
J. Math. Fluid Mech. (2023) 25:70
c© 2023 The Author(s), under exclusive licence to Springer Nature Switzerland AG
1422-6928/23/030001-15
https://doi.org/10.1007/s00021-023-00815-6

Journal of Mathematical
Fluid Mechanics

Energy Conservation for the Generalized Surface Quasi-geostrophic Equation

Yanqing Wang, Yulin Ye and Huan Yu

Communicated by D. Chae

Abstract. In this paper, we consider the generalized surface quasi-geostrophic equation with the velocity v determined by

v = R⊥Λγ−1θ, 0 < γ < 2. It is shown that the Lp-norm of weak solutions is conserved provided θ ∈ Lp+1

(
0, T ; B

γ
3
p+1,c(N)

)

for 0 < γ < 3
2

or θ ∈ Lp+1
(
0, T ; Bα

p+1,∞
)

for any γ − 1 < α < 1 with 3
2

≤ γ < 2. Therefore, the accurate relationships

between the critical regularity for the energy conservation of the weak solutions and the regularity of velocity for the
generalized surface quasi-geostrophic equation are presented.
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1. Introduction

In this paper, we consider the generalized surface quasi-geostrophic (SQG) equation in (0, T )×R
2 below⎧⎪⎨

⎪⎩
θt + v · ∇θ = 0,

v = R⊥Λγ−1θ = (−R2Λγ−1θ,R1Λγ−1θ), γ ∈ [0, 2),

θ|t=0 = θ0,

(1.1)

where the unknown function θ(x, t) is a scalar and v(x, t) is determined by θ(x, t). The Riesz transforms
Rj are defined by R̂jf = − iξj

|ξ| f̂(ξ), j = 1, 2, where f̂(ξ) = 1
(2π)2

∫
R2 f(x)e−iξ·x dx. Λsf is defined via

the Fourier transform Λ̂sf(ξ) = |ξ|sf̂(ξ). This model was introduced in [10–12,14] and includes many
classical hydrodynamic equations. In particular, the case γ = 0 corresponds to the 2-D incompressible
Euler equations, where the unknown functions θ = θ(x, t) and v = v(x, t) are the vorticity and the
velocity field, respectively. The case γ = 1 corresponds to the following standard surface quasi-geostrophic
equation ⎧⎪⎨

⎪⎩
θt + v · ∇θ = 0,

v(x, t) = (−R2θ,R1θ),

θ|t=0 = θ0,

(1.2)

which describes a famous approximation model of the nonhomogeneous fluid flow in a rapidly rotating
3-D half-space (see [15]). In this case, the unknown functions θ = θ(x, t) and v = v(x, t) represent the
potential temperature and the velocity field, respectively.

The generalized surface quasi-geostrophic equation have attracted a lot of attention in recent years and
important progress has been made (see e.g. [10–12,14,20–22,30–32]). The goal of this paper is to examine
the relationships between critical regularity of weak solutions keeping energy conservation and the regular-
ity of velocity for the generalized surface quasi-geostrophic equation. A classical question involving energy
conservation in incompressible fluid is the Onsager conjecture. In [23], Onsager conjectured that the weak
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solutions with Hölder continuity exponent α > 1
3 of the 3-D incompressible Euler equations do conserve

energy. This conjecture was proved by Constantin-E-Titi [16] in the Besov space L3(0, T ;Bα
3,∞(T3))

with α > 1/3. Subsequently, Cheskidov–Constantin–Friedlander–Shvydkoy [13] sharpened the result
of [16] by proving that energy is conserved for velocities in the critical space L3(0, T ;B1/3

3,c(N)), where

B
1/3
3,c(N) = {v ∈ B

1/3
3,∞ : limq→∞ 2q‖Δqv‖3

L3 = 0} and Δqv stands for a smooth restriction of v into Fourier

modes of order 2q (see Sect. 2). The space B
1/3
3,c(N) is usually called as the Onsager’s critical space. Along

this direction, there are some progress recently, one can refer to [3,18] for details.
We turn our attention back to the persistence of energy for the surface quasi-geostrophic equa-

tion. A parallel of Constantin-E-Titi’s result for standard surface quasi-geostrophic Eq. (1.2) was ob-
tained by Zhou [34], where the L2-norm conservation for the weak solutions is established provided
θ ∈ L3(0, T ;Bα

