − θn−1
∥
∥2

L4(Ω)
+

Δtε̃4

2
|ρn

h|2H1(Ω)

+μ∗
∫

Ω

tn∫

tn−1

∣
∣θ
(
x, tn−1

)
− θ(x, t)| · |∇θ(x, t)| · |∇ρn

h(x)
∣
∣ dt dx

For the last term,

μ∗
∫

Ω

tn∫

tn−1

∣
∣θ
(
x, tn−1

)
− θ(x, t)| · |∇θ(x, t)| · |∇ρn

h(x)
∣
∣ dt dx

≤ μ∗(CΩ
2 )1/2‖θ‖L∞(0,T ;W 1,4(Ω))

tn∫

tn−1

|θ′(s)|H1(Ω) |ρn
h|H1(Ω) (tn − s) ds.

From Cauchy Schwarz’s inequality for any ε̃5 > 0

μ∗
∫

Ω

tn∫

tn−1

∣
∣θn−1(x) − θ(x, t)| · |∇θ(x, t)| · |∇ρn

h(x)
∣
∣ dt dx

≤ μ∗Δt (CΩ
2 Δt)

1
2 ‖θ‖L∞(0,T ;W 1,4(Ω)) ‖θ′‖L2(tn−1,tn;H1(Ω)) |ρn

h|H1(Ω)

≤ 1
2ε̃5

(μ∗)2 CΩ
2 Δt2‖θ‖2

L∞(0,T ;W 1,4(Ω)) ‖θ′‖2
L2(tn−1,tn;H1(Ω)) +

Δtε̃5

2
|ρn

h|2H1(Ω)

Such that, CΩ
2 is the norm of the imbedding of H1

0 (Ω) into L4(Ω). It résult

|b2,3| ≤ 1
ε̃3

8(μ∗)2c2
3h

2‖θ‖2
L2(tn−1,tn;H2(Ω)) +

Δtε̃3

2
|ρn

h|2H1(Ω) +
Δtε̃4

2
|ρn

h|2H1(Ω)

+
(μ∗)4

16ε̃2
4

‖θ‖4
L∞(0,T ;W 1,4(Ω))

Δt

2

∥
∥θn−1

h − θn−1
∥
∥2

L2(Ω)
+

Δt

2

∣
∣θn−1

h − θn−1
∣
∣2
H1(Ω)

Δtε̃5

2
|ρn

h|2H1(Ω) +
1

2ε̃5
(μ∗)2 CΩ

2 Δt2‖θ‖2
L∞(0,T̄ ;W 1,4(Ω)) ‖θ′‖2

L2(tn−1,tn;H1(Ω)) .

Furthermore, for the term b2,4 can be bounded for every positive real number ε̃6 > 0 as:

|b2,4| ≤ μ1

tn∫

tn−1

‖∇ (Rhθ − θ) (t)‖L2(Ω) |ρn
h|H1(Ω) dt

≤ (μ1)
2
c2
4h

2

2ε̃6
‖θ‖2

L2(tn−1,tn;H2(Ω)) +
Δt ε̃6

2
|ρn

h|2H1(Ω) .
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Finally, the third term b3

b3 = Δt d2 (un
h, θn

h , ρn
h) +

Δt

2
((div un

h) θn
h , ρn

h) −

⎛

⎝

tn∫

tn−1

(u(t)∇) · θ(t)dt, ρn
h

⎞

⎠ .

can be bounded by inserting

±Δt d2(un
h, Rhθn, ρn

h) and ± Δt

2
((div un

h) Rhθn, ρn
h) .

b3 becomes

b3 = Δt d2 (un
h, Rhθn, ρn

h) +
Δt

2
((div un

h) Rhθn, ρn
h) −

⎛

⎝

tn∫

tn−1

(u(t)∇) · θ(t)dt, ρn
h

⎞

⎠ .

Furthermore, by inserting ±Δt (Phun∇Rhθn, ρn
h) , ±Δt

2
(div (Phun) Rhθn, ρn

h) ,

±
tn∫

tn−1

((Phun∇) · θ(t), ρn
h) dt and ±1

2

tn∫

tn−1

(div Phunθ(t), ρn
h) dt, we obtain

∗b3 = Δt (((un
h − Phun) ∇) · Rhθn, ρn

h) +

tn∫

tn−1

((Phun∇) · (Rhθn − θ(t)) , ρn
h) dt

+

tn∫

tn−1

(((Phun − u(t)) ∇) · θ(t), ρn
h) dt +

Δt

2
(div (un

h − Phun) Rhθn, ρn
h)

+
1
2

tn∫

tn−1

(div (Phun) (Rhθn − θ(t)) , ρn
h) dt +

1
2

tn∫

tn−1

(div (Phun − u(t)) θ(t), ρn
h) dt. (3.17)

We denote by b3,1, . . . , b3,6 the terms of the right hand side of (3.17) which can be bounded as following:
The term b3,1 can be bounded thanks to Holder’s inequality for every positive real number ε̃7 > 0 as:

|b3,1| ≤ Δt

2ε̃7
c2
5

(
CΩ

2

)2 ‖θ‖2
L∞(0,T,H1(Ω)) |un

h − Phun|H 1(Ω) +
ε̃7Δt

2
|ρn

h|2H1(Ω) .

