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Abstract. This work is focused on an accelerated global-in-time solution strategy for the Oseen equations, which highly
exploits the augmented Lagrangian methodology to improve the convergence behavior of the Schur complement iteration.
The main idea of the solution strategy is to block the individual linear systems of equations at each time step into a single
all-at-once saddle point problem. By elimination of all velocity unknowns, the resulting implicitly defined equation can then
be solved using a global-in-time pressure Schur complement (PSC) iteration. To accelerate the convergence behavior of this
iterative scheme, the augmented Lagrangian approach is exploited by modifying the momentum equation for all time steps
in a strongly consistent manner. While the introduced discrete grad-div stabilization does not modify the solution of the
discretized Oseen equations, the quality of customized PSC preconditioners drastically improves and, hence, guarantees a
rapid convergence. This strategy comes at the cost that the involved auxiliary problem for the velocity field becomes ill
conditioned so that standard iterative solution strategies are no longer efficient. Therefore, a highly specialized multigrid
solver based on modified intergrid transfer operators and an additive block preconditioner is extended to solution of the
all-at-once problem. The potential of the proposed overall solution strategy is discussed in several numerical studies as they
occur in commonly used linearization techniques for the incompressible Navier–Stokes equations.
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1. Introduction

To numerically simulate unsteady flow phenomena, a commonly used approach is to first apply some time
integration technique and then solve space-only problems at discrete time instances, which are coupled
forward in time matching the nature of the physical process. This inherently sequential workflow naively
prevents the full potential of today’s supercomputers, which consist of an enormous amount of computing
units tuned to execute many computational tasks in parallel. To circumvent this barrier and increase the
scaling capabilities especially when spatial parallelization techniques saturate, so called parallel-in-time
solution strategies come into play, which parallelize the solution process in time so that the overall time-
to-solution can be further reduced.

One famous representative of this class is Parareal first introduced by Lions, Maday, and Turinici
[17], where the sequential process of time integration is relaxed in an iterative manner by applying
the solution strategy on subintervals in parallel and then synchronizing the auxiliary solutions in an
inexpensive corrector step. This algorithm was first applied to the solution of the incompressible Navier–
Stokes equations in [27,28] using a first order finite volume scheme for space discretization, whereas finite
element and spectral approximations were considered by Fischer, Hecht, and Maday [11]. An extension
of the approach to non-isothermal flows was investigated in [6,20], while Croce, Ruprecht, and Krause
[7] and Steiner et al. [26] focused on the performance of practical implementations and discussed the
influence of the Reynolds number on the convergence behavior. But also other parallel-in-time methods
were successfully applied to the Navier–Stokes equations. For example, the Paraexp algorithm was used
in [15] for rather low viscosity parameters, while Falgout et al. [10] and most recently Christopher et al.
[4,5] studied the influence of MGRIT for the Reynolds-averaged Navier–Stokes equations and in case of
an adaptive space-time mesh refinement strategy, respectively.
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The algorithm discussed in this work for solution of the Oseen equations is based on [8,19] and ac-
celerates the convergence behavior of the all-at-once pressure Schur complement (PSC) solution strategy
presented therein using the augmented Lagrangian (AL) methodology. The latter approach was first
introduced in [14,21] and modifies the momentum equation by means of the residual of the continu-
ity equation. In this way, the solution remains the same, but very accurate and efficiently applicable
PSC preconditioners can be constructed. These preconditioners are most accurate, if already existing
global-in-time PSC preconditioners for the original system are incorporated in the solution process. In
this work, global-in-time extensions of commonly used preconditioners like the pressure convection diffu-
sion (PCD) [8,19] and the least squares commutator (LSC) preconditioner [19] are considered for these
purposes. The resulting solution strategy then converges rapidly to the solution of the Oseen equations
even without the need of a coarse grid correction as proposed by the authors in [19].

Unfortunately, the AL methodology also comes with a disadvantage: The velocity problem involved in
each Schur complement iteration becomes ill conditioned as more stabilization is introduced due to the
fact that a singular matrix is added. Therefore, commonly used solution strategies fail for this problem
and highly specialized versions are mandatory for an efficient solution algorithm. For example, Benzi and
Olshanskii [2] and Schöberl [24] introduced a geometric multigrid approach with an adapted relaxation
and intergrid transfer for triangular meshes. In this work, an extension to quadrilateral meshes [25] based
on the Q2-P1 finite element (FE) discretization is combined with the multigrid waveform relaxation
method developed by [18] for efficiently solving the aforementioned global-in-time velocity problems.

The contents of the following sections are as follows: The unsteady incompressible Navier–Stokes
equations are introduced in Sect. 2. The problem is then discretized in space and time to construct a
global-in-time problem for the solution at all time instances (cf. Sect. 3). Section 4 summarizes the pressure
Schur complement solver as presented in [19]. This approach is extended by the augmented Lagrangian
methodology in Sect. 5 and numerically investigated in several linear and nonlinear test cases in Sect. 7.
The work concludes in Sect. 8 with a discussion of future challenges, especially for convection-dominated
fluid flows.

2. Continuous Setting

The flow of a viscous and incompressible fluid through a domain Ω ⊂ R
d, d = 2, 3, can be described by

the incompressible Navier–Stokes equations

∂v
∂t

+ (v · ∇)v − ∇ · (
2μ(γ̇(v))D(v)

)
+ grad(p) = g, (1a)

div(v) = 0, (1b)

where v ∈ R
d and p ∈ R denote the unknown velocity field and pressure variable, respectively. Here, the

body force density acting on the fluid is given by g ∈ R
d, while the dynamic viscosity μ > 0 may depend

nonlinearly on the effective shear rate γ̇ =
√

2
∥
∥D(v)

∥
∥
F

of the strain rate tensor D(v) = 1
2 (∇v + ∇v�).

In the special case of a Newtonian fluid, the viscosity parameter μ is constant so that the viscous part of
the momentum equation (1a) simplifies to −μΔv due to the validity of the continuity equation (1b).

