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Abstract. It is shown that both the Camassa–Holm and Novikov equations are ill-posed in B
1+1/p
p,r (R) with (p, r) ∈ [1,∞] ×

(1,∞] in Guo et al. (J Differ Equ 266:1698–1707, 2019) and well-posed in B
1+1/p
p,1 (R) with p ∈ [1,∞) in Ye et al. (J Differ

Equ 367: 729–748, 2023). Recently, the ill-posedness for the Camassa–Holm equation in B1∞,1(R) has been proved in Guo

et al. (J Differ Equ 327: 127–144, 2022). In this paper, we shall solve the only left an endpoint case r = 1 for the Novikov
equation. More precisely, we prove the ill-posedness for the Novikov equation in B1∞,1(R) by exhibiting the norm inflation

phenomena.
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1. Introduction

Vladimir Novikov [30] investigated the question of integrability for Camassa–Holm type equations of the
form

(1 − ∂2
x)ut = P (u, ux, uxx, uxxx, · · · ) ,

where P is a polynomial of u and its x-derivatives. Using as test for integrability the existence of an infinite
hierarchy of quasi-local higher symmetries, he produced about 20 integrable equations with quadratic
nonlinearities that include the Camassa–Holm (CH) equation

(1 − ∂2
x)ut = uuxxx + 2uxuxx − 3uux (1.1)

and the Degasperis–Procesi (DP) equation

(1 − ∂2
x)ut = uuxxx + 3uxuxx − 4uux. (1.2)

Moreover, he produced about 10 integrable equations with cubic nonlinearities that include the Novikov
equation (NE)

(1 − ∂2
x)ut = u2uxxx + 3uuxuxx − 4u2ux. (1.3)

The Camassa–Holm equation was originally derived as a bi-Hamiltonian system by Fokas and Fuch-
ssteiner [12] in the context of the KdV model and gained prominence after Camassa–Holm [2] indepen-
dently re-derived it from the Euler equations of hydrodynamics using asymptotic expansions. (1.1) is
completely integrable [2,5] with a bi-Hamiltonian structure [4,12] and infinitely many conservation laws
[2,12]. Also, it admits exact peaked soliton solutions (peakons) of the form ce−|x−ct| with c > 0, which are
orbitally stable [8] and models wave breaking (i.e., the solution remains bounded, while its slope becomes
unbounded in finite time [3,6,7]). The Degasperis–Procesi equation with a bi-Hamiltonian structure is
integrable [10] and has traveling wave solutions [22]. Although DP is similar to CH in several aspects,
these two equations are truly different. One of the novel features of DP different from CH is that it has
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not only peakon solutions [10] and periodic peakon solutions [37], but also shock peakons [23] and the
periodic shock waves [11].

For the Novikov equation, Hone-Wang [21] derived the Lax pair. Also, NE has infinitely many con-
served quantities. Like CH, the most important quantity conserved by a solution u to NE is its H1-norm
‖u‖2H1 =

∫
R
(u2 + u2

x)dx. NE possesses peakon traveling wave solutions [13,19,20], which on the real
line are given by the formula u(x, t) = ±√

ce−|x−ct| where c > 0 is the wave speed. In fact, NE admits
multi-peakon traveling wave solutions on both the line and the circle. More precisely, on the line the
n-peakon

u(x, t) =
n∑

j=1

pj(t)e−|x−qj(t)|

is a solution to NE if and only if the positions (q1, . . . , qn) and the momenta (p1, . . . , pn) satisfy the
following system of 2n differential equations

⎧
⎪⎨

⎪⎩

dqj

dt
= u2(qj),

dpj

dt
= −u(qj)ux(qj)pj .

We would like to mention that, Himonas–Holliman–Kenig [18] constructed a 2-peakon solution with an
asymmetric antipeakon-peakon initial data and showed the Cauchy problem for NE on both the line and
the circle is ill-posed in Sobolev spaces Hs with s < 3/2.