3,∞(R2)) with α > 1
3 . Chae [9] proved that the Lp-norm of θ is preserved if the weak

solutions (θ, v) satisfy

v ∈ Lr1(0, T ; Ḃα
p+1,∞(R2)) and θ ∈ Lr2(0, T ;Bα

p+1,∞(R2)),
1
r1

+
p

r2
= 1, α >

1
3
. (1.3)

Very recently, Akramova-Wiedemann [1] presented the following sufficient conditions

θ ∈ Lp1(0, T ; Ḃα
3,∞(R2)), α >

1
3
, p1 ≤ 6

2 − 3α
,

implying Lp-norm conservation of the weak solutions for system (1.2). We would like to mention that
Dai [17] showed that the energy of any viscosity solution of system (1.2) with supercritical dissipation

Λαθ satisfying θ ∈ L2(0, T ;B
1
2
2,c(N)(R

2)) is invariant. However, we note that all the above results are in
Onsager’s subcritical space other than the Onsager’s critical space, which means the regularity of space
is required to satisfy α > 1

3 rather than α = 1
3 . Hence, our first objective is to obtain sufficient conditions

on the regularity of weak solutions to guarantee conservation of the energy for generalized surface quasi-
geostrophic Eq. (1.1) in Onsager’s critical space. Now, we formulate our first result as follows.

Theorem 1.1. Suppose θ ∈ C([0, T ];Lp(R2)), p ∈ [2,∞) is a weak solution of system (1.1) in the sense
of Definition 2.1, then the Lp-norm of θ is preserved, that is, for any t ∈ [0, T ],

‖θ(t)‖Lp(R2) = ‖θ0‖Lp(R2),

provided one of the following conditions is satisfied

θ ∈ Lp+1(0, T ;B
γ
3
p+1,c(N)(R

2)) with 0 < γ <
3
2
; (1.4)

or

θ ∈ Lp+1(0, T ;Bα
p+1,∞(R2)) for any γ − 1 < α < 1 with

3
2

≤ γ < 2. (1.5)

Remark 1.1. Theorem 1.1 extends the result in [13] on the 3-D Euler equations to system (1.1) with
0 < γ < 3

2 . Besides, a special case of this theorem with p = 2 and γ = 1 is novel and improves the
corresponding result in [34]. However, since system (1.1) with 3

2 ≤ γ < 2 is more singular than the case
0 < γ < 3

2 , we only get the subcritical criterion for energy conservation. It would be an interesting problem
to study the persistence of energy for system (1.1) in Onsager’s critical space for the case 3

2 ≤ γ < 2.

Remark 1.2. This theorem reveals how the regularity of the velocity field influences the critical regularity
of the weak solutions preserving the energy in generalized surface quasi-geostrophic Eq. (1.1).

Moreover, when p = 2, the condition θ ∈ L3(0, T ;L3(R2)) in Theorem 1.1 can be removed. Precisely,
we have
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Corollary 1.2. Let 0 < γ < 3
2 . Assume that θ ∈ C([0, T ];L2(R2)) is a weak solution of system (1.1) in

the sense of Definition 2.1 satisfying θ ∈ L3(0, T ; Ḃ
γ
3
3,c(N)(R

2)), then the L2-norm of θ is preserved, that
is, for any t ∈ [0, T ],

‖θ(t)‖L2(R2) = ‖θ0‖L2(R2).

Inspired by the persistence of energy criterion (1.3), we have

Theorem 1.3. Let p ∈ [2,∞), r1 ∈ [1,∞] and r2 ∈ [p,∞] be given, satisfying 1
r1

+ p
r2

= 1. Assume
that θ ∈ C([0, T ];Lp(R2)) is a weak solution of system (1.1) in the sense of Definition 2.1 with v ∈
Lr1(0, T ; Ḃ

1
3
p+1,c(N)(R

2)) and θ ∈ Lr2(0, T ;B
1
3
p+1,∞(R2)), then the Lp-norm of θ is preserved, that is, for

any t ∈ [0, T ],

‖θ(t)‖Lp(R2) = ‖θ0‖Lp(R2).