In the literature, there exist several different numerical solution techniques for problem (1). One
common approach is to first apply a linearization technique, such as the Picard iteration or Newton’s
method, and then solve the resulting Oseen equations in each nonlinear iteration. For the former approach,
the linearized system of partial differential equations reads

∂v
∂t

+ (v̄ · ∇)v − ∇ · (
2μ(γ̇(v̄))D(v)

)
+ grad(p) = g, (2a)

div(v) = f (2b)

for some known initial guess v̄ and a vanishing right hand side f = 0 of the continuity equation. In case
of Newton’s method, the solution update solves (2) for the right hand sides g and f corresponding to the
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residuals of the momentum and continuity equations, respectively, while the additional term

R(v̄;v) = (v · ∇)v̄ − ∇ ·
(
4μ′(γ̇(v̄))γ̇(v̄)−1

(
D(v̄) : D(v)

)
D(v̄)

)

is involved in the definition of the momentum equation (2a). This linearization technique can signifi-
cantly improve the nonlinear convergence behavior compared to the Picard iteration if the initial guess
is sufficiently good. In the numerical examples, we therefore focus on test problems for the linear Os-
een equations as occurring in the Picard iteration as well as on the nonlinear convergence behavior of
Newton’s method.

3. Global-in-Time Discrete Oseen Problem

In this section, we discretize the Oseen equations in space and time and construct a global linear sys-
tem of equations to compute the numerical approximation in all time instances simultaneously. For this
purpose, the problem is discretized in space using the isoparametric Q2-P1 FE pair, where each compo-
nent of the velocity field is approximated by a continuous and piecewise biquadratic function while the
pressure space is given by all piecewise linear functions on a quadrilateral mesh [1]. As we will see, this
discretization technique allows the construction of efficient pressure Schur complement solvers using the
augmented Lagrangian methodology and provides several advantages compared to an Taylor-Hood FE
pair as considered in [19].

After discretization in space, the linear system of ordinary differential equations reads

Muu̇(t) + Au(t)u(t) + Bp(t) = g(t), B�u(t) = f(t) (3)

where u(t) ∈ R
Nu , Nu ∈ N, and p(t) ∈ R

Np , Np ∈ N, are the time-dependent vectors of degrees of freedom
associated with the velocity field and pressure variable, while g(t) ∈ R

Nu and f(t) ∈ R
Np correspond to

the right hand sides of the momentum and continuity equation. The velocity mass matrix Mu ∈ R
Nu×Nu

is computed using the Simpsons rule and is therefore diagonal. Furthermore, the matrices B ∈ R
Nu×Np

and B� ∈ R
Np×Nu are the discrete counterparts of the gradient and divergence operator, respectively,

while all other contributions to the momentum equation are summarized in Au(t) ∈ R
Nu×Nu .

To numerically approximate the solution to (3), we eventually apply the Crank-Nicolson scheme for
time integration, where the time step size δt > 0 is assumed to be constant for the sake of simplicity.
Then the approximations u(n+1) ≈ u

(
(n + 1)δt

)
and p(n+1) ≈ p

(
(n + 1

2 )δt
)

solve the linear system of
equations (c.f. [29])

A(n+1)
i u(n+1) + δtBp(n+1) = δt

2 (g(n+1) + g(n)) − A(n)
e u(n), (4a)

B�u(n+1) = f(n+1) (4b)

at each time step n = 0, . . . ,K, where K ∈ N denotes the total number of time steps and the system
matrices A(n+1)

i and A(n)
e are defined by

A(n+1)
i = Mu + δt

2 A(n+1)
u , A(n)

e = −Mu + δt
2 A(n)

u .

Compactly written, the velocity field u(n+1) and the scaled pressure unknown p̃(n+1) = δtp(n+1) solve the
saddle point problem

(
A(n+1)

i B
B�

)(
u(n+1)

p̃(n+1)

)
=

(
g̃(n+1) − A(n)

e u(n)

f(n+1)

)
, n = 0, . . . , K (5)

using the right hand side g̃(n+1) = δt
2 (g(n+1) + g(n)). The solution of this system is usually advanced

in time step-by-step due to the fact that the solution (u(n+1), p̃(n+1)) depends on the previous velocity
field u(n). To circumvent this barrier and provide the possibility to parallelize the solution procedure
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in time, we treat all K time steps simultaneously and block the individual subproblems into a single
all-at-once system of equations

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(1)
i B

A(1)
e A(2)

i B
.. . . . . . . .

A(K−1)
e A(K)

i B
B�

B�

. . .
B�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(1)

u(2)

...
u(K)

p̃(1)

p̃(2)

...
p̃(K)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g̃(1) − A(0)
e u(0)

g̃(2)
...

g̃(K)

f(1)

f(2)
...

f(K)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6)

Obviously, problem (6) is equivalent to (5) and, hence, leads to the same velocity and pressure solution
at all time steps. However, efficient and very robust solution techniques have to be applied to reduce
the overall computational time compared to a sequential solution procedure. In the following section, a
PSC approach is described, whose convergence behavior can significantly be improved by exploiting the
augmented Lagrangian methodology.

4. Global-in-Time Pressure Schur Complement Iteration

In this section, we briefly summarize the PSC solution technique for the global-in-time saddle point
problem (6) as it is described in [8,19]. For this purpose, we interpret the linear system of equations as
a blocked saddle point problem (

AK BK

B�
K 0

)(
u
p̃

)
=

(
g̃
f

)
, (7)

where all involved quantities are defined as expected. Multiplying the first equation of (7) by A−1
K and

inserting the resulting expression for the velocity field u = A−1
K (g̃ − BK p̃) into the discrete counterpart

of the continuity equation, we obtain the PSC equation

B�
KA−1

K BK p̃ = B�
KA−1

K g̃ − f (8)

for the unknown global-in-time pressure variable p̃ only. Unfortunately, the involved PSC matrix PK =
B�

KA−1
K BK is generally a dense matrix and, hence, practically impossible to compute. Therefore, iterative

solution techniques are commonly exploited to solve this problem without explicitly knowing the entries
of the system matrix PK . For example, the preconditioned Richardson iteration reads

p̃ �→ p̃ + q, q = C−1
K

(
B�

KA−1
K (g̃ − BK p̃) − f

)
(9)

for some initial guess p̃ while C−1
K is a suitable approximation to the inverse of PK . In each iteration of the

solution procedure, a global linear system of equations has to be solved for computation of the auxiliary
velocity field ũ = A−1

K (g̃ − BK p̃). This quantity approximates the exact velocity solution of (7) if the
norm of the global-in-time PSC residual r = B�

K ũ− f is sufficiently small. While the efficient solution of
the velocity problem is (partially) discussed in Sect. 6, we now define three possible preconditioners C−1

K ,
where the first two have in common that they are exact for infinitely small time step sizes δt while all
three can be applied very efficiently to the space-time problem under investigation.