The well-posedness of the Camassa–Holm type equations has been widely investigated during the
past 20 years. The local well-posedness for the Cauchy problem of CH [9,24,25,31] and NE [16,17,29,32–
35,38] in Sobolev and Besov spaces Bs

p,r(R) with s > max{1 + 1/p, 3/2} and (p, r) ∈ [1,∞] × [1,∞)
has been established. In our recent papers [27,28], we established the ill-posedness for CH in Bs

p,∞(R)
with p ∈ [1,∞] by proving the solution map starting from u0 is discontinuous at t = 0 in the metric of
Bs

p,∞(R). Guo–Liu–Molinet–Yin [14] established the ill-posedness for the Camassa–Holm type equations

in B
1+1/p
p,r (R) with (p, r) ∈ [1,∞] × (1,∞] by proving the norm inflation, which implies that B

1+1/p
p,1 is

the critical Besov space for both CH and NE. Ye–Yin–Guo [36] obtained the local well-posedness for the
Camassa–Holm type equation in critical Besov spaces B

1+1/p
p,1 (R) with p ∈ [1,∞). We should mention

that the well-posedness for DP in B1
∞,1(R) has been established in our recent paper [26]. Recently, Guo–

Ye–Yin [15] obtained the ill-posedness for CH in B1
∞,1(R) by constructing a special initial data which

leads to the norm inflation. However, their initial data seems to be invalid when proving the ill-posedness
for NE in B1

∞,1(R). To the best of our knowledge, whether NE is well-posed or not in B1
∞,1(R) is still an

open problem. We shall present the negative result in this paper.
Setting Λ−2 = (1 − ∂2

x)−1, then Λ−2f = G ∗ f where G(x) = 1
2e−|x| is the kernel of the operator Λ−2.

We can transform the Novikov equation into the following transport type equation
{

ut + u2ux = P1(u) + P2(u),
u(x, t = 0) = u0(x),

(1.4)

where

P1(u) = −1
2
Λ−2u3

x and P2(u) = −∂xΛ−2

(
3
2
uu2

x + u3

)

. (1.5)

We can now state our main result as follows.

Theorem 1.1. For any n ∈ Z
+ large enough, there exist u0 and T > 0 such that the Novikov equation

(1.4) has a solution u ∈ C([0, T );H∞) satisfying

‖u0‖B1
∞,1

≤ 1
log log n

but ‖u(t0)‖B1
∞,1

≥ log log n with t0 ∈
(

0,
1

log n

]

.
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Since the norm inflation implies discontinuous of the data-to-solution map at the trivial function
u0 ≡ 0, Theorem 1.1 demonstrates that

Corollary 1.1. The Cauchy problem for the Novikov equation is ill-posed in B1
∞,1(R) in the sense of

Hadamard.

This paper is structured as follows. In Sect. 2, we list some notations and recall some Lemmas which
will be used in the sequel. In Sect. 3 we present the proof of Theorem 1.1 by dividing it into several parts:
(1) Construction of initial data; (2) Key Estimation for Discontinuity; (3) The Equation Along the Flow;
(4) Norm inflation.

2. Preliminaries

Notation C stands for some positive constant independent of n, which may vary from line to line. The
symbol A ≈ B means that C−1B ≤ A ≤ CB. Given a Banach space X, we denote its norm by ‖ · ‖X .
We shall use the simplified notation ‖f, · · · , g‖X = ‖f‖X + · · · + ‖g‖X if there is no ambiguity. We will
also define the Lipschitz space C0,1 using the norm ‖f‖C0,1 = ‖f‖L∞ + ‖∂xf‖L∞ . For I ⊂ R, we denote
by C(I;X) the set of continuous functions on I with values in X. Let us recall that for all f ∈ S ′, the
Fourier transform f̂ , is defined by

(Ff)(ξ) = f̂(ξ) =
∫

R

e−ixξf(x)dx for any ξ ∈ R.

Next, we will recall some facts about the Littlewood-Paley decomposition and the nonhomogeneous
Besov spaces (see [1] for more details). Choose a radial, non-negative, smooth function ϑ : R �→ [0, 1] such
that suppϑ ⊂ B(0, 4/3) and ϑ(ξ) ≡ 1 for |ξ| ≤ 3/4. Setting ϕ(ξ) := ϑ(ξ/2) − ϑ(ξ), then we deduce that
ϕ has the following properties

• supp ϕ ⊂ {ξ ∈ R : 3/4 ≤ |ξ| ≤ 8/3};
• ϕ(ξ) ≡ 1 for 4/3 ≤ |ξ| ≤ 3/2;
• ϑ(ξ) +

∑
j≥0 ϕ(2−jξ) = 1 for any ξ ∈ R.