Remark 1.3. The same result also holds if v ∈ Lr1(0, T ; Ḃ
1
3
p+1,∞(R2)) and θ ∈ Lr2(0, T ;B

1
3
p+1,c(N)(R

2)) by
a slightly modification of the proof of Theorem 1.3, which refines criterion (1.3).

Remark 1.4. Owing to the boundedness of Riesz transforms in homogeneous Besov spaces, Theorem 1.3
guarantees that the L2-norm of weak solutions of system (1.2) satisfying θ ∈ L3(0, T ; Ḃ

1
3
3,c(N)(R

2)) is
constant.

We will provide two approaches to show Theorem 1.1. One is an application of the Littlewood-Paley
theory developed by Cheskidov–Constantin–Friedlander–Shvydkoy in [13]. The second one relies on the
Constantin-E-Titi type commutator estimates in physical Onsager type spaces (see Lemma 2.3). For the
periodic domain T

2, by means of the Constantin-E-Titi type commutator estimates in Besov VMO spaces
in Lemma 2.4, one can further relax the spaces Bβ

p+1,c(N)(T
2) to the larger space Bβ

p+1,V MO(T2) in the
above sufficient conditions for keeping the energy for the generalized surface quasi-geostrophic equation.
We formulate the energy conservation criterion of weak solutions of generalized surface quasi-geostrophic
Eq. (1.1) in Besov VMO spaces below.

Theorem 1.4. Suppose θ ∈ C([0, T ];Lp(T2)), p ∈ [2,∞) is a weak solution of system (1.1) in the sense of
Definition 2.1, then the weak solution θ conserves the Lp-norm provided one of the following conditions
is satisfied

(1) 0 < γ < 3
2 ,

θ ∈ Lp+1(0, T ;B
γ
3
p+1,V MO(T2)) ∩ Lp+1(0, T ;B

γ
3
p+1,∞(T2));

(2) 0 < γ < 2, 1
r1

+ p
r2

= 1, r2 ≥ 1 + 1
p ,

v ∈ Lr1(0, T ;B
1
3
p+1,V MO(T2)) and θ ∈ Lr2(0, T ;B

1
3
p+1,∞(T2));

(3) 0 < γ < 2, 1
r1

+ p
r2

= 1, r1 ≥ 1 + 1
p ,

v ∈ Lr1(0, T ;B
1
3
p+1,∞(T2)) and θ ∈ Lr2(0, T ;B

1
3
p+1,V MO(T2)).

Remark 1.5. Owing to the inclusion relationship B
1
3
3,c(N) ⊆ B

1
3
3,V MO in [3,18], this theorem is an improve-

ment of corresponding result in Theorem 1.1 for the periodic case.

The rest of the paper is organized as follows. In Sect. 2, we present some notations and auxiliary
lemmas which will be frequently used throughout this paper. The energy conservation of weak solutions
for the generalized surface quasi-geostrophic equation is considered in Sect. 3. Concluding remarks are
given in Sect. 4.
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2. Notations and Some Auxiliary Lemmas

Sobolev spaces: First, we introduce some notations used in this paper. For p ∈ [1, ∞], the notation
Lp(0, T ;X) stands for the set of measurable functions on the interval (0, T ) with values in X and
‖f(t, ·)‖X belonging to Lp(0, T ). The classical Sobolev space W k,p(Rd) is equipped with the norm

‖f‖W k,p(Rd) =
k∑

|α|=0

‖Dαf‖Lp(Rd).

