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Abstract. In this note we investigate the initial-boundary value problem for a Stokes system arising in a free surface viscous
flow of a horizontally periodic fluid with fractional boundary operators. We derive an integral representation of solutions by
making use of the multiple Fourier series. Moreover, we demonstrate a unique solvability in the framework of the Sobolev
space of L2-type.
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1. Introduction

In this note we investigate a Stokes system on the horizontally periodic domain of the mean depth 7:

0= {x: (x1,2") eR3: 0 <2y < g, z' = (22,23) 6’]1‘2},

where x; is the vertical coordinate and &’ = (z2,23) is the horizontal coordinates in the 2-dimensional
torus T? = (—m, 71]?> =2 R?/(27Z)%. The upper and lower boundaries are denoted by

Sp = {(g,x’) R TQ} = {a:l = g},
Sp ={(0,2") : 2’ € T?} = {x; = 0}.

Our target system is the governing equations:

0
5‘77157 —up = on S x (0, 00), (1.1)
ou .
E—uAu—i—Vp:O in © x (0, 00), (1.2)
V-ou= in £ x (0, 00) (1.3)
subject to the boundary conditions:
8u1 ™ Ne
p—QVa—xl—g< —§>—a(—A)n—O on Sy x (0, 00), (1.4)
8ui+%_0 (1=2,3) on Sp x (0,00) (1.5)
83)1 8l‘l - — 4 F ) ) .
u=20 on Sp x (0,00) (1.6)

with A" := 88—;2 + 88—; and the initial conditions: for x = (x1,2’) € Q,
2 3

(n,)|t=0 = (n0,a) = (no(2'), a1(x), az(x), az(x)) (1.7)
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satisfying certain compatibility conditions. Here n = n(z’,t) is an unknown graph of the free surface on
Sp and u = (u;(z,1))1<i<3 is an unknown velocity field of the fluid with a pressure function p = p(z,t).
Furthermore, v > 0 is a constant coefficient of the viscosity of the fluid, ¢ > 0 is the surface tension
coefficient, and g > 0 is a constant describing the effect of gravitational acceleration on the fluid. For
simplicity, we assume that only gravity acts on the fluid as an external force.

The motion of a viscous incompressible fluid bounded above by an atmospheric pressure on an upper
free surface and below by a rigid bottom is modelled by the Navier—Stokes equations with appropriate
boundary conditions (cf. [10]), where the effect of the surface tension is taken into account by using the
mean curvature of the free interface x1 = n(z’,t):

oH[n) = oV’ - <W> LV = (s, 05). (1.8)

V1+|V'n?

In [2], J. T. Beale studied the initial-boundary value problem of an infinite layer of a viscous fluid
having a non-compact upper free surface {z1 = n(2’,t)} and a rigid bottom surface {x1 = —b(z)} under
the effect of surface tension at free surface, where he showed by using the contraction mapping principle
that there exists a unique global solution to the free surface Navier-Stokes problem for a sufficiently small
initial data with certain compatibility conditions. For this task, he transformed the Navier-Stokes system
to a linearized system on the infinite layer (—b(z),0) x R? by stretching/compressing on vertical line
segments instead of using the Lagrangian formulation (cf. [2, (2.1)—(2.6) in Sect. 2]).

In [6], Nishida—Teramoto—Yoshihara studied the motion of horizontally periodic Navier—Stokes fluid
with surface tension. Then they showed such a global-in-time existence for small initial data and the
exponential-in-time decay of energy via the linearized problem with a = 1 at the equilibrium domain
(=b,0) x T? (cf. [6, (2.4)—(2.9) in Sect. 2]).

In [9], Tice and Zbarsky introduced the generalized boundary condition of fractional Laplacian type
(1.4) in the Stokes system and then studied the decay rate of energy when 0 < o < 1 in both cases of
the infinite layer (0,b) x R4~ and the horizontally periodic domain (0,b) x T4~ for arbitrary dimension
d> 3.

In this note, we are concerned with construction of solution operator for the initial-boundary value
problem (1.1)—(1.7) constituted of the horizontally periodic Stokes system with fractional boundary op-
erators. Indeed, we show that the problem possesses an integral representation of solutions by making
use of the multiple Fourier series (cf. Theorem 3.1). From the alternative formulation, we demonstrate
the unique solvability, provided that 0 < o < 3/2 (cf. Theorem 4.1).

This note is organized as follows. In Sect. 2, as a preliminary, we review the almost-everywhere con-
vergence results of the multiple Fourier series in the Sobolev spaces and also introduce the Sobolev—
Slobodeckij spaces of L2-type. In Sect.3, we derive a Fourier representation of solutions to the IBVP
(1.1)—(1.7). In Sect. 4, we establish the unique solvablity of the IBVP (1.1)—(1.7).