For every u ∈ S ′(R), the inhomogeneous dyadic blocks Δj are defined as follows

Δju = 0, if j ≤ −2; Δ−1u = ϑ(D)u; Δju = ϕ(2−jD)u, if j ≥ 0,

where the pseudo-differential operator σ(D) : u → F−1(σFu).
Let s ∈ R and (p, r) ∈ [1,∞]2. The nonhomogeneous Besov space Bs

p,r(R) is defined by

Bs
p,r(R) :=

{
f ∈ S ′(R) : ‖f‖Bs

p,r(R)
:=
∥
∥2js‖Δju‖Lp

∥
∥

�r(j≥−1)
< ∞

}
.

The following Bernstein’s inequalities will be used in the sequel.

Lemma 2.1 ([1], Lemma 2.1). Let B be a ball and C be an annulus. There exists a constant C > 0 such
that for all k ∈ N ∪ {0}, any λ ∈ R

+ and any function f ∈ Lp with 1 ≤ p ≤ q ≤ ∞, we have

supp f̂ ⊂ λB ⇒ ‖∂k
xf‖Lq ≤ Ck+1λk+( 1

p − 1
q )‖f‖Lp ,

supp f̂ ⊂ λC ⇒ C−k−1λk‖f‖Lp ≤ ‖∂k
xf‖Lp ≤ Ck+1λk‖f‖Lp .

Let us complete this section by recalling the useful commutator estimate.

Lemma 2.2 ([1], Lemma 2.100). Let 1 ≤ r ≤ ∞, 1 ≤ p ≤ p1 ≤ ∞ and 1
p2

= 1
p − 1

p1
. There exists a

constant C depending continuously on p and p1 such that
∥
∥2j‖[Δj , v]∂xf‖Lp

∥
∥

�r(j≥−1)
≤ C

(
‖∂xv‖L∞‖f‖B1

p,r
+ ‖∂xf‖Lp2 ‖∂xv‖B0

p1,r

)
,

where we denote the standard commutator [Δj , v]∂xf = Δj(v∂xf) − vΔj∂xf .
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3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

3.1. Construction of Initial Data

Define a radial, smooth cut-off function χ with values in [0, 1] which satisfies

χ(x) =

{
1, if |x| ≤ 1

4 ,

0, if |x| ≥ 1
2 .

From now on, we set γ := 17
24 just for the sake of simplicity. Letting

n ∈ 16N = {16, 32, 48, · · · } and N(n) =
{

k ∈ 8N :
n

4
≤ k ≤ n

2

}
.

We introduce the following new notation which will be used often throughout this paper

‖f‖Bk∞,1(N(n))
=
∑

j∈N(n)

2kj‖Δjf‖L∞ , k ∈ {0, 1}.

Now, we can define the initial data u0 by

u0 = n− 1
3
(
uH
0 + uL

0

)
,

where

uH
0 := 2−n log n

∑

�∈N(n)

cos
(
2nγ(x + 2�+1γ)

) · cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ), (3.6)

uL
0 :=

∑

�∈N(n)

χ̌(x + 2�+1γ). (3.7)

Some Observations

1. Obviously,

supp ûL
0 ⊂

{

ξ ∈ R : |ξ| ≤ 1
2

}

. (3.8)

2. It is not difficult to check that

supp F (cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)
)

⊂
{

ξ ∈ R : 2�γ − 1
2

≤ |ξ| ≤ 2�γ +
1
2

}

, (3.9)

which in turn gives

supp F (cos
(
2nγ(x + 2�+1γ)

) · cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)
)

⊂
{

ξ ∈ R : 2nγ − 2�γ − 1
2

≤ |ξ| ≤ 2nγ + 2�γ +
1
2

}

. (3.10)

Thus

supp ûH
0 ⊂

{

ξ ∈ R :
4
3
2n−1 ≤ |ξ| ≤ 3

2
2n−1

}

. (3.11)

3. Since χ̌ is a Schwartz function, we have

|χ̌(x)| + |∂xχ̌(x)| ≤ C(1 + |x|)−M , M � 1. (3.12)
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4. By χ̌(0) = 1
2π

∫
R

χ(x)dx ≥ 1
4π , we have

∥
∥cos

(
2�+1γ(x + 2�+1γ)

)
χ̌3(x + 2�+1γ)

∥
∥

L∞ ≥ χ̌3(0) ≥ 1
64π3

. (3.13)

Lemma 3.1. There exists a positive constant C independent of n such that

2n‖uH
0 ‖L∞ + ‖∂xuH

0 ‖L∞ ≤ C log n,

‖uL
0‖C0,1 ≤ C,

‖u0‖B1∞,1
≤ Cn− 1

3 log n.