PCD preconditioner The first candidate of a Schur complement preconditioner is a global-in-time coun-
terpart of the pressure convection diffusion (PCD) preconditioner [16] and was first introduced by Danieli,
Southworth, and Wathen [8]. Compactly written, the preconditioner has the form [19]

C−1
K = (IK ⊗ M−1

p )AK,p(IK ⊗ D̂−1
p ), (10)
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where AK,p is a suitable approximation of AK defined in the pressure FE space, while Mp ∈ R
Np×Np

and D̂p ∈ R
Np×Np denote the pressure mass matrix and pressure Poisson matrix, respectively. According

to the use of a discontinuous pressure approximation, the latter matrix is readily not defined. However, a
mixed formulation of the Poisson problem can be used to justify the choice of D̂p = B�M−1

u B. Note that
this matrix can be explicitly determined due to the fact that Mu is computed using the Simpsons rule and
is therefore diagonal. For further details on the derivation and application of the PCD preconditioner, we
refer to [8,19].

LSC preconditioner An all-at-once extension of the least-squares commutator (LSC) preconditioner [22]
is defined by [19]

C−1
K =

(
IK ⊗ (D̂−1

p B�M−1
u )

)
AK

(
IK ⊗ (M−1

u BD̂−1
p )

)
. (11)

This preconditioner explicitly exploits the definition of the system matrix AK and, hence, can be applied
to more general Oseen equations where different components of the velocity field possibly interact with
each other. This fact is especially of interest when the deformation tensor is used in the definition of
the momentum equation or Newton’s method is applied to linearize the incompressible Navier–Stokes
equations. In case of the PCD preconditioner, a practically well-established workaround is to simply
neglect these terms.

Uzawa preconditioner For a constant viscosity parameter μ and sufficiently large time increments, it is
easy to show that the inverse of the PSC matrix PK is spectrally equivalent to

C−1
K = δt

2 μ

⎛

⎜
⎜
⎜
⎝

M−1
p

M−1
p M−1

p

. . . . . .
M−1

p M−1
p

⎞

⎟
⎟
⎟
⎠

= δt
2 μ

⎛

⎜
⎜
⎜
⎝

1
1 1

. . . . . .
1 1

⎞

⎟
⎟
⎟
⎠

⊗ M−1
p .

However, for small up to moderate time step sizes, this approximation is quite bad and, hence, will be
considered only briefly in the below numerical examples.

At this point, we emphasize that all preconditioners can be applied very efficiently on modern hardware
architectures due to the fact that all involved global linear systems of equations can be decomposed into
K independent subproblems. The spatial system matrices to be inverted therein are the same over the
whole time interval, so each global problem is equivalent to a single space-only problem with K right hand
sides. This allows the use of very efficient solution strategies based on vector operations with reduced
data communication.

5. Augmented Lagrangian Methodology

In the previous section, we summarized the idea of a global-in-time pressure Schur complement iteration,
which solves the discretized Oseen equations for all time steps simultaneously. The involved precondition-
ers for the pressure-only problem are designed as straightforward extensions of their sequential counter-
parts and provide a high degree of parallelism. However, we will observe in Sect. 7 that the convergence
behavior of this basic Schur complement iteration is quite slow and even deteriorates as the spatial res-
olution increases or more and more time steps are blocked. To improve the solution methodology, the
authors proposed in [19] the incorporation of a coarse grid correction in the framework of a hierarchical
multigrid approach. While this technique relaxes the dependency of the rate of convergence on the above
mentioned discretization parameters, the efficient solution of the resulting coarse grid problem is still an
unsolved problem.

In this work, we extend the PSC iteration by the augmented Lagrangian methodology. The approach
was originally developed independently by Hestenes [14] and Powell [21] and aims to improve the conver-
gence behavior without the need of a coarse grid correction by modifying the discrete momentum equation
in a strongly consistent manner. This guarantees that the solution of the discrete problem remains the
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same, while (theoretically) arbitrarily accurate PSC preconditioners can be constructed. The success of
this technique is due to the Sherman-Morrison-Woodbury identity [13]

(A + γUCV)−1 = A−1 − A−1U(γ−1C−1 + VA−1U)−1VA−1 (12)

holding true for any invertible matrices A, C, and C−1 + VA−1U while γ is some positive parameter.
Roughly speaking, equation (12) describes the influence of a (possibly singular) perturbation on the
inverse of a non-singular matrix in an additive fashion. If A is chosen as a spatial system matrix Ai (we
drop the superscript (n + 1) for the time being) and the identity is multiplied from left and right by B�

and B, respectively, the first expression on the right hand side of (12) coincides with the PSC matrix of (5)
while the left hand side is the PSC matrix using a modified system matrix Ai,γ = Ai +γUCV. Therefore,
the PSC matrix Pi,γ = B�A−1

i,γB is the sum of Pi = B�A−1
i B and some additive term. The crucial

question is now how to define the matrices U, V, and C so that the inverse of Pi,γ can be approximated
more accurately than the inverse of Pi while at the same time the action of the approximation can be
applied very efficiently. One possibility is the choice of U = B, V = B�, and C = δtM−1

p , which does not
even extend the sparsity pattern of the system matrix Ai due to the special choice of a discontinuous
pressure FE space. For this definition, simple algebraic manipulations and another application of the
Sherman-Morrison-Woodbury identity (12) lead to the ingenious identity (cf. [30, Lemma 5.2])

P−1
i,γ = P−1

i + γδtM−1
p .

Thus, the inverse of Pi,γ converges to γδtM−1
p as γ increases. This additive term can be applied exactly and

does not need to be approximated in any way due to the fact that Mp is block-diagonal. This guarantees
that very accurate approximations C−1

i,γ = C−1
i +γδtM−1

p of P−1
i,γ can be constructed by adapting the value

of γ even if the approximation C−1
i of P−1

i is quite inexact. However, adding γδtBM−1
p B� to the system

matrix Ai generally modifies the solution of the saddle point problem, which is especially not acceptable
for large values of γ. This downside can be avoided by simultaneously adapting the right hand side of the
momentum equation in a strongly consistent way. More precisely, we replace (5) by

(
A(n+1)

i,γ B
B�

)(
u(n+1)

p̃(n+1)

)
=

(
g̃(n+1)

γ − A(n)
e u(n)

f(n+1)

)
(13)

using the velocity system matrix A(n+1)
i,γ = A(n+1)

i +γδtBM−1
p B� and the modified right hand side g̃(n)γ =

g̃(n) + γδtBM−1
p f(n). Then the first equation of (13) reads

A(n+1)
i u(n+1) + Bp̃(n+1) = g̃(n+1) − A(n)

e u(n) + γδtBM−1
p (f(n+1) − B�u(n+1))

︸ ︷︷ ︸
=0

,

where the last expression vanishes due to the fact that B�u(n+1) = f(n+1) is satisfied by the second
equation. Therefore, the saddle point problem (13) is equivalent to (5) while the inverse of its PSC matrix
can be approximated very efficiently for large values of γ.