2. Preliminaries

Let 0; = 0/0x; for i = 1,...,d. We use the standard multi-index notation for the spatial differential
operator: 9° = 8?1 ...85d with the order |3| = 31 + -+ + B4 for B = (B1,...,84) € N&, and 3° = Id.
We denote by T¢ the d-dimensional torus (—m, 7]? = R?/(27Z)¢, and specially, T := T*.
Let {F[f](n)}neza denote the Fourier coefficients of an absolutely integral function f(x) = f(z1,...,zaq)
on T¢:

FUfl(n) = ﬁ /T VT (), (2.1)
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where n-x =nix1 + -+ + ngrq and dx = dzq . ..dzrg. The multiple Fourier series is formally defined by
the series

nezl

Here we recall the celebrated almost-everywhere convergence result of the multiple Fourier series on T¢
(cf. [3,4,7,8]). If f = f(z) lies in the Lebesgue space LP(T%) with p > 1, the rectangular partial sum

SN = D> Flflm)eY

[n1]ses|na| <N

converges to f(x) for almost every x € T? as N — oo. Recently, for the Sobolev (or Bessel potential)
space H™P(T?) with the norm

Y (Lt a2 Flf)(n)eY " 1me

nezd

I £l w1y =

Lp(T4)

Ashurov [1] proved that the spherical partial sum
Swifle) = 3. Flfime
[n|2=n?+-+nZ<N
converges to f( ) in H™P(T9) for almost every # € T? as N — oo, provided that 1 < p < 2 and
> (d— 1)(7 —1). Therefore, when p = 2, if f € H"2(T9) for r > 0, then we obtain the inversion formula

f( ) =F* [f[f]]( ) for a.e. # € T, where the Fourier series F*[-](x) corresponds to the pointwise limit
of the spherical (resp. rectangular) partial sum when r > 0 (resp. »r = 0). Hence, from the Parseval
formula

1 £1r2pay = @y Y () IF ),
nezd

we get the characterization of H™?(T?) = {f € L*(T%) : || f||grr2(re) < 0o}. From now on, we shall use
the shorthand notation H"(T¢) := H™2(T%).
For m € Ny, we set the Slobodeckij space of L?>-type on D = T? or €2

W™D) =< feL*D): Ifllwm(py == Z ”anHLZ(D) < o0
|8]=0
In particular, W™ (T%) (resp. W°(D)) coincides with H™(T%) (resp. L?(D)). We also define the space of

the %—fractional type on T<:

Wm—&-%(rﬂ-nd) {f c Wm(Td) |f( ( )l c LQ(Td % Td)}

|Jj _ y| d+1

1
_ 1@ = FwP
sy = hwca + ([ [ LS )

We should notice that there exists a trace operator v : W™ (Q) — W™ 2(Sz U Sp) such that vf =
flspusy for m € N (cf. [5]).

Let us introduce the subspace of W™ (T3) (resp. H"(T?)) consisting of functions with the sine-like
symmetry in x; € T:

W) = {f € W™(T?) : f(—z1,2') = —f(2), f(m—z1,2') = f(z) for z € T}
(resp. Hy (T®) :={f € H(T%): f(—z1,2') = —f(z), f(m —21,2') = f(z) for z € T*}).

with the norm
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The space restricted to 2 is denoted by

WIHQ) = {f = flio<a<zy  [* € WI(T)} (2.3)

with the norm
I llwz @) = L lwm ray. (2.4)

In particular, when m = 2 (vesp. m = 3), f € W(T?) satisfies f = 0 on Sp (resp. f = 0 on Sp and
O1f =0 on Sg), since W2(T3) C C(T?) (resp. W3(T?) C C*(T?)) by the embedding theorem.

For a function f(z) = f(x1,72,73) = f(x1,2") : T3> — R, we denote the tangential Fourier coefficients
by

1
(2m)% Jp2

Ffx1,n') = flay,n') = —VEI () ! (2.5)

for (z1,n') € T x Z2, where n’ = (ng,n3), n’ - 2’ = nowy + n3z3 and da’ = dredrs. The Fourier series of
a given function f(z1,n’) : T x Z? — C is denoted by

Frfl@) = > fla,n)ey (2.6)

n' €72

We define the z;-tangential fractional Laplacian acting on f(z) : @ — R by
F(=A) fl(ar,n') = [P fzr,n') (e >0) (2.7)

with |n/|2 = n3 +n3 and f(x1,n') = F'[f](x1,n').
For a function g(z1) : (0, 5) — R, we set the sine-type (resp. cosine-type) Fourier coefficients

™

S1lg](n1) ::é /05 sin((2ny — 1)21)g(z1)dzy

™

™

4 (2
<C1[g](n1) ::;/ cos((2ny — l)xl)g(xl)dml) (2.8)
0
for n1 € N and the associated Fourier series

S Z 81 SlIl 2711 — 1)1‘1)

neN

(cl [Cilg = Cigl(n1) cos((2ny — 1)x1)) (2.9)

neN

for x1 € T.
For a function f(z) : 2 — R, we define the coefficients of the hybrid x;-sine-type Fourier series by