Proof. Due to (3.11)–(3.12), by Bernstein’s inequality, we have

2n‖uH
0 ‖L∞ + ‖∂xuH

0 ‖L∞ + log n‖uL
0‖C0,1

≤ C log n

∥
∥
∥
∥
∥
∥

∑

�∈N(n)

1
(1 + |x + 2�+1γ|)M

∥
∥
∥
∥
∥
∥

L∞

≤ C log n

and

‖u0‖B1∞,1
≤ Cn− 1

3

(
‖uH

0 ‖B1∞,1
+ ‖uL

0‖B1∞,1

)

≤ Cn− 1
3
(
2n‖uH

0 ‖L∞ + ‖uL
0‖L∞

)

≤ Cn− 1
3 log n.

This completes the proof of Lemma 3.1. �

3.2. Key Estimation for Discontinuity

The following Lemma is crucial for the proof of Theorem 1.1.

Lemma 3.2. There exists a positive constant c independent of n such that
∥
∥u0(∂xu0)2

∥
∥

B0
∞,1(N(n))

≥ c(log n)2, n � 1.

Proof. Obviously,

n · u0(∂xu0)2 = uL
0 (∂xuH

0 )2
︸ ︷︷ ︸

=: I1

+uH
0 (∂xuH

0 + ∂xuL
0 )2

︸ ︷︷ ︸
=: I2

+uL
0

(
(∂xuL

0 )2 + 2∂xuH
0 ∂xuL

0

)

︸ ︷︷ ︸
=: I3

.

Next, we need to estimate the above three terms.
Estimation of I2. Using Lemma 3.1 yields

‖I2‖B0
∞,1(N(n))

≤ Cn‖I2‖L∞ ≤ Cn‖uH
0 ‖L∞‖∂xuH

0 , ∂xuL
0‖2L∞ ≤ Cn2−n(log n)2.

Estimation of I3. Notice that the support conditions (3.8) and (3.11), one has

ΔjI3 = 0 for j ∈ N(n) ⇒ ‖I3‖B0
∞,1(N(n))

= 0.

Estimation of I1. Now we focus on the estimation of I1. Obviously,

∂xuH
0 = −γ log n

∑

�∈N(n)

sin
(
2nγ(x + 2�+1γ)

) · cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)

+ 2−n log n
∑

�∈N(n)

cos
(
2nγ(x + 2�+1γ)

) · ∂x

(
cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)
)
.
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We decompose I1 into three terms

I1 = (log n)2 (I11 + I12 − I13) ,

where

I11 = γ2uL
0

⎛

⎝
∑

�∈N(n)

sin
(
2nγ(x + 2�+1γ)

) · cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)

⎞

⎠

2

,

I12 = 2−2nuL
0

⎛

⎝
∑

�∈N(n)

cos
(
2nγ(x + 2�+1γ)

) · ∂x

(
cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)
)
⎞

⎠

2

,

I13 = 2γ2−nuL
0

∑

�∈N(n)

sin
(
2nγ(x + 2�+1γ)

) · cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)

×
∑

�∈N(n)

cos
(
2nγ(x + 2�+1γ)

) · ∂x

(
cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)
)
.

Easy computations give that

‖I12‖L∞ ≤ C2−2n‖uL
0‖L∞

∥
∥
∥
∥
∥
∥

∑

�∈N(n)

∂x

(
cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)
)
∥
∥
∥
∥
∥
∥

2

L∞

≤ C2−2n

∥
∥
∥
∥
∥
∥

∑

�∈N(n)

2�

(1 + |x + 2�+1γ|)M

∥
∥
∥
∥
∥
∥

2

L∞

≤ C2−n.

Similarly, we have ‖I13‖L∞ ≤ C2− n
2 . Thus

‖I12, I13‖B0
∞,1(N(n))

≤ Cn2− n
2 .