The augmented Lagrangian methodology described above can readily be extended to the global-in-
time saddle point problem (6). In this case, only the block-diagonal of AK is modified and results in the
all-at-once linear system of equations

(
AK + γδtBKM−1

K,pB
�
K BK

B�
K 0

)(
u
p̃

)
=

(
g̃ + γδtBKM−1

K,pf
f

)
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: ⇐⇒

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(1)
i,γ B

A(1)
e A(2)

i,γ B
.. . . . . . . .

A(K−1)
e A(K)

i,γ B
B�

B�

. . .
B�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(1)

u(2)

...
u(K)

p̃(1)

p̃(2)

...
p̃(K)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g̃(1)γ − A(0)
e u(0)

g̃(2)γ

...
g̃(K)

γ

f(1)

f(2)
...

f(K)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where MK,p = IK ⊗ Mp denotes the global-in-time pressure mass matrix. Using the same argumentation
as above, we conclude that the inverse of the all-at-once PSC matrix can be approximated by

P−1
K,γ = P−1

K + γδtM−1
K,p ≈ C−1

K + γδtM−1
K,p =: C−1

K,γ ,

where C−1
K is an approximation to P−1

K and might be chosen as discussed in Sect. 4.

6. Global-in-Time Velocity Solver

While the augmented Lagrangian approach is a promising stabilization technique to improve the con-
vergence behavior of the Schur complement iteration, the involved subproblems for computing auxiliary
velocity fields become arbitrarily ill conditioned (cf. [25]). This is caused by a singular matrix added
to the original velocity system matrix, which becomes more dominant as the AL parameter increases.
Therefore, tailor-made solution techniques have to be constructed, which handle these instabilities in a
robust and efficient manner. In this section, we present a candidate for solution of the all-at-once velocity
problems, which might be stabilized using the augmented Lagrangian technique. The described approach
combines the multigrid waveform relaxation method developed by [18] with a highly specialized multigrid
solver proposed in [25], which by itself is inspired by [2,24].

In each step of the PSC iteration (9), a global-in-time linear system of equations for the auxiliary
velocity field ũ must be solved, which has the general form

AK,γu = h : ⇐⇒

⎛

⎜
⎜
⎜
⎜
⎝

A(1)
i,γ

A(1)
e A(2)

i,γ

. . . . . .
A(K−1)

e A(K)
i,γ

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

u(1)

u(2)

...
u(K)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

h(1)

h(2)

...
h(K)

⎞

⎟
⎟
⎟
⎠

. (14)

Problem (14) can be interpreted as a space-only problem for vector-valued unknowns, where each spatial
degree of freedom consists of the velocity solutions associated with the corresponding spatial basis func-
tion at all time steps. Using this notation, the multigrid waveform relaxation method is nothing else than
a space-only multigrid technique applied to the space-only problem so that each time step is treated in
the same manner. If the multigrid technique exploits a Jacobi smoother, the whole algorithm is also called
time-simultaneous multigrid technique [9] and the linear system of equations involved in the relaxation
step decomposes into independent subproblems for each spatial degree of freedom. Although this solution
algorithm performs very well for diffusion-dominated test cases, we will see that the convergence behav-
ior drastically deteriorates as the AL parameter γ increases. Therefore, we combine this global-in-time
solution technique with the highly specialized multigrid algorithm proposed in [25], which is tailor-made
for space-only problems stabilized by the augmented Lagrangian methodology. More precisely, we replace
the intergrid transfer operators as well as the block Jacobi smoother by customized versions, which are
based on solutions to many independent subproblems on local patches. For its precise definition, we first
summarize the main components of the solution process as proposed in [25] for a space-only linear system
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of equations
Ai,γu = (Ai + γδtBM−1

p B�)u = h (15)

using some (spatial) system matrix Ai,γ ∈ R
Nu×Nu , the unknown solution u ∈ R

Nu , and the right hand
side vector h ∈ R

Nu .

Space-only Smoother The relaxation method presented in [25] is based on an additive block precon-
ditioner, where local subproblems for each spatial node of the triangulation have to be solved. More
precisely, the subproblems refer to the parts of the linear system of equations Ai,γu = h whose degrees
of freedom are associated with points in the interior of nodal patches. For their definition, we introduce
the subset �j ⊆ Ω as the composition of all elements Ke containing mesh node xj , i.e.,

�j =
⋃

e, xj∈Ke

Ke, j ∈ {1, . . . , Nn},

where Nn ∈ N is the total number of mesh nodes. Then the index set Nj is defined as

Nj =
{
k ∈ {1, . . . , Nu} : x̃k ∈ �̊j

}
, j ∈ {1, . . . , Nn},

where x̃1, . . . , x̃Nu
are the locations associated with the biquadratic basis functions ϕ1, . . . , ϕNu

of the
velocity FE space, i.e., ϕj(x̃k) = δjk, and �̊j is the interior of �j , i.e., �̊j = �j\∂�j . Now the additive
block preconditioner D−1

i ≈ A−1
i,γ solves local subproblems for the degrees of freedom in Nj and sums up

the local solutions for all spatial nodes of the mesh, i.e.,

D−1
i =

Nn∑

j=1

Ij(I�
j Ai,γIj)−1I�

j . (16)

Here, the injection operator Ij ∈ R
Nu×|Nj | maps a vector of unknowns associated with the local patch �j

to a vector of global degrees of freedoms and introduces zero entries in components that are not included
in Nj . Note that all degrees of freedoms associated with cells or edges of the mesh are treated several
times and the updates are not averaged in the gathering progress.