Besov spaces: We denote S the Schwartz class of rapidly decreasing functions, S ′ the space of tempered
distributions and S ′/P the quotient space of tempered distributions which modulo polynomials. We use
Ff or f̂ to denote the Fourier transform of a tempered distribution f . To define Besov spaces, we need
the following dyadic unity partition (see e.g. [2]). Choose two nonnegative radial functions �, ϕ ∈ C∞(Rd)
supported respectively in the ball B = {ξ ∈ R

d : |ξ| ≤ 4
3} and the shell C = {ξ ∈ R

d : 3
4 ≤ |ξ| ≤ 8

3} such
that

�(ξ) +
∑
j≥0

ϕ(2−jξ) = 1, ∀ξ ∈ R
d;

∑
j∈Z

ϕ(2−jξ) = 1, ∀ξ �= 0.

Write h = F−1ϕ and h̃ = F−1�, then nonhomogeneous dyadic blocks Δj are defined by

Δju := 0 if j ≤ −2, Δ−1u := �(D)u =
∫
Rd

h̃(y)u(x − y)dy,

and Δju := ϕ
(
2−jD

)
u = 2jd

∫
Rd

h(2jy)u(x − y)dy if j ≥ 0.

The nonhomogeneous low-frequency cut-off operator Sj is defined by

Sju :=
∑

k≤j−1

Δku = �(2−jD)u = 2jd

∫
Rd

h̃(2jy)u(x − y)dy, j ∈ N ∪ 0.

The homogeneous dyadic blocks Δ̇j and homogeneous low-frequency cut-off operators Ṡj are defined for
∀j ∈ Z by

Δ̇ju := ϕ(2−jD)u = 2jd

∫
Rd

h(2jy)u(x − y)dy, j ∈ Z

and Ṡju := �(2−jD)u = 2jd

∫
Rd

h̃(2jy)u(x − y)dy, j ∈ Z

Now we introduce the definition of Besov spaces. Let (p, r) ∈ [1,∞]2, s ∈ R, the nonhomogeneous Besov
space

Bs
p,r :=

{
f ∈ S ′ (

R
d
)
; ‖f‖Bs

p,r
:=
∥∥2js

∥∥Δjf ‖Lp‖�r(Z) < ∞
}

and the homogeneous space

Ḃs
p,r :=

{
f ∈ S ′ (

R
d
)
/P (Rd

)
; ‖f‖Ḃs

p,r
:=
∥∥2js

∥∥ Δ̇jf ‖Lp‖�r(Z) < ∞
}

.

Moreover, for s > 0 and 1 ≤ p, q ≤ ∞, we may write the equivalent norm below in the nonhomogeneous
Besov norm ‖f‖Bs

p,q
of f ∈ S ′

as

‖f‖Bs
p,q

= ‖f‖Lp + ‖f‖Ḃs
p,q

.

Motivated by [13], we define Ḃα
p,c(N) to be the class of all tempered distributions f for which

‖f‖Ḃα
p,∞

< ∞ and lim
j→∞

2jα
∥∥∥Δ̇jf

∥∥∥
Lp

= 0, for any 1 ≤ p ≤ ∞. (2.1)

It is clear that the Besov spaces Ḃα
p,q are included in Ḃα

p,c(N) for any 1 ≤ q < ∞. Likewise, one can define
the Besov spaces Bα

p,c(N) similarly.
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A function f belongs to the Besov-VMO space Lp(0, T ;Bα
q,V MO(Td)) if it satisfies

‖f‖Lp(0,T ;Lq(Td)) < ∞,

and

lim
ε→0

1
εα

(∫ T

0

[ ∫
Td

∫
Bε(x)

− |f(x) − f(y)|qdydx
] p

q

dt

) 1
p

= lim
ε→0

1
εα

(∫ T

0

[ ∫
Td

∫
Bε(0)

− |f(x) − f(x − y)|qdydx
] p

q

dt

) 1
p

= 0.

Mollifier kernel: Let ηε : Rd → R be a standard mollifier.i.e. η(x) = C0e
− 1

1−|x|2 for |x| < 1 and η(x) = 0
for |x| ≥ 1, where C0 is a constant such that

∫
Rd η(x)dx = 1. For ε > 0, we define the rescaled mollifier

ηε(x) = 1
εd η(x

ε ) and for any function f ∈ L1
loc(R

d), its mollified version is defined as

fε(x) = (f ∗ ηε)(x) =
∫
Rd

f(x − y)ηε(y)dy, x ∈ R
d.