By the simple equality sin2(a) cos2(b) = 1
4 (1 − cos(2a))(1 + cos(2b)), we break I11 down into some easy-

to-handle terms

I11 =
γ2

4

5∑

i=1

I11i, where

I111 = uL
0

∑

�∈N(n)

cos
(
2�+1γ(x + 2�+1γ)

) · χ̌2(x + 2�+1γ),

I112 = uL
0

∑

�∈N(n)

χ̌2(x + 2�+1γ),

I113 = −uL
0

∑

�∈N(n)

cos
(
2n+1γ(x + 2�+1γ)

) · χ̌2(x + 2�+1γ),

I114 = −uL
0

∑

�∈N(n)

cos
(
2n+1γ(x + 2�+1γ)

) · cos
(
2�+1γ(x + 2�+1γ)

) · χ̌2(x + 2�+1γ),

I115 = 4uL
0

∑

�,j∈N(n)
� �=j

(
sin
(
2nγ(x + 2�+1γ)

) · cos
(
2�γ(x + 2�+1γ)

) · χ̌(x + 2�+1γ)

× sin
(
2nγ(x + 2j+1γ)

) · cos
(
2jγ(x + 2j+1γ)

) · χ̌(x + 2j+1γ)
)
.
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Notice that the support conditions (3.9) and (3.10), one has

ΔjI112 = ΔjI113 = ΔjI114 = 0 for j ∈ N(n),

which implies directly that

‖I112, I113, I114‖B0
∞,1(N(n))

= 0.

Using Lemma 3.1 and (3.12), we obtain that for n � 1

‖I115‖B0
∞,1(N(n))

≤ Cn‖I115‖L∞ ≤ Cn‖uL
0‖L∞

∑

�,j∈N(n)
� �=j

∥
∥χ̌(x + 2�+1γ) · χ̌(x + 2j+1γ)

∥
∥

L∞

≤ Cn
∑

�,j∈N(n)
j>�

∥
∥(1 + |x + 2j+1γ|2)−M (1 + |x + 2�+1γ|2)−M

∥
∥

L∞

≤ Cn
∑

�,j∈N(n)
j>�

∥
∥(1 + |x|2)−M (1 + |x − (2j+1 − 2�+1)γ|2))−M

∥
∥

L∞

≤ Cn
∑

�,j∈N(n)
j>�

(
γ(2j − 2�)

)−2M

≤ C2− M
4 n,

where we have separated R into two different regions {x : |x| ≤ γ(2j − 2�)} and {x : |x| > γ(2j − 2�)}.
Finally, we can break I111 down into two parts, where the first part contributes the main part.

I111 =
∑

�∈N(n)

cos
(
2�+1γ(x + 2�+1γ)

) · χ̌3(x + 2�+1γ)

+
∑

�,j∈N(n)
� �=j

cos
(
2�+1γ(x + 2�+1γ)

)
χ̌2(x + 2�+1γ) · χ̌(x + 2j+1γ)

:= I1111 + I1112.

Due to (3.9) and the support condition of ϕ and for all k ∈ Z

ϕ(2−kξ) ≡ 1 for ξ ∈ Ck =
{

ξ ∈ R :
4
3
2k ≤ |ξ| ≤ 3

2
2k

}

,

we have

Δ̇jI1111 = F−1
(
ϕ(2−j ·)FI1111

)

=

{
cos
(
2j+1γ(x + 2j+1γ)

) · χ̌3(x + 2j+1γ), if � = j,

0, if � �= j,

which combining (3.13) implies that

‖I1111‖B0
∞,1(N(n))

=
∑

j∈N(n)

∥
∥cos

(
2j+1γ(x + 2j+1γ)

) · χ̌3(x + 2j+1γ)
∥
∥

L∞ ≥ cn.

Following the same procedure as I115, we get for n � 1

‖I1112‖B0
∞,1(N(n))

≤ C2− M
4 n.

Gathering all the above estimates, we obtain that for large enough n

n‖u0(∂xu0)2‖B0
∞,1(N(n))

≥ ‖I1‖B0
∞,1(N(n))

− ‖I2‖B0
∞,1(N(n))

≥ C(log n)2
(
‖I1111‖B0∞,1(N(n))

− ‖I12, I13, I115, I1112‖B0∞,1(N(n))
− n2−n

)

≥ cn(log n)2.
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This completes the proof of Lemma 3.2. �

Remark 3.1. Setting u0 = n− 1
2 uH

0 where uH
0 is given by (3.6) and following the same argument as the

proof of Lemma 3.2, we can establish

‖u0‖B1
∞,1(R)

≤ C1n
− 1

2 log n and
∥
∥(∂xu0)2

∥
∥

B0
∞,1(N(n))

≥ c2(log n)2, n � 1.