Space-only intergrid transfer For definition of the specialized intergrid transfer operators, let P be the
prolongation operator naturally induced by the Q2 FE space. This quantity should not be mixed up
with the PSC matrices Pi,γ and Pi introduced in previous sections. Then the robust intergrid transfer
operators are defined by

P̃ =
[
I −

( N̄e∑

j=1

Ij(I�
j Ai,γIj)−1I�

j

)
(γδtBM−1

p B�)
]
P, R̃ = P̃

�
(17)

where x1, . . . , xN̄e
are assumed to be the nodes of the fine mesh which are located in the interior of the

elements of the coarse grid. This definition is consistent in the way that P = P̃ holds true for γ = 0.
Furthermore, the local subproblems occurring in the definition of P̃ are also involved in the definition
of D−1

i and, hence, may only need to be computed once.
We now extend the relaxation technique as well as the intergrid transfer operators to the global-in-time

problem (14), so they can be exploited in the context of multigrid waveform relaxation.

Global-in-time smoother The additive block preconditioner (16) is extended to the all-at-once problem
by solving subproblems on local patches for all time steps simultaneously without synchronizing the
solutions in between. This guarantees that all subproblems can be solved independently of each other
and preserves the methodology of the time-simultaneous (multigrid) approach providing a high degree of
parallelization. In detail, the additive block preconditioner reads

D−1
K =

Nn∑

j=1

(IK ⊗ Ij)
(
(IK ⊗ Ij)AK(IK ⊗ I�

j )
)−1(IK ⊗ I�

j ).
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Fig. 1. Computational domain including partition of boundary and triangulation on coarsest mesh level 0

In the numerical examples presented below, this preconditioner is embedded into the GMRES method
without restart to increase the robustness of the solution strategy.

Global-in-time intergrid transfer The robust space-time prolongation and restriction operators are given
by

P̃K =

⎛

⎜
⎜
⎜
⎝

P̃(1)

P̃(2)

. . .
P̃(K)

⎞

⎟
⎟
⎟
⎠

, R̃K = P̃�
K

exploiting the sequential versions of the robust intergrid transfer operators as defined in (17). In contrast
to the relaxation scheme, these operators only use the block diagonal entries of AK , but must be assembled
for each time step individually. This makes the customized grid transfer more expensive than the one
naturally induced by the FE space.

7. Numerical Examples

In this section, we solve several numerical test problems using the augmented Lagrangian technique to
accelerate the convergence behavior of the pressure Schur complement iteration as described in Sect. 4.
This iterative solver is embedded into a GMRES method, which is restarted after four inner iterations.
To quantify the efficiency of the solver at hand, the total number of inner iterations is counted. This
value (approximately) measures how often the implicitly defined system matrix and the involved Schur
complement preconditioner are applied till a certain tolerance in accuracy is reached for a vanishing initial
guess.

The numerical examples are computed on the ‘flow around a cylinder’ domain as illustrated in Fig. 1,
where all external forces are set to zero. Furthermore, homogeneous Neumann (‘do nothing’) boundary
conditions are prescribed on Γout = ∂Ω\(Γin ∪ Γwall) while no slip boundary conditions are enforced on
Γwall. Therefore, the dynamics of the fluid are solely governed by the inflow boundary data

vin = U(t)
4y(0.41 − y)

0.412

(
1
0

)
, U(t) = U0

∣
∣sin

(
π
8 t

)∣∣, U0 = 0.3 on Γin

and the initial data v0 = 0 of the velocity field v (cf. [19]).
As mentioned above, the problem is discretized in space using the Q2-P1 FE pair, while the time

integrator is given by the Crank-Nicolson scheme using a fixed time step size of δt = 1
25 · 2−lvl, where

lvl ∈ {0, . . . , 5} denotes the number of uniform refinements of the triangulation at hand (cf. Fig. 1). Note
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Fig. 2. Stokes problem: History of norm of preconditioned PSC residual evaluated using different AL parameters γ̃ for
PCD preconditioner on mesh level 2 for 800 blocked time steps

that the convergence behavior of the iterative solution strategy using the PCD or LSC preconditioner
can be significantly improved by choosing smaller time increments because these preconditioners then
become more accurate. However, this property of the solver will not be investigated in this work and we
refer to [19] for numerical results in this regard.

7.1. Stokes Problem

The first test case is given by the Stokes problem, where no convective contribution is involved in the
definition of the momentum equation and the viscosity parameter is fixed to μ = 10−2. In this case, we
first discuss the influence of the AL parameter on the norm of the PSC residual (for a fixed solution)
to define a reasonable stopping criterion for the iterative solution procedure. Figure 2 illustrates the
convergence behavior of the GMRES method for the PCD preconditioner and different values of γ, where
the preconditioned PSC residual is evaluated using another choice of the AL parameter, denoted by γ̃.
While a rapid convergence can be observed for all considered variants of the PSC residual if γ is chosen
sufficiently large, the relative norm of the preconditioned PSC residual depends only marginally on γ̃.
Thus, this quantity seems to be an adequate measure for the quality of the solution and reducing it
by a certain value is a reasonable stopping criterion. Fortunately, the preconditioned PSC residual is
already determined in GMRES implementations frequently used in the literature so that no additional
computations are required. In all linear test cases considered in this work, the GMRES method therefore
terminates if ∥

∥
∥C−1

K

(
B�

KA−1
K (g̃ − BK p̃) − f

)∥∥
∥
2

< tolrel
∥
∥
∥C−1

K

(
B�

KA−1
K g̃ − f

)∥∥
∥
2

(18)

is satisfied for a tolerance of tolrel = 10−11.
In Table 1, the total number of (inner) iterations required to reach this stopping criterion is summa-

rized for different PSC preconditioners. As expected, this value decreases for all solution strategies under
investigation as γ increases. However, the GMRES method exploiting the Uzawa preconditioner is not
competitive with the other algorithms for moderate choices of the AL parameter γ because this precon-
ditioner approximates the inverse of the PSC matrix PK less accurately. Although only (block-diagonal)
pressure mass matrices have to be inverted for its application, each GMRES iteration is still costly due
to the fact that an auxiliary velocity field must be computed whenever the PSC residual is determined.
This makes the Uzawa preconditioner less interesting in practical applications and explains why it is not
considered further in the following investigations.