1 . B P
Fulfltn) = SFI) = 75 [ sin(@mn — Den)e T f(@)da (2.10)
0
for n = (ny,n’) € N x Z? and the associated series of Fs [f] : N x Z? — C by

FEFs = Y Folfl(n)sin((2ny — Day)eY (2.11)
neNx7Z2
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Here we note that for f(z): T — R and [; € Z,

Fifltnn') = 5= [ €T F () ar. ')

1 /7T sin(lyz1)F'[f)(z1,n)dzy
™ Jo

0 (for |l1] = 2ny),
B %fsl[f](nl,n') (for |l1] = 2ny — 1)

for ny € No, and thus, F*[F[f]] = F; [Fs, [f]]. On the other hand, thanks to the convergence results as
mentioned above, the inversion formula F} [F, [f]] = f holds on W*(Q) = H*(T?) for m € Ny under
the suitable limit operation. Therefore, we may redefine

1fllwm e = >0 (@ =12+ ) F | F, A
neNXZ?
= /(201 = 1% + 1" *) E Fo, [F100) || o g, (2.12)

For p,r > 0, we define the fractional differential operator |9y |°|V’|" acting on f € W7 (Q) = L*(Q)
by

FolloP V" fl(n) := (201 — 1) |n/|" Fo, [f1(n) (2.13)
for n = (ny,n’) € N x Z2.
We finish this section to provide basic properties regarding the heat semigroups.
Proposition 2.1. For f : T4 — R, let
A= Frle PR (2> 0). (2.14)

Then {e’*®}1>0 is a strongly continuous semigroup on H"(T?).
Moreover, for every m € N, there exists a constant C = C(m) > 0 such that

supt? sup H@’Be”tAfHLz(Td) < Clfllp2(ray,
t>0 |Bl=m

and v := e"*2 f is a smooth solution to the heat equation O;v = vAv on T x (0, o), where A = 93+ - -4-03.
In addition, ||e”*® f||gr(v2) < || f|l - (r2) for t > 0.

Proof. We can verify the main statement by using the inversion formula and the Parseval formula. We
omit the detail of the proof. O

Proposition 2.2. Let m € Ny be arbitrary. For f: Q — R, let
eVl f = Fr [67V((2n171)2+\n’|2)t]:51 il (t >0). (2.15)

Then {e"*®1},5¢ is a strongly continuous semigroup on W (Q) such that v := e’tA a1 f s a smooth

solution to the heat equation Oyv = vAv in Q x (0,00). Moreover, the solution v = v(t) satisfies 0?Fv = 0
on Sp and 6%’“'11} =0 on Sp for allt > 0 and every k € Ny.

Proof. For f € WIM(Q), let f* € W' (T?) with f*[{0ca, <z} = f. Let v := e”"2 f*. Since v = e""2 f,
the main assertion follows from Proposition 2.1. Furthermore, it is easily verified that 0%%v|,,—¢ =
O ]y, —z = 0. 0

T Birkhauser
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3. Fourier Representation of Solutions

In this section, we present a Fourier representation of solutions to the IBVP (1.1)—(1.7).
For a function z = z(wa,73) = 2(2) : T? — R, we set the heat semigroups:
A = T [67”‘"/|2t}"'[z]], In'|? = n3 +n3, (3.1)
and
L[4 DM
Ul (20, — 1)2
which is consistent with the semigroup (2.15) when f = z12z(x9, z3).
For a set of functions {n(x’,t), no(z), u(z,t),a(x),p(z,t)} in (1.1)—(1.7), we set
i= (o, )= 7'l
flo = Mo(n/, ) == F'[no],
(@i(z1,n/, t))1<i<s := F'[u] = (F'[ui]1<i<s, (3.3)
a = (ai(x1,n,t))1<i<s := F'la] = (F'la])1<i<s,

ﬁ :ﬁ(xlan/at) = f/[p]

eutAsl (

xr12) = e VML E | (3.2)

Theorem 3.1. Consider the initial-boundary value problem (1.1)—(1.7) with the additional boundary con-

dition:
du=0 on Sp, du=0 onSp. (3.4)
Let
k(n) == (2ny — 1)* + |n'|%, X (n') :== g + a|n’|**, (3.5)
and let
W' t) = (2, t) — g h(n',t) == F'[h)(n') = i(n’, 1) — g (3.6)

We set the auziliary functions:

¢
zo(2',t) = e”tA/al(g,:v’) - / eV (t=s) A" Frx [|n’| tanh%\n’\(?uél (n',s) + \(n")h(n/, s))] ds, (3.7)
0

t
A1) = Y 0ai (5,07) + (9 + (-A")) A / I8 B(s)ds,  (3.8)
0
and

Ql(.’b,t) = f*

S1

EM te_”“(")(t_s) vii(n', s *(nVh(n', s))ds
[w (2n1—1)2,§(n)/0 (2v21(n’, 5) + A% (n/)h(n’, ))d}, (3.9)

4 (=)™ 2@2m —1)° + |n'|?) 7T
i t) = = —1 i ! t h* !
Qi) = 7, | 2yt S 2 ) WD) o Z
t
x/ e mU=5) (22, (n/, ) +)\a(n’)h(n’,s))d8] (3.10)
0
for i =2,3. Then the solution (n,u) satisfies the equations
t
n(a’,t) = no(a') —I—/ 20(2', 5)ds (3.11)
0
and
ur(x,t) = 2121 (t) — €21 (210101(5,2")) + /P ray + Q1 (1), (3.12)
ui(x,t) = —210;20(t) + 21 (210,01 (%, 7)) + €”"10; + Qi(x, 1) (3.13)
fori=2,3.