The term b3,2 can be bounded for every positive real number ε̃8 > 0 and ε̃9 > 0 as:

|b3,2| ≤ 1
2
c2
6

(
CΩ

2

)2 ‖u‖2
L∞(0,T ;H1(Ω))

(
c2
5Δt2

3ε̃8
‖θ′‖2

L∞(0,T ;H1(Ω)) +
c2
1h

2

2ε̃9
‖θ‖2

L2(tn−1,tn;H2(Ω))

)

+
Δt (ε̃8 + ε̃9)

2
|ρn

h|2H1(Ω) .

For the term b3,3, we insert ±
tn∫

tn−1

((Phun∇Rhθ(t), ρn
h) dt . It results for every positive real number ε̃10 > 0

and ε̃11 > 0:

|b3,3| ≤ 1
6ε̃10

(
CΩ

2

)2
c2
6Δt2‖θ‖2

L∞(0,T ;H1(Ω)) ‖u′‖2
L2(tn−1,tn;H 1(Ω))

+
1

2ε̃11

(
CΩ

2

)2
c2
5h

2‖θ‖2
L∞(0,T ;H1(Ω))‖u‖2

L2(tn−1,tn;H 2(Ω)) +
Δt (ε̃10 + ε̃11)

2
|ρn

h|2H1(Ω) .
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The term b3,4 can be bounded for every positive real number ε̃12 > 0 as:

|b3,4| ≤ c7

2ε̃12
Δt
(
CΩ

2

)2 ‖θ‖2
L∞(0,T ;H1(Ω)) |un

h − Phun|2H 1(Ω) +
Δt

2
ε̃12 |ρn

h|2H1(Ω) .

The terms b3,5 and b3,6 can be treated exactly like b3,2 and b3,3 and we get for every positive real numbers
ε̃13 > 0, ε̃14 > 0, ε̃15 > 0 and ε̃16 > 0,

|b3,5| ≤ c8(CΩ
2 )2

2
‖u‖2

L∞(0,T ;H 1(Ω))

(
Δt2

ε̃13
‖θ′‖2

L2(0,T ;H1(Ω)) +
h2

ε̃14
‖u‖2

L∞(0,T ;H 1(Ω))

)

+
Δt (ε̃13 + ε̃14)

2
|ρn

h|2H1(Ω) ,

and

|b3,6| ≤ c9(CΩ
2 )2

2
‖θ‖2

L∞(0,T ;H1(Ω))

(
Δt2

ε̃15
‖u′‖2

L2(0,T ;H 1(Ω)) +
h2

ε̃16
‖u‖L2(0,T ;H 2(Ω))

)

+
Δt (ε̃15 + ε̃16)

2
|ρn

h|2H1(Ω) .

Finally, by using the obtained bounds and summing over n from 1 to m ≤ N , we get

1
2

‖ρm
h ‖2

L2(Ω) +
1
2

m∑

n=1

∥
∥ρn

h − ρn−1
h

∥
∥2

L2(Ω)
+ μ0

m∑

n=1

Δt |ρn
h|2H1(Ω)

≤ ξ̄1

(
h2 + Δt2

)
+ ξ̄2

m∑

n=1

Δt |un
h − Phun|2H 1(Ω)

+ξ̄3

m∑

n=1

Δt |ρn
h|2H1(Ω)

where ξ̄1, ξ̄2, and ξ̄3 depending of ε̃i, i = 1 . . . 16. After a suitable choice of ε̃i, we conclude the following
bound

1
2

‖ρm
h ‖2

L2(Ω) + μ0

m∑

n=1

Δt |ρn
h|2H1(Ω) +

1
2

m∑

n=1

∥
∥ρn

h − ρn−1
h

∥
∥2

L2(Ω)

≤ Cθ
1

(
h2 + Δt2

)
+ Cθ

2

m∑

n=1

Δt |un
h − Phun|2H 1(Ω) . (3.18)

�

To establish the a priori error estimates corresponding to the numerical scheme (3.7), we use Lemma 2.1
which is valid only for d = 2.