3.3. The Equation Along the Flow

Given a Lipschitz velocity field u, we may solve the following ODE to find the flow induced by u2:
{

d
dtφ(t, x) = u2(t, φ(t, x)),
φ(0, x) = x,

(3.14)

which is equivalent to the integral form

φ(t, x) = x +
∫ t

0

u2(τ, φ(τ, x))dτ. (3.15)

Considering
{

∂tv + u2∂xv = P,

v(0, x) = v0(x),
(3.16)

then, we get from (3.16) that

∂t(Δjv) + u2∂xΔjv = Rj + ΔjP with Rj = −[Δj , u
2]∂xv.

Due to (3.14), then

d
dt

((Δjv) ◦ φ) = Rj ◦ φ + ΔjP ◦ φ,

which means that

Δjv ◦ φ = Δjv0 +
∫ t

0

Rj ◦ φdτ +
∫ t

0

ΔjP ◦ φdτ. (3.17)

3.4. Norm Inflation

For n � 1, we have for t ∈ [0, 1]

‖u‖C0,1 ≤ C‖u0‖C0,1 ≤ Cn− 1
3 log n.

To prove Theorem 1.1, it suffices to show that there exists t0 ∈
(
0, 1

log n

]
such that

‖u(t0, ·)‖B1∞,1
≥ log log n. (3.18)

We prove (3.18) by contradiction. If (3.18) were not true, then

sup
t∈(0, 1

log n ]
‖u(t, ·)‖B1∞,1

< log log n. (3.19)

We divide the proof into two steps.
Step 1: Lower bound for (Δju) ◦ φ.
Now we consider the equation along the Lagrangian flow-map associated to u2. Utilizing (3.17) to

(1.4) yields

(Δju) ◦ φ = Δju0 +
∫ t

0

R1
j ◦ φdτ +

∫ t

0

ΔjF ◦ φdτ
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+
∫ t

0

(
ΔjE ◦ φ − ΔjE0

)
dτ + tΔjE0,

where

R1
j = −[Δj , u

2]∂xu, F = −Λ−2

(
1
2
(∂xu)3 + ∂x(u3)

)

,

E = −3
2
∂xΛ−2

(
u(∂xu)2

)
with E0 = −3

2
∂xΛ−2

(
u0(∂xu0)2

)
.

Due to Lemma 3.2, we deduce
∑

j∈N(n)

2j‖ΔjE0‖L∞ ≈
∑

j∈N(n)

‖Δj∂xE0‖L∞ ≥ C
∑

j∈N(n)

∥
∥Δj [u0(∂xu0)2]

∥
∥

L∞ ≥ c(log n)2. (3.20)

Notice that the L∞-norm of any function f is preserved under the flow φ, i.e.

‖f(t, φ(t, x))‖L∞(R) = ‖f(t, x)‖L∞(R),

then, using the commutator estimate from Lemma 2.2, we have
∑

j∈N(n)

2j‖R1
j ◦ φ‖L∞ ≤ ∥∥2j‖R1

j‖L∞
∥
∥

�1(j≥−1)
≤ C‖∂x(u2)‖B0

∞,1
‖u‖B1

∞,1

≤ C‖u‖C0,1‖u‖2B1
∞,1

≤ Cn− 1
3 (log n)3. (3.21)

Also, we have
∑

j∈N(n)

2j‖ΔjF ◦ φ‖L∞ =
∑

j∈N(n)

2j‖ΔjF‖L∞ ≤ C‖(∂xu)3 + ∂x(u3)‖L∞

≤ C‖u‖3C0,1 ≤ Cn−1(log n)3. (3.22)

Combining (3.20)–(3.22) and using Lemma 3.1 yields
∑

j∈N(n)

2j‖(Δju) ◦ φ‖L∞ ≥ t
∑

j∈N(n)

2j‖ΔjE0‖L∞ −
∑

j∈N(n)

2j‖ΔjE ◦ φ − ΔjE0‖L∞

− Cn− 1
3 (log n)3 − C‖u0‖B1

∞,1

≥ ct(log n)2 −
∑

j∈N(n)