) Birkhauser



JMFM On a Stokes System Arising in a Free Surface Page 7 of 16 16

Proof. We have that the initial datum a = u|;—( satisfies the conditions:

{V ca=0, aly,=0=0, 8%al,,=0=0, &a|y,=z =0, (3.14)

81ai|x1=£ = —3ia1\x1=% (Z = 2,3)
Set

: =37 (3.15)

The boundary condition (1.4) can be rewritten as
Ploy=z = 2v21 + gh + o(=A")"h, (3.16)
which gives
p(5.n' t) =2wz (0 t) + )\o‘(n’)iz(n’,t).
Applying the divergence operator V- to the second equation (1.2), we obtain that Ap = 0, i.e., (07 —
[n/|2)p = 0. Therefore, p = C1(n/, t)e*1"'| + Cy(n’, t)e=*11"'l. Here we impose the boundary condition on

Sp: 01plz, =0 = 0, that is, 1P|, —0 = 0. We thus deduce from the two boundary data that

_ coshay|n/|

~ / _ 2ws / Al N (o] ) 1
p(ﬂ?l,?’l,t) coshg|n'\ ( VZ1(7’Z,t)+)\ (n )h(ﬂ,t)) (3 7)
Since the second equation (1.2) yields
at’l}i - I/A’Ui + 325'11) =0 (Z = ]., 2, 3), (318)

we deduce from the additional boundary condition djul,,—z = 0 in (3.4) that the function 2 (z',t) =
v1(5, ', t) satisfies

Opz1 — VA 2 + afp\m:g =0, A= 03 +03. (3.19)

On the other hand, we can see from (3.18) with the pressure (3.17) that 01(z1,n/,t) is a solution to the
IBVP of the 1-D heat equation:

Oyt — vy + v|n/|?o1 + n'*p =0 (3.20)
for (x1,n/,t) € [0, %] x Z* x [0,00) subject to the boundary conditions
01ey =2 = 21, 0101 ]5,=0 =0, 312171|x1:g =0 (3.21)

and the initial condition o1 |=9 = 01a;. In particular, it follows from (3.19) with the pressure (3.17) that

dzy

-+ vn' |22 + 0[P (208 + A%h) =0, Zili—o = Ordale -z (3.22)
for (n',t) € Z* x [0, 00), which yields
t
g t) = e 6y, s — X"(n’)|n'\2/ eI =] (n! | 5)ds. (3.23)
0

Therefore, we obtain (3.8).
Set wy := 1 — £;. We deduce from (3.20)—(3.22) with (3.17) that

cosh z1|n/|

Oyt — vOTy + vin' [Py + 0|2 ( 1) (2021 + A\°h) =0 (3.24)

cosh Z|n/|

T Birkhauser
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subject to the boundary conditions
Wiloy=z =0,  O1hife,—0 =0,  Ithi]s—5 =0 (3.25)

and the initial condition wq|i=g = d1a1 — 81d1|w1:%. By using the Fourier method and the Duhamel
formula, we get

wl(xhn/’t)

= Cik [e_uﬁ(")tcl [81(3,1 — 81d1|m1:%]]

112 COthl‘nll /t —vk(n)(t—s) 5 ap
— — 1 2
[n'|*Cy {Cl [ cosh Z ] ; e (2vZ1(s) + A“h(s))ds
=Cy [(in — 1)e—un(n)t]_- [a ]] —_Cr é (_1)7l1—1€_yﬁ(n)ta a | x
1 st Vir 2 —1 Hn=3

4 2n; —1 1 t .
o | o 1\ynai—1y,,/12 1 _ —vi(n)(t—s) s @
Cy LT( 1) |n| <(2n1 T W 2my = 1> /0 e (2v21(s) + A*Dh(s))ds