Next, we collect some Lemmas which will be used in the present paper.

Lemma 2.1 (Bernstein inequality [2]). Let B be a ball of Rd, and C be a ring of Rd. There exists a positive
constant C such that for all integer k ≥ 0, all 1 ≤ a ≤ b ≤ ∞ and u ∈ La

(
R

d
)
, the following estimates

are satisfied:

sup|α|=k ‖∂αu‖Lb(Rd) ≤ Ck+1λk+d( 1
a − 1

b )‖u‖La(Rd), supp û ⊂ λB,

C−(k+1)λk‖u‖La(Rd) ≤ sup|α|=k ‖∂αu‖La(Rd) ≤ Ck+1λk‖u‖La(Rd), supp û ⊂ λC.

Lemma 2.2 ([26]). Let Ω denote the whole space R
d or the periodic domain T

d. Suppose that f ∈
Lp(0, T ; Ḃα

q,∞(Ω)), g ∈ Lp(0, T ; Ḃβ
q,c(N)(Ω)) with α, β ∈ (0, 1), p, q ∈ [1,∞], then there holds that, for

any k ∈ N
+, as ε → 0,

(1) ‖fε − f‖Lp(0,T ;Lq(Ω)) ≤ CO(εα)‖f‖Lp(0,T ;Ḃα
q,∞(Ω));

(2) ‖∇kfε‖Lp(0,T ;Lq(Ω)) ≤ CO(εα−k)‖f‖Lp(0,T ;Ḃα
q,∞(Ω));

(3) ‖gε − g‖Lp(0,T ;Lq(Ω)) ≤ Co(εβ)‖g‖Lp(0,T ;Ḃβ
q,c(N)(Ω));

(4) ‖∇kgε‖Lp(0,T ;Lq(Ω)) ≤ Co(εβ−k)‖g‖Lp(0,T ;Ḃβ
q,c(N)(Ω));

Remark 2.1. The results still hold for g ∈ Lp(0, T ;Bβ
q,V MO(Td)), whose proof is proposed in [3,27,28].

Next, we will state the Constantin-E-Titi type commutator estimates in physical Onsager type spaces
(see also [33]).

Lemma 2.3. ([26]) Let Ω denote the whole space Rd or the periodic domain T
d. Assume that 0 < α, β < 1,

1 ≤ p, q, p1, p2 ≤ ∞ and 1
p = 1

p1
+ 1

p2
, then as ε → 0, there holds,

‖(fg)ε − fεgε‖Lp(0,T ;Lq(Ω)) ≤ Co(εα+β), (2.2)

provided one of the following three conditions holds
(1) f ∈ Lp1(0, T ; Ḃα

q1,c(N)(Ω)), g ∈ Lp2(0, T ; Ḃβ
q2,∞(Ω)),1 ≤ q1, q2 ≤ ∞ 1

q = 1
q1

+ 1
q2
;

(2) ∇f ∈ Lp1(0, T ;Bα
q1,c(N)(Ω)), ∇g ∈ Lp2(0, T ;Bβ

q2,∞(Ω)), 2
d + 1

q = 1
q1

+ 1
q2
,1 ≤ q1, q2 < d;

(3) f ∈ Lp1(0, T ;Bα
q1,c(N)(Ω)), ∇g ∈ Lp2(0, T ;Bβ

q2,∞(Ω)), 1
d + 1

q = 1
q1

+ 1
q2
,1 ≤ q2 < d, 1 ≤ q1 ≤ ∞.