Theorem 3.3. Let (u, p, θ) be the solution of problem (2.10) and (un
h, pn

h, θn
h) be the solution of problem

(3.7). Under hypothesis H1−H3, there exist three positive constants Cu
1 , Cu

2 and Cu
3 independ on h and

Δt such that, for all m ≤ N ,

1
2

‖um
h − Phum‖2

L2(Ω) + μ0

m∑

n=1

Δt |un
h − Phun|2H1(Ω)

+
1
2

m∑

m=1

∥
∥(un

h − Phun) − (un−1
h − Phun−1)

∥
∥2

L2(Ω)

≤ Cu
1

(
h2 + Δt2

)
+ Cu

2

m∑

n=1

Δt |θn
h − θ(tn)|2H1(Ω) + Cu

3

m∑

n=1

Δt
∥
∥θn−1

h − θ(tn−1)
∥
∥2

L2(Ω)
(3.19)
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Proof. We consider the fluid inequality of the continuous variational problem (2.10). Let w ∈ H1
0(Ω), we

take v − u = ±w in (2.10) and obtain
(

∂u

∂t
,w

)

+ a1(θ : u,w) + b(w, p) + d1(u,u,w) = 〈f ,w〉, (3.20)

We denote by H1
0h(Ω) a conforming finite element discretization of H1

0(Ω). In a similar way we have
from (3.7), for all wh ∈ H1

0 h(Ω)

1
Δt

(un
h,wh) + a1(θn−1

h : un
h,wh) + b(wh, pn

h) + d1h(un−1
h ,un

h,wh) = 〈fn,wh〉 − 1
Δt

(un−1
h ,wh), (3.21)

Setting wh = wn
h = un

h − Phun, in (3.20) integrated over [tn−1, tn] by the definition of the operator Ph

gives

(un − un−1,wn
h) +

⎛

⎝

tn∫

tn−1

ν(θ)∇u dt,∇wn
h

⎞

⎠−

⎛

⎝

tn∫

tn−1

p(t) dt,div wn
h

⎞

⎠ =

⎛

⎝

tn∫

tn−1

f(t) dt,wn
h

⎞

⎠ (3.22)

Then, we subtract (3.22) with (3.21) after multiplying it by the time step Δt, we obtain
(
(un

h − un−1
h ) − (un − un−1),wn

h

)
+ Δt a1(θn−1

h : un
h,wh)

−

⎛

⎝

tn∫

tn−1

ν(θ)∇u dt,∇wn
h

⎞

⎠+ Δt b(wh, pn
h) −

⎛

⎝

tn∫

tn−1

p(t) dt,div wn
h

⎞

⎠

+Δt d1(un−1
h ,un

h,wn
h) +

1
2
(
Δt div(un−1

h )un
h,wn

h

)
−

⎛

⎝

tn∫

tn−1

(u(t)∇) · u(t) dt,wn
h

⎞

⎠ = 0

We denote respectively by A1, A2, A3 and A4 the following terms

A1 =
(
(un

h − un−1
h ) − (un − un−1),wn

h

)
,

A2 = Δt a1(θn−1
h : un

h,wh) −

⎛

⎝

tn∫

tn−1

ν(θ)∇u dt,∇wn
h

⎞

⎠ ,

A3 = Δt b(wh, pn
h) −

⎛

⎝

tn∫

tn−1

p(t) dt,div wn
h

⎞

⎠ ,

and

A4 = Δt d1(un−1
h ,un

h,wn
h) +

1
2
(
Δ t div(un−1

h )un
h,wn

h

)
−

⎛

⎝

tn∫

tn−1

(u(t)∇) · u(t) dt,wn
h

⎞

⎠ .

The term A1 can be expressed as
((

un
h − un−1

h

)
−
(
un − un−1

)
,wn

h

)
=

1
2

‖wn
h‖2

L2(Ω) − 1
2

∥
∥wn−1

h

∥
∥2

L2(Ω)
+

1
2

∥
∥wn

h − wn−1
h

∥
∥2

L2(Ω)

+
((

un−1 − Phun−1
)

− (un − Phun) ,wn
h

)
.

And similar to b1, for any ε1 > 0:

∣
∣
((

un−1 − Phun−1
)

− (un − Phun) ,wn
h

)∣
∣ ≤ c2

1h
2

2ε1

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

2

L2(tn−1,tn;H 1(Ω))

+ CΩ
Δt ε1

2
|wn

h|2H1(Ω) .
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To bound the term A2, we follow the same approach in b2 to get:

|A2| ≤ (ν1)
2

6ε2
Δt2 ‖u′‖2

L2(0,T ;H 1(Ω)) +
Δt ε2

2
‖wn

h‖2
H 1(Ω) +

c1

ε3
ν2
1h2‖u‖2

L2(0,T ;H 2(Ω)) +
Δt ε3

2
|wn

h|2H 1(Ω)

+
c2

ε4
(ν∗)2 CΩ

2 ‖u‖2
L∞(0,T ;W 1,4(Ω))Δt

(
1
2

∥
∥θn−1

h − θ
(
tn−1
)∥
∥2

L2(Ω)
+

1
2

∣
∣θn−1

h − θ
(
tn−1
)∣
∣2
H1(Ω)

)

+
Δt ε4

2
|wn

h|2H 1(Ω) +
c3

(
ν∗CΩ

2

)2

ε5
‖u‖2

L∞(0,T ;W 1,4(Ω)) ‖θ′‖2
L2(tn−1,tn;H1(Ω)) +

Δt ε5

2
|wn

h|2H 1(Ω) .