* —vi(n)t 4 * (_1)711—1 —vk(n)tg A
= Cl [(2n1 - 1)6 fsl[al]] - ;Cl me 81a1|x1:%

4 (= / T A
cr = vi(n)(t—s) 2 A% d
+Cq |:7T (27’11 —1)H(Tl) 0 € ( VZl(S)+ (8)) S|
since
4 (=1)m—t
Ci[01a1] = (2n1 — 1) F, , Gl = — ———,
1[0va] = (2n1 — 1)F, [ad] 1] =~ ST—
and
4 (=1)m~Y2n; — 1) m
/
Cy[coshay|n'|] = S CTIE e P cosh §|n’|
On the other hand, we have
T 1
01 (t) :/ 01 (y1,n’ t)dyr = 2121 (t) —|—/ w1 (y1,n’, t)dys, (3.26)
0 0
since 010y = 01 = 21 + w1 and 1|4, =0 = 0. We compute
/131 wl(yl n t)dyl - S* [e—yn(n)t}— [al]] — S* é (—1)n1—1 e_yﬁ(n)t81d1| o
0 T ! o Yl (2n —1)2 n=z

EM te_ym(n)(t—s) V(s oy (s)) ds
T (2n4 *1)2.‘1(71)/0 (2v21(s) + A%h(s))d ] )

We apply F™*[-] to the both sides in (3.26) to obtain (3.12).
We deduce from the first component in equation (1.2) with the pressure (3.17) that

+st)|

h , R
Byt — v0%0y + v|n/ Pay + M%ﬂ"‘ (2031 + \%h) =0
osh Z|n/|
Thus Zo(n',t) = 41(5,n',t) is governed by
dz .
% + v 250 + || tanh g|n’|(2uél FAR) =0, Zolimo = d1fey—z. (3.27)
since 0701 [y, —z = 0 (cf. (3.4)). That is,
s —v|n' |t A l T ! —v|n'|2(t—s) 2 aj,
2(t)=¢e ale,=z —[n |tanh§|n | | e (2021 (s) + A%h(s))ds, (3.28)
0

and we get Eq. (3.7). Furthermore, Eq. (3.11) follows from the first equation (1.1).

) Birkhauser
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Let us derive integral representations of @; = 4;(t) for ¢ = 2,3 similarly as above. For ©; for each
i = 2,3, we deduce from (3.18) with the pressure (3.17) the governing equation

sinh a1 |n/| -

O0; — vOFv; + v |20 + V—1ni|n'| ———— (2021 + A*h) =0 (3.29)
cosh Z|n/|

for all (z1,n',t) € [0,%] x Z? x [0,00) and from (1.5) and (3.4) the boundary conditions
ilay—z = —V=1nil|s,—z, O1iley—0 =0,  OtDiloy—z =0 (3.30)
and from (1.7) the initial condition
Vjlt=0 = O14. (3.31)
Set
Wi = +V—1nize (i =2,3).
From (3.27)-(3.31), we have the IBVP of the 1-D heat equation on [0, F]: for i = 2,3,

sinh xq |n/|

Oyt — vO2b; + v|n' [Py + vV —1ng|n/| < + tanh gm’ ) (2021 + A*h) =0

cosh Z|n/|
subject to the boundary conditions

N N 2 A
Wil =z =0, 01Wi |, =0 = 0, 01 Wiy =z =0

and the initial condition

Wilt=0 = 010; + V=111 |g, ==

T
Again, by using the Fourier method and the Duhamel formula, we get
w;(z1,n,t)

= Ci‘ I:e*llli(ﬂ)tcl [61&1 + \/jlnial |x1:1]]

2

. h ’ t R
- [cl {Smml'"' + tanhgn/@ V= Tn; || / e~ VRm(E=5) (913, (5) + )\ah(s))ds}
C 0

osh Z[n/|
* —vk(n)t * 4 (_1)n171 —vk(n)t ! T o
= Cl [(2”1 — 1)6 Fsl[ai]] +Cl ;me F [3ia1}(§,n)
4 (=)™ Y20y —1)  (—=1)mt T
—Cy | =V —1n;|n’ tanh —|n’
1[7r ”"”'((2n1—1)2+|n/|2 o, =1 ) b gl
t
X / e VRME=8) (902, (5) + /\O‘ﬁ(s))ds] ,
0
since
, 4 (-1)mt2n—-1) . 7
Culsinhan|n'l] = = o gy g s 5

On the other hand, we have
T 1
ﬂi(t) = / @i(yl,n’,t)dyl = —x1V —lnié’o(t) + / wi(yl,n’,t)dyl, (332)
0 0

T Birkhauser
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since 011; = 9; = —/—1n;2p + w; and ;],,—0 = 0. We compute

1

/ wl (ylv nlv t)dyl

0

4 (-1

m (2’]’L1 — 1)2

_1\n1—1 _1)2 12

COmRem 1P W)
(2n1 — 1)k(n) 2

= i[O o]+ 5 O (50

4
-85 L_\/lni|n'|

t
" / ew(n)(ts>(zyz«1(s)+vh(s>)ds}
0

Therefore, (3.13) is obtained by applying F'* to the both sides in (3.32). O

4. Unique Solvability

In this section, we establish the unique solvability of the IBVP (1.1)—(1.7) under the condition 0 < « <
3/2.