2j‖ΔjE ◦ φ − ΔjE0‖L∞ − Cn− 1
3 (log n)3. (3.23)

Step 2: Upper bound for ΔjE ◦ φ − ΔjE0.
By easy computations

∂xΛ−2[u2u3
x + 2u∂x(u2ux)ux] = ∂xΛ−2[2u2u3

x + ∂x(u3u2
x)]

= 2∂xΛ−2(u2u3
x) + Λ−2(u3u2

x) − u3u2
x,

then we find that

∂tE + u2∂xE = −3
2
(
∂xΛ−2∂t(uu2

x) + u2∂2
xΛ−2(uu2

x)
)

= J +
3
2
(
∂xΛ−2[u2u3

x + 2u∂x(u2ux)ux] + u3u2
x − u2Λ−2(uu2

x)
)

= J + K, (3.24)

where

J = −3
2
∂xΛ−2

(
P1(u)u2

x + P2(u)u2
x + 2∂xP1(u)uux + 2∂xP2(u)uux

)
,

K =
3
2
(
2∂xΛ−2(u2u3

x) + Λ−2(u3u2
x) − u2Λ−2(uu2

x)
)
.
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Utilizing (3.17) to (3.24) yields

ΔjE ◦ φ − ΔjE0 =
∫ t

0

[u2,Δj ]∂xE ◦ φdτ +
∫ t

0

Δj(J + K) ◦ φdτ.

Using the commutator estimate from Lemma 2.2, one has

2j‖[u2,Δj ]∂xE‖L∞ ≤ C
(
‖∂x(u2)‖L∞‖E‖B1∞,∞ + ‖∂xE‖L∞‖u2‖B1∞,∞

)

≤ C‖u‖5C0,1 ≤ Cn− 5
3 (log n)5. (3.25)

Due to the facts

‖Λ−2f‖L∞ ≤ ‖f‖L∞ and ‖∂xΛ−2f‖L∞ ≤ ‖f‖L∞ ⇒ ‖∂2
xΛ−2f‖L∞ ≤ 2‖f‖L∞ ,

then we have

2j‖ΔjJ‖L∞ ≈ ‖∂xJ‖L∞ ≤ C‖u‖5C0,1 ≤ Cn− 5
3 (log n)5. (3.26)

Similarly,

2j‖ΔjK‖L∞ ≤ C‖u‖5C0,1 ≤ Cn− 5
3 (log n)5. (3.27)

Then, we deduce from (3.25)–(3.27) that

2j‖ΔjE ◦ φ − ΔjE0‖L∞ ≤ Cn− 5
3 (log n)5,

which leads to
∑

j∈N(n)

2j‖ΔjE ◦ φ − ΔjE0‖L∞ ≤ Cn− 2
3 (log n)5. (3.28)

Combining (3.23) and (3.28), then for t = 1
log n , we obtain for n � 1

‖u(t)‖B1
∞,1

≥ ‖u(t)‖B1
∞,1(N(n))

=
∑

j∈N(n)

2j‖(Δju) ◦ φ‖L∞

≥ ct(log n)2 − Cn− 2
3 (log n)5 − Cn− 1

3 (log n)3

≥ log log n,

which contradicts the hypothesis (3.19). Thus, Theorem 1.1 is proved. �

4. Discussion

By the Lagrangian coordinate transformation used cleverly in [15] and constructing a new initial data, we
prove that the Novikov equation is ill-posed in critical Besov spaces B1

∞,1(R). Thus our results (Theorem
1.1 and Corollary 1.1) indicate that the local well-posedness and ill-posedness for the Novikov equation
in all critical Besov spaces B

1+1/p
p,r (R) have been solved completely. Since the Novikov equation has cubic

nonlinear term, we expect that norm inflation is stemmed from the worst term u(∂xu)2, which is different
from the quadratic term (∂xu)2 for the Camassa–Holm equation. Our new idea is to construct a initial
data which includes two parts, one of whose Fourier transform is supported at high frequencies and the
other is supported at low frequencies. Then the cubic nonlinear term u(∂xu)2 will generate the low-
high-high frequency interaction, which contributes a large quantity lead to the norm inflation. Lastly, we
should mention that, by dropping the low frequency term, the initial data u0 = n− 1

2 uH
0 can be as an

example which leads to the norm inflation for the Camassa–Holm equation (see Remark 3.1).
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