For the term A3, since Qhp ∈ L2
0 h(Ω) and pn

h ∈ L2
0 h(Ω) then

(Qhp(t),div(wn
h)) = (pn

h,div(wn
h)) = 0.

Hence,

|A3| =

∣
∣
∣
∣
∣
∣

tn∫

tn−1

(Qhp(t) − p(t),div (wn
h)) dt

∣
∣
∣
∣
∣
∣
≤ c4h

2

ε6
‖p‖2

L2(0,T ;H1(Ω)) +
ε6Δt

2
|wn

h|H 1(Ω)

The term A4 can be bounded by inserting ±Δt (un
h∇Phun,wn

h) and ±Δt

(
1
2
divun−1

h Phun,wn
h

)

then

insering ±

⎛

⎝

tn∫

tn−1

Phun−1∇ · Phun,wn
h

⎞

⎠ and ±1
2

⎛

⎝

tn∫

tn−1

Phun−1∇ · Phun,wn
h

⎞

⎠. We have

A4 = Δt
(((

un−1
h − Phu

(
tn−1
))

∇
)

· Phu (tn) ,wn
h

)
+

tn∫

tn−1

((
Phu
(
tn−1
)
∇ (Phu (tn) − u(t)) ,wn

h

))
dt

+

tn∫

tn−1

(
((

Phu
(
tn−1
)

− u(t)
)
∇u(t),wn

h

)
dt +

Δt

2
(
div
(
un−1

h − Phu
(
tn−1
))

Phu (tn) ,wn
h

)

+
1
2

tn∫

tn−1

(
div
(
Phu
(
tn−1
))

(Phu (tn) − u(t)) ,wn
h

)
dt +

1
2

tn∫

tn−1

(
div
(
Phu
(
tn−1
)

− u(t)
)
u(t),wn

h

)
dt

The terms A4,2, A4,3, A4,5 and A4,6 can be treated exactly by following the steps of the corresponding
terms in the proof of Theorem 3.2. Then, we have to treat only the sum of the first term A4,1 and the
fourth term A4,4 as following:

A4,1 + A4,4 = Δt
(((

un−1
h − Phu

(
tn−1
))∇) · Phu (tn) , wn

h

)
+

Δt

2

(
div
(
un−1

h − Phu
(
tn−1
))

Phu (tn) , wn
h

)

=
Δt

2

(((
un−1

h − Phu
(
tn−1
))∇) · Phu (tn) , wn

h

)− Δt

2

(((
un−1

h − Phu
(
tn−1
))∇) · wn

h, Phu (tn)
)
.

Then, for every positive real number ε7,

|A4,1 + A4,4|
≤ c5Δt

∥
∥un−1

h − Phu
(
tn−1
)∥
∥

L4(Ω)
|wn

h|H 1(Ω) |u (tn)|H 1(Ω)

≤ c5‖u‖L∞(0,T ;H 1(Ω))
[

1
2ε7

(
Δt

2

∣
∣un−1

h − Phu
(
tn−1
)∣
∣2
H 1(Ω)

+
Δt

2

∥
∥un−1

h − Phu
(
tn−1
)∥
∥2

L2(Ω)

)

+
ε7

2
|wn

h|2H 1(Ω)

]
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By collecting the above bounds and summing over n from 1 to m ≤ N , we get

1
2

‖wm
h ‖2

L2(Ω) +
1
2

m∑

n=1

∥
∥wn

h − wn−1
h

∥
∥2

L2(Ω)
+ ν0

m∑

n=1

Δt |wn
h|2H 1(Ω)

≤ ξ1

(
h2 + Δt2

)
+ ξ2

m∑

n=1

Δt

2

∥
∥θn−1

h − θ
(
tn−1
)∥
∥2

L2(Ω)

+ξ3

m∑

n=1

Δt

2
|θn

h − θ (tn)|2H1(Ω) + ξ4

m∑

n=1

Δt ‖wn
h‖2

L2(Ω) + ξ5

m∑

n=1

Δt ‖wn
h‖2

H 1(Ω)

where ξ1ξ2, ξ3, ξ4 and ξ5 depending of εi, i = 1..7. The last term can be bounded following the relation
m∑

n=1

‖wn
h‖H 1(Ω) ≤

m∑

n=1

∥
∥wn

h − wm−1
h

∥
∥

H 1(Ω)
+

m∑

n=1

∥
∥wn−1

h

∥
∥

H 1(Ω)
,

After a suitable choice of εi, i = 1..7 and ξi, i = 1..5 and applyication of Gronwall’s lemma, we get

1
2

‖wm
h ‖2

L2(Ω) +
1
2

m∑

n=1

∥
∥wn

h − wn−1
h

∥
∥2

L2(Ω)
+

ν0

2

m∑

n=1

Δt |wn
h|2H 1(Ω)

≤ Cu
1

(
h2 + Δt2

)
+ Cu

2

m∑

n=1

Δt

2

∥
∥θn−1

h − θ
(
tn−1
)∥
∥2

L2(Ω)
+ Cu

3

m∑

n=1

Δt

2
|θn

h − θ (tn)|2H1(Ω) .