Theorem 4.1. Assume 0 < « < 3/2. Let an integer m > 2 and T > 0 be arbitrary. Suppose that
no € H™(T?) and that a = (a;)1<i<s, a; € W."(QQ) satisfies the compatibility conditions:

V-a=0 1inQ, O1a; + 0,00 =0 (i=2,3) on Sp. (4.1)
Then there exist unique functions h,zg,z1 and Q = (Q;)1<i<sz in (3.6)—(3.10) such that

he L¥(0,7), K™ (T%),  hlieo =m0 — . (4.2)
20 € C([0,T), H" 1 (T?)),  z0l=0 = a1lsp, (4.3)
21 € C([0,T), H"*(T?)),  21li=0 = draa]s,, (4.4)
047V 72Qu € L2([0,T), LX(T%))  (Vp < 3/2),  Qil=o =0, (4.5)
01 V'™ 72Qi € L([0,7), LA(T%)) - (vp' <1/2), Qili=o =0 (4.6)
for i =2,3, and the velocity field u = (u;(x,t))1<i<3 given by
ur(z,t) = x121 + €"Pora; + Q1 (x, 1), (4.7)
ui(x,t) = —x10;20 + €15 (z10;a1]5,) + e’ Pera 4+ Qi(x,t) (1= 2,3)
is a solution with n(x',t) = h(x',t) + T to the problem (1.1)~(1.7).
Proof. Let us redefine the H™-norm of a function z(z’) = z(xa,73) : T2 — R for r > 0 by

1

2

, 2
Izl ey = IF O+ | Y In[71F 0]
n’€22\{0}

= |F O]+ [|In']"F [ ()| 2 2 - (4.9)

We have from Eq. (1.1) that {fl(n’, t)}ezz t>0 is governed by

hn' ) = ho(n) +/0 S(1), o) = o(n') — (4.10)
where

¢
Zo(n',t) = e‘”lnl‘Qtdl(g,n') — || tanhg|n’|/ eI 1?(t=5) (2021 (0, s) + A*(n))h(n/, 5))ds (4.11)
0
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associated with

t
21(n/7t) — 67V|n’\2t81&1(g’n/) _ )\a(n/)|n/‘2/ 673V|n’\2(tfs)il(nl’8)ds’ (412)
0

corresponding to equations (3.28) and (3.23) respectively.
For n’ =0, we deduce from (4.10) with (4.11) that

7 AT A T Ao(T
h(0,t) = ho(0) +tay(5,0) = 70(0) — 5T ta1(%,0). (4.13)
For every n' # 0, by substituting (4.11) into (4.10) and integrating by parts, we obtain that

, | vl tanh || (!
h(n' ) = ho(n') + —— i (2.) — 2 a [

a1(§,n _ _ eiu‘”llz(tfs));}l(n/,s)ds

vin|? |n/| 0

( eV n'|2(t—s)\ 7,
| /|2 |n| In"I7(¢ ))h(n’,s)ds.
Substituting (4.12) into the above equatlon, we get

t s
h(n',t) _ Io(n/,t) + 2/\O‘(n/)|n'|tanhg|n'\ </ 673V|n’|23/ 63V|"/|2”fz(n/,o)da
0 0

t s
_ 712 _ 72 12
— e VIl t/ e 2Vl S/ syl "h(n’,a)dc;')

A \n \/ e vIn'I*( =) h(n', s)ds

| /|2
1 ! , .
= Io(n',t) + 2X%(n')|n'| tanh 5|n'\ <3V|n’2 /0 (1—e3vin ‘Q(tfs))h(nﬂ s)ds (4.14)

1 K —v|n/|?(t—s —3v|n/ |2 (t—s)\ 7
/|2/0(6 I 2(t=s) _ 3wl (¢ ))h(n/,s)@)

~ 2win
A%(n)

- u|n’|2

= Ioy(n/,t) — ( |n|/ (1 — e 3 PE=N)h(n!, 5)ds,

t
tanh \n | (1 — eVInI*(t=s) )ﬁ(n’ s)ds

where
. 1—evin'PPt 2 tanh Z|n/| 2
Io(n/,t) = ho(n/) + Wal %77’?/,) - ;W( —€ vin'l t)&m(%,n’)
2tanh Z|n’ /
|n,|2| R Y
Let

p*(n') = A*(n)|n’| tanh \n | = (g|n/| + o|n/[**™!) tanh — | .
Differentiating the Eq. (4.14), we obtain that h = h(n/,t) satisfies

t
Dyh(n',t) = Dido(n', t) — p(n')e= 31" t/ M sh(n! | s)ds
0

with D; = d/dt. Multiplying the above equation by 63”‘"/“, we get by differentiation,
Dy (63”‘"/‘2’5th1) = Dy (63”‘"/‘2tDtIAo) — ua(n’)eg”‘”,lztﬁ.
Thus we obtain the governing ODE of {A(n,)},/20 +>0:
(D? + 3v[n'|2Dy + p®(n"))h = Dy(Dy + 3v|n’[}) Iy =: Dy Jo(n', ) (4.15)
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with the initial conditions

h(n',0) = ho(n'), Dyh(n',0) = Zo(n',0) = ay(Z,n'), (4.16)