Next, we vary the total number of blocked time steps K and discuss its influence on the convergence
behavior for the Stokes problem (cf. Fig. 3). While the GMRES method using the PCD preconditioner
requires more and more iterations as the length of the time interval increases, the rate of convergence for
the LSC preconditioner seems to be bounded above independently of this value even for the unstabilized



JMFM Augmented Lagrangian Acceleration of Global Page 11 of 18 27

Table 1. Stokes problem: total number of iterations on mesh level 2 for 800 blocked time steps and different
PSC preconditioners

Preconditioner\γ 10−1 100 101 102 103 104

PCD precon. 31 20 9 6 4 3
LSC precon. 63 36 18 7 5 3
Uzawa precon. 21323 2198 314 48 12 6

Fig. 3. Stokes problem: total number of iterations on mesh level 0 for different numbers of blocked time steps

Table 2. Stokes problem: total number of iterations on different mesh levels for 800 blocked time steps

PCD preconditioner LSC preconditioner

lvl \γ 0 10−1 100 101 102 103 0 10−1 100 101 102 103

0 102 48 25 9 6 4 40 23 16 9 5 4
1 76 35 23 9 6 4 66 39 26 13 6 4
2 65 31 20 9 6 4 102 63 36 18 7 5
3 48 22 17 9 6 4 155 96 49 25 9 5
4 37 20 14 9 6 5 219 139 67 36 12 6
5 30 17 12 9 6 5 280 190 100 46 17 7

Schur complement equation. However, introduction of AL stabilization significantly reduces the total
number of iterations and especially relaxes the dependency on K for the PCD preconditioner.

The same behavior can be observed for the solution technique using the LSC preconditioner as the
spatial resolution increases, as shown in Table 2. While the convergence behavior deteriorates on finer
meshes, the influence becomes less significant for larger values of γ. In contrast to this, the algorithm
exploiting the PCD preconditioner even improves as the spatial resolution increases. However, a rapid
convergence can be observed for both preconditioners only for a great amount of AL stabilization.

7.2. Oseen Problem for Newtonian Fluid

After investigating the Stokes equations, we now add convectivity to the definition of the momentum
equation and study the resulting Oseen problem for two different viscosity parameters, namely μ = 10−2

and μ = 10−3. In these cases, the velocity field involved in the convective contribution is set to the
solution of the incompressible Navier–Stokes equations (1), so the linear problem at hand coincides with
the final Picard iteration to solve the underlying nonlinear problem. Although no vortex shedding is to
be expected behind the cylinder for both viscosity parameters as the Reynolds number does not exceed
Re = 2 or Re = 20 (cf. [23]), the convective contribution is more dominant for μ = 10−3 and significantly
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Table 3. Oseen problem for Newtonian fluid: total number of iterations

μ = 10−2 μ = 10−3

K lvl \γ 0 10−1 100 101 102 103 0 10−1 100 101 102 103

(a) PCD preconditioner
100 0 41 24 18 10 5 4 88 19 12 7 5 3
100 2 29 17 12 10 6 4 20 9 8 7 5 4
100 4 25 13 9 8 7 5 17 8 7 6 5 4
400 0 106 56 27 10 6 4 – 31 14 7 5 3
400 2 48 24 18 9 6 4 – 19 12 7 5 3
400 4 35 17 12 9 6 5 26 9 8 7 5 4
1600 0 706 102 33 10 6 4 – 63 16 7 5 3
1600 2 104 54 26 10 6 4 – 29 15 7 5 4
1600 4 53 23 18 9 6 5 – 19 13 7 5 4
(b) LSC preconditioner
100 0 31 21 12 8 5 4 24 9 6 5 4 3
100 2 71 47 24 15 8 5 30 16 9 7 5 3
100 4 99 75 43 19 12 6 43 22 14 8 6 4
400 0 34 22 15 9 5 4 33 10 7 5 4 3
400 2 87 57 30 17 7 5 41 20 11 8 5 4
400 4 168 114 60 33 12 6 67 36 16 11 6 4
1600 0 35 22 15 9 5 4 43 10 7 5 4 3
1600 2 100 64 40 18 8 5 51 23 16 8 5 4
1600 4 254 160 75 38 12 6 100 47 23 13 6 4

affects the convergence behavior of the GMRES method (cf. Table 3). Without any AL stabilization, the
total number of inner iterations using the PCD preconditioner increases as more and more time steps are
blocked. This dependency becomes more dominant as the viscosity parameter goes to zero and possibly
even leads to a non-converging solution procedure. For the LSC preconditioner, this effect is reversed
and the solver tends to improve for smaller viscosity parameters. However, more and more iterations are
required as the spatial resolution increases, which perfectly fits the observations for the Stokes equations.

These dependencies become less significant as AL stabilization is introduced in the solution procedure
and the total number of inner GMRES iterations goes to zero as γ increases for all configurations under
investigation. In case of the largest value of the AL parameter γ = 103, only 3 − 6 iterations are required
to solve the linear system of equations. In this case, the use of the PCD preconditioner seems to be
preferable due to the fact that its application is two times less expensive than the application of the
LSC preconditioner (cf. [19]).

7.3. Oseen Problem for Carreau–Yasuda Viscosity Model

In the final linear test problem, the Newtonian fluid rheology exploiting a constant viscosity parameter μ
is replaced by a non-Newtonian one as described by the Carreau–Yasuda model [31]

μ(γ̇) = μ∞ + (μ0 − μ∞)
(
1 + (λγ̇)a

)(n−1)/a
. (19)

This nonlinear definition of the viscosity parameter simplifies to the well-known Carreau model [3] for
a = 2 and simulates shear thinning effects for n < 1. In the following numerical studies, the other material
parameters are chosen as μ∞ = 0, λ = 1, and n = 0.31, while the maximum viscosity parameter μ0

is set to 10−2 and 102 leading to an effective viscosity parameter μ(γ̇) ∈ [0.0004, 0.01] and μ(γ̇) ∈
[5.8126, 100], respectively, as it might occur in the flow behavior of thermoplastics. Therefore, the ratio
between the maximum and minimum viscosity parameters is approximately the same and only the type
of nonlinearity changes by modifying μ0. Another consequence of the varying viscosity parameter is the
fact that the viscous part of the momentum equation does not simplify to μΔv. Therefore, different
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Table 4. Oseen problem for Carreau–Yasuda viscosity model: total number of iterations for LSC preconditioner

μ0 = 10−2 μ0 = 102

K lvl \γ 0 10−1 100 101 102 103 0 103 104 105 106 107

100 0 32 16 10 7 5 4 30 16 12 7 5 4
100 2 65 28 17 13 7 5 49 44 36 14 7 4
100 4 94 58 36 18 12 6 154 148 110 37 10 5
400 0 42 19 13 8 5 4 30 17 12 7 5 4
400 2 78 33 22 14 7 5 60 45 36 14 7 4
400 4 106 75 40 28 12 6 221 166 126 34 10 6
1600 0 44 19 13 8 5 4 30 17 12 7 5 4
1600 2 86 43 32 15 7 5 60 46 36 14 7 4
1600 4 159 89 52 29 12 6 236 185 127 33 10 6

components of the velocity field are coupled with each other even in case of the Picard iteration and only
the LSC preconditioner is readily applicable to this fluid rheology.