�
Theorem 3.4. Under the assumptions of Theorems 3.2 and 3.3, and by choosing θ ∈ L∞(0, T,H2(Ω)),
there exists constants k0, C̃u and C̃θ, independent of h and Δt, such that for Δt < k0

sup
1≤n≤N

‖θn
h − θ(tn)‖2

L2(Ω) + μ0

N∑

n=1

Δt |θn
h − θ(tn)|2H1(Ω) ≤ C̃θ

(
h2 + Δt2

)
. (3.23)

sup
1≤n≤N

‖un
h − u(tn)‖2

L2(Ω) + ν1

N∑

n=1

Δt |un
h − u(tn)|2H 1(Ω) ≤ C̃u

(
h2 + Δt2

)
. (3.24)

Proof. We insert ±Rhθn−1 in (3.19), use Theorem 3.2, choose θ ∈ L∞(0, T,H2(Ω)), and apply the
properties of the operator Rh to get the following bound

1
2

‖ρm
h ‖2

L2(Ω) + μ0

m∑

n=1

Δt |ρn
h|2H1(Ω) +

1
2

m∑

n=1

∥
∥ρn

h − ρn−1
h

∥
∥2

L2(Ω)

≤ C1

(
h2 + Δt2

)
+ C2

m∑

n=1

Δt
∣
∣ρn−1

h

∣
∣2
H1(Ω)

+ C3

m∑

n=1

Δt
∥
∥ρn−1

h

∥
∥2

L2(Ω)
.

with ρn
h = θn

h − Rhθn and C1, C2 and C3 are constants independent of h and Δt. From the continuous
injection from H1(Ω) into L2(Ω), we obtain

1
2

‖ρm
h ‖2

L2(Ω) + μ0

m∑

n=1

Δt |ρn
h|2H1(Ω) ≤ C1

(
h2 + Δt2

)
+ C

′
2

m∑

n=1

Δt
∥
∥ρn−1

h

∥
∥2

L2(Ω)
.

It follows from the discrete Gronwall Lemma the following inequality

1
2

‖ρm
h ‖2

L2(Ω) + μ0

m∑

n=1

Δt |ρn
h|2H1(Ω) ≤ C1

(
h2 + Δt2

)
.

To get the relation (3.23), it suffices to apply

|θn
h − θ(tn)|H1(Ω) ≤ |θn

h − Rhθn|H1(Ω) + |Rhθn − θ(tn)|H1(Ω)

Finally, the bound (3.24) can be directly deduced from Theorem 3.3. �
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4. Operator Splitting

The operator splitting is a decomposition technique that consists, as its name suggests, in treating each
of the operators of a partial differential equation separately, in order to facilitate its resolution. Indeed, it
makes it possible to remove the complexity of a problem by reducing it to several simpler sub-problems.
We recall that (2.10) can be decomposed as variational equation, an inequality and a variational equation
for the heat. The two variational equations are written as the following initial value problem:
Find φ and ψ such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(0) = φ0, ψ(0) = ψ0.

dφ

dt
+

q∑

i=1

Aiφ = 0 on(0, T ),

dψ

dt
+

q∑

i=1

Biψ = 0 on(0, T ),

(4.1)

Let φn ≈ φ(tn) and ψn ≈ ψ(tn). Then Marchuk-Yanenko’s method to solve (2.10) borrows mainly from
[15]:

φ0 = φ0, ψ0 = ψ0 (4.2)

for n ≥ 1, knowing φn, ψn and for i = 1, 2, 3, . . . , q we compute φn+1 via

φn+i/q − φn+(i−1)/q

Δt
+ Ai

(
φn+i/q, tn+1

)
= 0. (4.3)

Then compute ψn+1 via

ψn+i − ψn+i−1

Δt
+ Bi

(
ψn+i, tn+1

)
= 0. (4.4)

For n ≤ 0, with tn+α = (n + α)Δt and for non negative γ1 and γ2, such that γ1 + γ2 = 1, we compute
un+1/2, (un+1, pn+1) then θn+1 as in the following Algorithm:

Algorithm: Marchuk–Yanenko operator splitting algorithm

n = 0 : Initialization: u0 = u0, θ0 = θ0

n ≥ 0 : Knowing un and θn compute un+1/2 and (un+1, pn+1) as follows:
Step 1. Linear step without a constraint: compute un+1/2 such that, for all v ∈ V (Ω)

1
Δt

(un+1/2 − un,v) + γ1a1(θn : un+1/2,v) + d1(un,un+1/2,v) = 〈f ,v〉. (4.5)

Step 2. Nonlinear elliptic variational inequality step with a constraint: compute (un+1, pn+1) such that,
for all (v, q) ∈ V (Ω) × L2

0(Ω)

1
Δt

(un+1 − un+1/2,v − un+1) + γ2a1(θn : un+1,v − un+1) (4.6)