29
where
Jo(n' 1) := (Dt + 3V|n’|2)10(n',t)
= 3uln’[Pho(n') + (3 — 2e7 11"y (5, )
2tanh T |n/|

] (e_l’l"ll% + 2u|n!|PtevIn TPt 3)ovar (%, n').
n

PR
Since the characteristic equation £2 + 3v|n’|2¢ 4+ pu®(n’) = 0, we set
3
wi(n') == 5y\n’|2(1 — v/ Re(n')),
3
wa(n') == 5u\n’|2(1 + VR (n))

with

4p™(n') 4tanh Z|n/| [ ¢ o
Ra / — 1 _ — _ 2
() 902 || 92 e T w2

Then we can find a number Ny € N, a sum of two squares such that

(i) R*(n') >0 for |n'| > /Ny (i) R*(n’) <0 for |n/| < /No—1, (4.17)

since tanh % |n/[/|n/[>72 is a decreasing function in terms of |n/| for every o < 3/2. Furthermore, thanks

to the discreteness of n’, there exists a constant g = ¢(v, g, 0, ) € (0,1) independent of n’ such that
R(n') >e0 >0 for |n'| > /No.
In the case (i), we set
gi(n 1) = e ("), ga(n' 1) i= g2 (W)
with the Wronskian
W(n',t) := g1(n',t)Diga(n',t) — Dig1(n', t)ga(n',t)
= —3u|n/ )2/ Re(n)e 3N It (4.18)

By the solution formula for the 2nd order linear ODE:

h(n',t) = <01 — /DtJo(n’,t)QQ("/’t))dt)
d

(4.19)

we obtain the general solution to (4.15) given by
/ t
h(n',t) = | Cy(n ) e“1()s Jo(n!, 5)ds | emwr ()t
(n',1) (1( ) S R0 Jo o(n', )
wa(n’)

+ (Cz(n )+ —31/|n’|2 T ) Jo

t
e2(n)s Jo(n/ s)ds) ew2(n)t,

) Birkhauser
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We also have that the initial conditions of h(n/,t) imply Cy 4+ Co = ho(n') and —w; (n')Cy — wa(n')Co +
Jo(n',0) = a:1( §,n'), that is,

@ - ﬁ (27D (i o@oﬁ )<n>)
<1+1/\/RT> N Jo(n 0) (1)

1—1/\/Re 3y\n/|2 R (n)

2

Since

6 A (T
7|81a1(§an/)|

[ Jo(n', )] < Buln'|?|ho ()] + 3lar (5. n")| + ]

and

3v|n’|2\/g0

<(1+

G ()] + Can')] < (1 " 1) o (n)] + =2 i (E. ') — ol 0)]
( |Ovar (5, n")|,

€o

3 A 3
=V ha(n! v
we deduce from (4.19) that
92 ewl(n')t o er(n')t

h(n',t)| < |Cy(n Co(n’ Jo(n'
|h(n',t)| < [C1(n')] + |Ca(n)| + AN Oiggtl o(n',s)]

3 1 lar(3,7)] | 101a1(5,n")|
<1+\F>|h0( )Hu\/a)(? B +7 P > (4.20)

for all |n’| > +/Ngy. Therefore, it follows from the above estimate that

m+1
(| R LICHROT] Py
<C(|H”|m+1|h° Mz iz vaay + 17T Har O s o> w5 (4.21)

m—2 ~
+ [’ 21010 (n” |||z2<{\n/|z¢m>)
with a constant C3 = C3(v, g,0,a) > 0. If Ny = 1, then we have
[A (@) zrmsa(r2) < Cs(L+T) (L + llmoll zrmsr(r2y + lanllwzn (@) (4.22)

since (4.13). On the other hand, if Ny > 1, we must divide the case (ii) in (4.17) into the two cases
separately:

(a) R*(n') <0 for |n'| <+/Nog—1 (b) R*(n’) =0 for |n'| =+/No— 1.

In the case (a), a set of solutions {ﬁ(nl’t)}lgm'\g\/m,bo is obtained by the solution formula (4.19)
with

. 3

gi(n/,t) = e~ 211"t cog (2V\/—Ra(n’)|n'|2t> ,
/ 3

ga(n/,t) i= e~ 210 Pl gin (QV\/—Ra(n’)|n'|2t> ,

associated with the Wronskian W (n/, t). Similarly as above, since there exists a constant &1 = £1(v, g, 0, &) >
0 independent of n’ such that

—R*(n') >e; >0 for|n/|</No—1,

T Birkhauser
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we can find a constant Cy = Cy(v, g,0,a) > 0 such that

i1 A ) <=1

< Cae 3l 1 g0 sy + 008 0 e ey (423)

+ [[In'" 2|81 (n |Hl2 {|n’|<\/7}))