In Table 4, the total number of inner GMRES iterations is summarized for this preconditioner and
different amounts of AL stabilization. As already observed in the previous test problems, the total number
of iterations required to reach the stopping criterion grows on finer meshes, while the length of the time
horizon has only a minor influence on the rate of convergence. As μ0 increases, solution of the Oseen
problem becomes more expensive on mesh level 4. For both values of μ0, however, the total number of
iterations can be drastically reduced by introducing AL stabilization and goes down to 4 − 6 for the
considered values of γ. Note that the range of AL parameters is shifted by four orders of magnitude for
μ0 = 102 compared to μ0 = 10−2 to achieve a similar effect in the convergence behavior. Therefore, the
amount of required AL stabilization to significantly reduce the number of GMRES iterations is mainly
coupled to the viscous term of the momentum equation for this test case.

7.4. Nonlinear Carreau–Yasuda Viscosity Model

So far, only linear test problems were studied as they occur in the final iteration of a Picard iteration
for solution of the incompressible Navier–Stokes equations. However, this nonlinear solver converges only
slowly to the solution, especially for the considered space-time problems (cf. [19]), so more efficient
linearization techniques are required to outperform sequential solution strategies. In case of Newton’s
method, additional terms must be considered in the definition of the momentum equation resulting in
a stronger coupling between different components of the velocity field. However, the above mentioned
linear Schur complement iteration as well as the augmented Lagrangian methodology are still applicable
in this case and result in an efficient solution strategy as we will see in this section.

To analyse the nonlinear convergence for (an inexact) Newton’s method, we again solve the incom-
pressible Navier–Stokes equations for the Carreau–Yasuda viscosity model and the maximum viscosity
coefficient μ0 = 102. Firstly, all involved linear subproblems are solved exactly to illustrate the per-
formance of Newton’s method and measure the minimum number of nonlinear iterations required for
this test problem. In Fig. 4, the nonlinear convergence behavior is illustrated for different values of the
AL parameter by plotting the norm of the (unpreconditioned) PSC residual. Due to the fact that the
AL stabilization does not modify the solution of the Oseen equations, the nonlinear convergence behav-
ior is exactly the same for all AL parameters under investigation. However, the norm of the residual is
shifted for different values of γ and may lead to an inaccurate solution caused by ill-conditioned problems
if γ is chosen too large. Therefore, the AL parameter cannot practically be chosen too large without
compromising the accuracy of the solution.

The exact Oseen solver is now replaced by the above mentioned GMRES method based on the Schur
complement equation and the augmented Lagrangian approach, while the (inexact) Newton method is
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Fig. 4. Carreau–Yasuda problem for μ0 = 102: History of norm of PSC residual for Newton’s method on mesh level 2
using 800 blocked time steps

Table 5. Carreau–Yasuda problem for μ0 = 102: total number of nonlinear (left column) and linear (right column)
iterations on mesh level 2 for 800 blocked time steps and different linear stopping criteria

0 103 104 105 106 107

tolrel\γ Nonl. Lin. Nonl. Lin. Nonl. Lin. Nonl. Lin. Nonl. Lin. Nonl. Lin.

10−1 14 69 14 54 12 38 12 17 10 10 10 10
10−2 10 96 10 55 11 47 10 17 10 10 10 10
10−3 11 156 10 77 10 56 10 22 10 13 10 10
10−4 10 186 10 102 10 68 10 29 10 17 10 13
10−5 10 239 10 120 10 87 10 36 10 23 10 16
10−6 10 287 10 148 10 101 10 42 10 24 10 21
10−7 10 341 10 179 10 120 10 53 10 33 10 23

stopped if the relative norm of the PSC residual is smaller than 10−10. In contrast to the above investi-
gations for linear test problems, different relative tolerances tolrel are used in the stopping criterion (18)
to determine the most efficient overall solution strategy.

In Table 5, the number of nonlinear Newton steps as well as the total number of inner GMRES itera-
tions are summarized for different values of γ and tolrel. For an overresolved computation of the solution
to the Oseen problem, the number of nonlinear iterations coincides, as expected, with the total num-
ber of (exact) Newton steps for this problem. However, these configurations without AL stabilization
require an enormous number of linear GMRES iterations and, hence, are practically very inefficient. By
relaxing the tolerance for the linear subproblems, more nonlinear steps may be required, but the total
number of GMRES iterations reduces. Therefore, the overall solution strategy becomes more efficient.
This procedure can be further accelerated by introducing AL stabilization. In this case, all linear sub-
problems are solved with sufficient accuracy even with a single inner GMRES iteration for γ � 106 and
tolrel � 10−2. Under the assumption that the cost for each GMRES iteration is independent of the choice
of the AL parameter, this is the most efficient solver considered in this work.

7.5. Velocity Solver for Carreau–Yasuda Viscosity Model

As mentioned above, the linear solution strategy proposed in this work can only perform well if the
auxiliary velocity field involved in the definition of the PSC residual can be computed efficiently. In Sect. 6,
a highly specialized multigrid solver is presented, which solves the velocity problems using customized
techniques for relaxation and intergrid transfer. This solver is now applied to the Carreau–Yasuda test
problem as occurring in the final step of Newton’s method. This means that the exact solution vanishes
due to homogeneous boundary data and a zero vector for the right hand side. For validation purposes,
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Table 6. Velocity problem for Carreau–Yasuda viscosity model and μ0 = 102: total number of specialized multigrid
iterations on mesh level 2 for 200 blocked time steps

ν1 = ν2 \γ 0 10−2 10−1 100 101 102 103 104 105 106 107

1 50 50 51 51 54 279 – – – – –
2 19 19 19 19 17 55 78 171 210 174 126
4 9 9 9 9 10 23 24 42 53 49 52
8 6 6 6 6 6 12 13 18 21 22 22
16 5 5 5 5 5 8 8 8 10 10 10
32 4 4 4 4 4 6 7 6 6 6 6

Table 7. Velocity problem for Carreau–Yasuda viscosity model and μ0 = 102: total number of iterations for different
multigrid solvers using 16 pre- and post-smoothing steps

Standard multigrid Specialized multigrid

K lvl \γ 0 10−1 100 101 102 103 0 103 104 105 106 107

100 2 7 7 7 9 57 – 5 8 8 9 9 9
100 4 8 8 8 9 71 – 5 10 8 10 9 9
400 2 7 7 9 26 401 – 5 8 9 10 10 10
400 4 8 8 8 42 – – 5 9 9 10 10 10
1600 2 7 8 13 139 – – 6 8 9 10 10 10
1600 4 9 10 32 – – – 6 8 9 10 10 10

the initial guess is given by the exact velocity field of the incompressible Navier–Stokes equations and
the solution is accepted if 11 digits in the Euclidean norm of the residual are gained within a maximum
number of 500 iterations.