+b(v − un+1, pn+1) + J(v) − J(un+1) ≥ 0,

b(un+1, q) = 0. (4.7)

Step 3. Knowing θn, compute θn+1 such that, for all ρ ∈ H1
0 (Ω)

1
Δt

(θn+1 − θn, ρ) + a2(θn, θn+1, ρ) + d2(un+1, θn+1, ρ) = 〈k, ρ〉. (4.8)
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Theorem 4.1. Suppose that u0 ∈ L2(Ω); then the scheme (4.5)-(4.8) is unconditionally stable in the
following sense: for n = 0, 1, . . . ,m there exists a positive constant CΩ such that

‖um‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) +
CΩtm
γ1ν0

‖f‖2
L2(Ω), (4.9)

Δt
m−1∑

n=0

‖(Dun+1/2)‖2
L2(Ω) ≤ 1

3ν0γ1

(

‖u0‖2
L2(Ω) +

CΩtm
γ1ν0

‖f‖2
L2(Ω)

)

(4.10)

Δt

m−1∑

n=0

‖(Dun+1)‖2
L2(Ω) ≤ 1

4ν0γ2

(

‖u0‖2
L2(Ω) +

CΩtm
γ1ν0

‖f‖2
L2(Ω)

)

(4.11)

m−1∑

n=0

‖un+1/2 − un‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) +
CΩtm
γ1ν0

‖f‖2
L2(Ω) (4.12)

m−1∑

n=0

‖un+1 − un+1/2‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) +
CΩtm
γ1ν0

‖f‖2
L2(Ω) (4.13)

Δt

m−1∑

n=0

J(un+1) ≤ 1
2

(

‖u0‖2
L2(Ω) +

CΩtm
γ1ν0

‖f‖2
L2(Ω)

)

(4.14)

‖um+1/2‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) +
CΩtm
γ1ν0

‖f‖2
L2(Ω) (4.15)

Proof. Let v = un+1/2 in (4.5), one has

2(un+1/2 − un,un+1/2) + 2γ1Δt a1(θn : un+1/2,un+1/2) = 2Δt〈f ,v〉. (4.16)

The second term on the right hand side of (4.16) can be treated with Cauchy–Schwarz, Korn and Young
inequalities as follows

2Δt〈f ,v〉 ≤ CΩΔt

ν0γ1
‖f‖2

L2(Ω) + ν0γ1Δt‖Dun+1/2‖2
L2(Ω) (4.17)

Throughout

(un+1/2 − un,un+1/2) =
1
2
(
‖un+1/2‖2

L2(Ω) − ‖un‖2
L2(Ω) + ‖un+1/2 − un‖2

L2(Ω)

)
(4.18)

Dropping (4.17) and (4.18) in (4.16), we find that

‖un+1/2‖2
L2(Ω) − ‖un‖2

L2(Ω) + ‖un+1/2 − un‖2
L2(Ω) + 3γ1ν0Δt‖Dun+1/2‖2

L2(Ω) ≤ CΩΔt

ν0γ1
‖f‖2

L2(Ω)

(4.19)

Next, we take successively v = 0 and v = 2un+1 in (4.6), and after comparison of the resulting relations,
we find

1
Δt

(un+1 − un+1/2,un+1) + γ2a1(θn : un+1,un+1) + J(un+1) = 0 (4.20)

Applying 4.18 we find

‖un+1‖2
L2(Ω) − ‖un+1/2‖2

L2(Ω) + ‖un+1 − un+1/2‖2
L2(Ω) + 4γ2ν0Δt‖Dun+1‖2

L2(Ω) + 2ΔtJ(un+1) ≤ 0

(4.21)

We do (4.19)+(4.21) for n = 0, 1, 2, ...,m − 1, we obtain

‖um‖2
L2(Ω) + 3γ1ν0Δt

m−1∑

n=0

‖Dun+1/2‖2
L2(Ω) + 4γ2ν0Δt

m−1∑

n=0

‖Dun+1‖2
L2(Ω)
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+
m−1∑

n=0

‖un+1/2 − un‖2
L2(Ω) +

m−1∑

n=0

‖un+1 − un+1/2‖2
L2(Ω) + 2Δt

m−1∑

n=0

J(un+1)

≤ ‖u0‖2
L2(Ω) +

CΩtm
γ1ν0

‖f‖2
L2(Ω) (4.22)

�

From which we obtain (4.9)-(4.14).
By adding the relation (4.19) for n = 0, 1, 2, ...,m and dropping some positive terms, we obtain

m∑

n=0

‖un+1/2‖2
L2(Ω) −

m∑

n=0

‖un‖2
L2(Ω) ≤ CΩtm

ν0γ1
‖f‖2

L2(Ω) (4.23)

By adding the relation (4.21) for n = 0, 1, 2, ...,m − 1 and dropping some positive terms, we obtain

m−1∑

n=0

‖un+1‖2
L2(Ω) −

m−1∑

n=0

‖un+1/2‖2
L2(Ω) ≤ 0 (4.24)

Adding (4.23) and (4.24) gives (4.15).