In the case (b), a set of solutions {h(n’, t>}\n’|:\/m,t>0 is obtained by the solution formula (4.19) with
gi(n’,t) == e=3YI""t and gy(n’,t) := te= 3171’1 We also have

|||n |m+1|h (n',t) ‘HlQ ({In’|=vNo—1})

< Cs(1 4 )2 t(|||”/|m+1|h0 |H12 ({In'|=vNo=Tp) T [l a (n |Hl2 ({In'|=yNo=T}) (4.24)

1121001 0 s g - =)

with a constant Cs5 = Cs(v, g, 0, @) > 0. Therefore, we get

[/ [ R ]2 2y = 1017 R )2 < o=ty + 12 TR )2 = o=t

I T A Ol g vy
< G+ D[l o0 gy + 1T 15 s
+ |||”/|m 2|81a1( |||z2(z2 )
with Cs = Cs(v, g, 0, ) := max{Cs5, Cy, C5}. Hence, it follows that

[R(t)|| grme+1 2y < Co(L+T) (1 + ||o

Hm+1(T2) + ||a1HWSrr11(Q)) (4.25)

forall 0 <t <T.
For the Eq. (4.12), we have

t
21 0)] < [01a1(F,0")| + (9 + o) [**~ 1/ eI ds sup (In'[Plh(n’, 5)]),
0 0<s<t

which yields that for all 0 <t < T,

|21 (n 8 "2 0nan (5,

W)z zz)

1
g+o / dr S _o rm+107 (7
t2 su n h(n',t .
G sup [ (o )

Bz Jo (1=r)*

Therefore, we deduce from (4.25) with £,(0,t) = d1a1(%,0) that

[E10]

for all 0 < t < T with a constant C7; = C7(v, g,0,a) > 0. Furthermore, one can see that such a solution
2 lies in C([0,T), H™2(T?)).
Substituting (4.12) into (4.11), we have that for every n’ # 0,

—e
Hm—2(T2) < 07(1 + T2 )(1 + ||770||H'm.+1('[[‘2) + ||a1||Wsnll(Q)) (426)

Zo(n',t) = e 1M "tay (1, n') — 2v|n’|tanhg|n’\ te 1"t a, (T, 0)
‘ (4.27)
_‘ua(n/)/ 673V|n/|2(t75)h(n/,3)d8,
0

which implies
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t
AR N L (g + o) Pt / =945 sup (0|2 h(’, 5)))
|n | 0 0<s<t

for all 0 <t < T'. Thus,

|||”/|m7120(”/7t)||12(z2 < |||"/|m lal( ||z2(z2 Jr2|||"/|m 2o (n',s Hl2 (22)

[

1
gto / dr E— m—+17,
t2 su n h(n',s .
Br)*=2 Jo (1—-7)*"2 0<s gt‘“ | ( le(ZZ)

Therefore, we have that for all 0 < ¢t < T,
S5—a
208l rrm—2(r2) < Cs(1+T27) (L + [Inoll grm+1(r2) + llarlwm o)) (4.28)
with a constant Cs = Cg(v,g,0,a) > 0, since 2y(0,t) = a1(F,0). Furthermore, one can verify that zg

belongs to C([0,T), H™~1(T?)).
As for 1 in (3.9), we estimate for any p < 3/2,

18417192 Qu 1) 2 oy
= ||2n1 = 1?0/ |2 F, [Qu](n, t)

8 1
< =
= (Z (2n1 _ 1)2(27p)

ni €N

2 3
8g+o 1
4+ =
T Vv <ZN 2n1 — 1)2(2—p) lQ(n/622)>

(
<C, (1 + U) ( sup H|n’|m’221(n',s)HlQ(W) + Os<ugtH|n'\m+1fL(n’,s)||l2(22))

Hz2 (NxZ2)

N

/|m+2

[ E (1—e

—wc(n)t)

sup |z1(n’, s)]
0<s<t

K(n

2
l2(n'EZ2)>

1— —vk(n)t hin'
)2 (1—e )Oiggtl (n', )]

|n/ | m+2+2a

0<s<t

g
<G (1 + > sup_|[z1(n', )| grm-2(2) + sup Hh(nlvt)HHm‘*'l(T?))
0<t<T 0<t<T

g+to 5
< C; (1 + 71/ > (1 +T2 )(1 + ||770||Hm+1(rﬂ~2) + Ha1||Wm(Q))

for all 0 < ¢t < T, where C,,, C’; are positive constants depending only on p,v, g, 0, «. Similarly, we can
see that that for any p’ < 1/2, Q; for i = 2, 3 satisfies

1011912 Q)| 2 s

v

g+o
<C, (1+ )(sup (s Ollm-zcazy + sup_ 1B, ) [ amsr 22))
o<t<T o<t<T

g+ 5_ 4
<0y (14227 @ TE 1+ Il e + o)

forall0 < ¢ < T, where C, C;, are positive constants depending only on p’, v, g, o, a. Hence, we complete
the proof of Theorem 4.1. O
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