In Table 6, the number of multigrid iterations is summarized for different numbers of pre- and post-
smoothing steps ν1 and ν2, respectively. Here, the solution is considered on mesh level 2 for K = 200
blocked time steps. While the specialized solver diverges for a large amount of AL stabilization and few
smoothing steps, the convergence behavior significantly improves for more relaxation steps. Especially
for ν1, ν2 � 16, the numerical effort for solving the space-time problem depends only marginally on the
AL parameter γ and solution of the stabilized velocity problem is at most two times as expensive as in
case of γ = 0.

This observation stays valid on finer meshes and for longer time intervals, as summarized in Table 7.
While no more than 10 multigrid iterations are required to solve the problem at hand if the highly
specialized relaxation and intergrid transfer are used, the rate of convergence for a commonly used
multigrid waveform relaxation algorithm using the canonical prolongation and restriction operators as
well as the block Jacobi relaxation (cf. [9]) drastically deteriorates for γ � 100. Thus, the latter approach
fails in the context of the Oseen equations with AL stabilization, where γ � 106 seems to be a reasonable
choice for efficiently reducing the overall numerical complexity (cf. Table 5).

8. Outlook

The numerical investigations presented in Sect. 7 focused on test cases for small up to moderate Reynolds
numbers. In these cases, the dynamics of the fluid are mainly prescribed by the viscous part of the
momentum equation and the initial condition only slightly influences the final solution. For this kind of
problems, many parallel-in-time algorithms perform well and significant speedups compared to sequential
solution strategies can be observed. This behavior changes as the convective term becomes more dominant,
for instance, when focusing on the third test case of the well-known flow around a cylinder benchmark for
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Table 8. Oseen problem for Bench3 configuration: total number of iterations

PCD preconditioner LSC preconditioner

K lvl \γ 0 10−1 100 101 102 103 0 10−1 100 101 102 103

100 0 – 95 33 11 6 4 112 21 9 5 4 3
100 2 67 15 10 8 5 4 34 15 9 6 5 3
100 4 19 8 7 6 5 4 43 22 14 8 6 4
400 0 – 181 40 11 6 4 369 27 11 6 4 3
400 2 – 75 32 11 6 4 307 20 10 7 5 4
400 4 – 15 10 8 5 4 64 34 16 11 6 4
1600 0 – – 53 11 6 4 – 32 12 6 4 3
1600 2 – 143 36 11 6 4 450 23 12 8 5 4
1600 4 – 76 32 11 6 4 132 38 21 12 6 4

Fig. 5. Velocity problem for Bench3 configuration: Total number of specialized multigrid iterations using 16 pre- and
post-smoothing steps for solving velocity problem on mesh level 3 and time intervals

[
Kδt(i − 1), Kδti

]
,

i = 1, . . . , 1600K−1

μ = 10−3 and U0 = 1.5 [23]. In this case, the Reynolds number attains the maximum value of Re = 100
at t = 4 and a von Kármán vortex street occurs behind the cylinder.

Although the unstabilized Schur complement iteration converges hardly at all for this test problem,
again the augmented Lagrangian stabilization significantly improves the convergence behavior and only
3 − 4 inner GMRES iterations are required to reach the stopping criterion for γ = 103, no matter how
many time steps are blocked or how fine the mesh is resolved (cf. Table 8).

However, the time-simultaneous multigrid algorithm for the velocity subproblems is not able to pre-
serve the performance as observed for the Carreau–Yasuda viscosity model. The line plot in Fig. 5 shows
the total number of multigrid iterations for the global-in-time velocity problem as occurring in differ-
ent temporal subintervals. Especially in the middle of the time interval, where the magnitude of the
velocity field attains its maximum and, hence, the convectivity is most dominant, the rate of conver-
gence deteriorates significantly as more time steps are blocked. This behavior is even more pronounced
if AL stabilization is included in the linear system of equations. Therefore, the so far considered time-
simultaneous multigrid solver is not well suited for convection-dominated problems and calls for other
global-in-time solution strategies. One candidate possibly performing better might be a space-time veloc-
ity solver as proposed by Gander and Neumüller [12], which exploits time coarsening for discontinuous
Galerkin discretizations in time. Unfortunately, this approach has not yet been studied in combination
with the augmented Lagrangian approach and, hence, is part of future investigations.

9. Conclusions

The augmented Lagrangian methodology is a well known approach to improve the convergence behavior
of Schur complement solvers for the Oseen equations. It has already proved itself in several numerical test
cases for stationary or sequential solution strategies. To the best knowledge of the authors, the present
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work provides the first attempts to extend this approach to the global-in-time solution of the Oseen
equations. In combination with already existing pressure Schur complement (PSC) preconditioners for
the unstabilized system and embedded into a GMRES method, the resulting solver guarantees a rapid
convergence no matter how fine the spatial domain is resolved or how many time steps are considered
simultaneously. The numerical results presented in this work illustrate the performance in several nu-
merical test cases and suggest that a speedup can indeed be achieved compared to sequential solution
strategies.

Unfortunately, the AL methodology comes at the cost that the velocity problems involved in each
computation of the PSC residual become arbitrarily ill conditioned and, hence, require customized solu-
tion techniques. For this purpose, the specialized multigrid algorithm proposed in [25] was successfully
extended to solution of the global-in-time velocity problem. If enough smoothing steps are performed,
the rate of convergence seems to be independent of the amount of AL stabilization and the number of
blocked time steps, at least if the viscosity parameter is sufficiently large. However, for high Reynolds
numbers, the time-simultaneous solution procedure deteriorates for longer time intervals. Therefore, fu-
ture work will focus on more sophisticated solution strategies for the velocity problem in the regime of
dominant convective contributions. Furthermore, nonlinear solvers for the incompressible Navier–Stokes
equations have to be investigated. As considered above, one promising candidate is (a global-in-time)
Newton’s method, which requires some globalization technique to guarantee convergence for arbitrary
initial guesses and large time intervals.
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