Theorem 4.2. Suppose that u0 ∈ L2(Ω); then we have the following heat stability results: for n =
0, 1, . . . , m there exists a positive constant CΩ such that

‖θm‖2
H1(Ω) ≤ ‖θ0‖2

H1(Ω) +
tm

CΩμ0
‖k‖2

H−1(Ω). (4.25)

m−1∑

n=0

‖θn+1 − θn‖2
H1(Ω) ≤ ‖θ0‖2

H1(Ω) +
tm

CΩμ0
‖k‖2

H−1(Ω). (4.26)

Δt

m−1∑

n=0

‖θn+1‖2
H1(Ω) ≤ 1

CΩμ0
‖θ0‖2

H1(Ω) + tm‖k‖2
H−1(Ω). (4.27)

Let ρ = θn+1 in (4.8), one has

1
Δt

(θn+1 − θn, θn+1) + a2(θn : θn+1, θn+1) = 〈k, θn+1〉. (4.28)

We have

〈k, θn+1〉 ≤ 1
2

[
1

CΩμ0
‖h‖2

H−1(Ω) + CΩμ0‖θn+1‖2
H1(Ω)

]

. (4.29)

Thanks to Cauchy-Schwarz and Young’s inequalities and the proprieties of a2(. :, ., .) in (2.14),

‖θn+1‖2
H1(Ω) − ‖θn‖2

H1(Ω) + ‖θn+1 − θn‖2
H1(Ω) + CΩμ0Δt‖θn+1‖2

H1(Ω) ≤ Δt

CΩμ0
‖k‖2

H−1(Ω). (4.30)

For n = 0, 1, 2, ...,m − 1, we obtain

‖θm‖2
H1(Ω) +

m−1∑

n=0

‖θn+1 − θn‖2
H1(Ω) + CΩμ0Δt

m−1∑

n=0

‖θn+1‖2
H1(Ω) ≤ ‖θ0‖2

H1(Ω) +
tm

CΩμ0
‖k‖2

H−1(Ω).

(4.31)

This completes the proof of the theorem.
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5. Numerical Results and Discussion

All computations were performed using Matlab on DELL i7 with 16 GB RAM. The test problems used
are designed to illustrate the behavior of the algorithm more than to model an actual phenomenon. For
the discretization, w use the the MINI-element (P1-Bubble/P1) for the velocity-pressure pair and the
P1 element for the temperature. The algorithm described will be tested computationally. We stop the
computations when the following condition is satisfied

∥
∥un − un−1

∥
∥2

L2(Ω)
+
∥
∥θn − θn−1

∥
∥2

L2(Ω)

‖un−1‖2
L2(Ω) + ‖θn−1‖2

L2(Ω)

< Tol ≡ 10−6.

5.1. Test Case with Stationary Solution

We consider the unit square Ω = (0, 1)2 and we assume that its boundary consists of two portions Γ and
S defined as follows

Γ = {0} × (0, 1) ∪ (0, 1) × {0} ∪ {1} × (0, 1)

S = (0, 1) × {1}.

We consider

ν(θ) =
1
2
e−θ +

1
4

for which one has
1
4

≤ ν(θ) ≤ 3
4
.

and

μ(θ) =
1
2

+ 1.7θ − 6.46 × 10−3θ2

In order to obtain a stationary solution of the problem
⎧
⎪⎨

⎪⎩

∂u

∂t
− div (2ν(θ)Du) + (u · ∇)u + ∇p = f in Ω × [0, T ],

∂θ

∂t
− div (μ(θ)∇θ) + (u. ∇)θ = k in Ω × [0, T ],

(5.1)

the right-hand side is adjusted accordingly, i.e.

f1(x, y) = 80x2(1 − x)2 − 20(2 + 12x2 − 12x)y(1 − 2y) + 2(2y − 1), (5.2)
f2(x, y) = 20(12x − 6)y2(1 − y)2 + 20x(1 − 2x)(1 − x)(2 + 12y2 − 12y), (5.3)
k(x, y) = 2x(1 − x) + 2y(1 − y). (5.4)

We take the time step Δt = 0.01. Figures 1, 2 show the velocity fields and the heat distribution for g = 0.5
and g = 1.75. One can notice in Fig. 1 (left) that the friction occurs on S for g = 0.5.

Since we do not have the exact solution, we assume that the solution obtained for h = 1/512 is the
reference solution. For the velocity-pressure pair, we compute the following error

eh(u, p) = ‖uref − uh‖H 1(Ω) + ‖pref − ph‖L2(Ω).

For the MINI-element or the stabilized P1/P1 element, eh(u, p) converges linearly, see e.g. [4]. We report,
in the Tables 1, 2, the errors and convergence rates for both stick/slip cases. From the obtained results we
can conclude that the convergence rates are almost independent from the stick bound g. We also notice
that the convergence rates are linear for all components.
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Fig. 1. Velocity fields for g = 0.5 and g = 1.75 with h = 1/16

Fig. 2. Heat diffusion for g = 0.5 and g = 1.75 with h = 1/16

5.2. Test Case with Time-Dependent Solution

In order to verify time convergence rates, we consider a test problem with the same data as in the previous
section except the right-hand side (now time-dependent)

f1(x, y, t) = t2f1(x, y),
f2(x, y, t) = t2f2(x, y),
k(x, y, t) = tk(x, y),

where (f1(x, y), f2(x, y), k(x, y)) is the right-hand side (5.2)-(5.4). We compute a reference solution using
Δt = 2−10 as time step and h = 1/256 as mesh size. To check the results of Theorem 3.4 we compute the
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Table 1. Convergence rates for (u , p, θ) with g = 0.5

h eh(u , p) Rate ‖θref − θh‖H1(Ω) Rate

1/8 4.68523e−01 1.91945e−02
1.0486 0.9821

1/16 2.26496e−01 9.71706e−03
1.2191 0.9780

1/32 9.72887e−02 4.93324e−03
1.2417 0.9861

1/64 4.114120e−02 2.49056e−03
1.1974 0.9924

1/128 1.79401e−02 1.25186e−03
1.1926 0.9960

1/256 7.84930e−03 6.27667e−04

Table 2. Convergence rates for (u , p, θ) with g = 1.75

h eh(u , p) Rate ‖θref − θh‖H1(Ω) Rate

1/8 5.14279e−01 1.91938e−02
0.9161 0.9821

1/16 2.72539e−01 9.71702e−03
1.1830 0.9780

1/32 1.20033e−01 4.93320e−03
1.2689 0.9861

1/64 4.98103e−02 2.49054e−03
1.2719 0.9924

1/128 2.06278e−02 1.25185e−03
1.2457 0.9960

1/256 8.69858e−03 6.27661e−04

following errors at T = 0.5.

eh(u) = sup
1≤n≤N

‖ un
h − uref ‖L2(Ω) +ν1Δt

N∑

n=1

|un
h − uref |H1(Ω), (5.5)

eh(θ) = sup
1≤n≤N

‖ θn
h − θref ‖L2(Ω) +μ0Δt

N∑

n=1

|θn
h − θref |H1(Ω). (5.6)

where (uref , θref ) is a reference (computed) solution. In (5.5–5.6), ν1 = 1/4 and μ0 = 1/2, assuming
θ ≥ 0. Figure 3 shows the velocity fields for g = 0.1 and g = 0.5 at T = 0.5. We notice that the slip occurs
for g = 0.1.

To investigate experimentally the convergence rates for eh(u) and eh(θ), we compute a reference
solution with h = 1/256 and Δt = 2−10. We report in Tables 3, 4 eh(u), eh(θ) and convergence rates for
various time-steps. We notice again that the convergence rates are almost independent of the stick/slip
bound g. Moreover, eh(u) and eh(θ) converge linearly as predicted by Thorem 3.4.

6. Concusion

The purpose of this work was to deal with the elements finite approximation of the time-dependent
Navier–Stokes system coupled with the heat equation and governed by the nonlinear Tresca boundary
conditions where both the viscosity and conductivity depend on the temperature. We present optimal error
estimates for velocity, pressure and temperature. We have formulated and established the convergence of
the Marchuk-Yanenko’s algorithm associated to the finite element equations. And finally established some
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Fig. 3. Velocity fields for g = 0.1 (left) and g = 0.5 (right) at T = 0.5

Table 3. Convergence rates at T = 0.5 with g = 0.1, Δt = 2−1−� and h = 1/256

� eh(u) Rate eh(θ) Rate

1 2.48187e−03 2.21158e−03
0.7434 0.3903

2 1.48253e−03 1.68737e−03
0.9607 0.7995

3 7.61719e−04 9.69494e−04
1.0209 0.9290

4 3.75377e−04 5.09215e−04
1.0362 0.9944

5 1.83038e−04 2.55599e−04
1.0983 1.0718

6 8.54908e−05 1.21591e−04

Table 4. Convergence rates at T = 0.5 with g = 0.5, Δt = 2−1−� and h = 1/256

� eh(u) Rate eh(θ) Rate

1 1.18213e−03 2.21160e−03
0.4826 0.3903

2 8.46044e−04 1.68737e−03
0.8565 0.7995

3 4.67252e−04 9.69494e−04
0.9759 0.9290

4 2.37555e−04 5.09215e−04
1.0340 0.9944

5 1.16014e−04 2.55599e−04
1.0947 1.0718

6 5.43232e−05 1.21591e−04
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numerical simulations which confirm the theoretical estimate. The extension of this work is in process,
we aim to proceed for experiments on realistic examples, such as a lake heated by the sun.
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[13] Girault, V., Raviart, P.: Finite Element Methods for Navier-stokes Equations: Theory and Algorithms((book)). Springer,
Berlin (1986)

[14] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer
(2012)

[15] Glowinski, R.: Lectures on Numerical Methods for Non-linear Variational Problems. Springer (2008)
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