The Constantin-E-Titi type commutator estimates in Besov VMO spaces was initiated by Bardos,
Gwiazda, Świerczewska-Gwiazda, Titi and Wiedemann in [3]. The readers may refer to [27,28] for the
proof of the following version.
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Lemma 2.4. ([3,27,28]) Assume that 0 < α, β < 1, 1 ≤ p, q, p1, p2 ≤ ∞ and 1
p = 1

p1
+ 1

p2
. Then, there

holds

‖(fg)ε − fεgε‖Lp(0,T ;Lq(Td)) ≤ o(εα+β), as ε → 0, (2.3)

provided that one of the following conditions is satisfied,

(1) f ∈ Lp1(0, T ;Bα
q1,V MO(Td)), g ∈ Lp2(0, T ;Bβ

q2,V MO(Td)), 1 ≤ q1, q2 ≤ ∞, 1
q = 1

q1
+ 1

q2
;

(2) f ∈ Lp1(0, T ;Bα
q1,V MO(Td)), g ∈ Lp2(0, T ; Ḃβ

q2,∞(Td)), 1 ≤ q1, q2 ≤ ∞, 1
q = 1

q1
+ 1

q2
, q2 ≥ q1

q1−1 and
p2 ≥ q1

q1−1 .

For the convenience of readers, we present the definition of the weak solutions of the surface quasi-
geostrophic Eq. (1.1).

Definition 2.1. A function θ ∈ Cweak([0, T ];Lp(R2)) is called a weak solution of the 2-D quasi-geostrophic
equation with initial data θ0 ∈ Lp(R2) with p ∈ [2,∞) and v ∈ L

p
p−1 ((0, T ) × (R2)) if there holds∫

R2
[θ(x, t)ϕ(x, t) − θ(x, 0)ϕ(x, 0)]dx =

∫ t

0

∫
R2

θ(x, s)
(
∂tϕ(x, s) + v(x, s) · ∇ϕ(x, s)

)
dxds (2.4)

and

v(x, t) = R⊥Λγ−1θ, (2.5)

for any test function ϕ ∈ C∞
0 ([0, T ];C∞(R2)).

3. Energy Conservation of Weak Solutions for the Surface Quasi-Geostrophic Equation

3.1. Energy Conservation in Besov Spaces

In this subsection, our main task is to prove Theorem 1.1. Two different approaches will be provided.
One is Littlewood-Paley theory developed by Cheskidov–Constantin–Friedlander-Shvydkoy in [13] and
the other is mainly to use Constantin-E-Titi type commutator estimates in Onsager type spaces (see
Lemma 2.3).

Proof of Theorem 1.1.

Approach 1: Littlewood-Paley theory.
Multiplying the first equation of system (1.1) by SN (SNθ|SNθ|p−2) with p ≥ 2 (see the notations in

Sect. 2), together with the incompressible condition and using integration by parts, we see that

1
p

d

dt

∫
R2

|SNθ|pdx = (p − 1)
∫
R2

SN (v�θ)∂�SNθ|SNθ|p−2dx.

Since the divergence-free condition of the velocity field v(x, t) helps us to derive that∫
R2

SNv�∂�SNθSNθ|SNθ|p−2dx = 0,

we conclude that
1
p

d

dt

∫
R2

|SNθ|pdx = (p − 1)
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx.

Taking advantage of the Hölder inequality, we discover that∣∣∣
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx

∣∣∣
≤ C‖SN (v�θ) − SNv�SNθ‖

L
p+1
2 (R2)

‖∂�SNθ‖Lp+1(R2)‖|SNθ|p−2‖
L

p+1
p−2 (R2)
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≤ C‖SN (v�θ) − SNv�SNθ‖
L

p+1
2 (R2)

‖∂�SNθ‖Lp+1(R2)‖SNθ‖p−2
Lp+1(R2). (3.1)

Note that

SN (v�θ) − SNv�SNθ

= 22N

∫
R2

h̃(2Ny)[v�(x − y) − v�(x)][θ(x − y) − θ(x)]dy − (v� − SNv�)(θ − SNθ), (3.2)

where we used 22N
∫
R2 h̃(2Ny)dy = F(h̃(·))|ξ=0 = 1. By the Minkowski inequality, we get

‖SN (v�θ) − SNv�SNθ‖
L

p+1
2 (R2)

≤ 22N

∫
R2

|h̃(2Ny)|‖v�(x − y) − v�(x)‖Lp+1(R2)‖θ(x − y) − θ(x)‖Lp+1(R2)dy

+ ‖v� − SNv�‖Lp+1(R2)‖θ − SNθ‖Lp+1(R2)

= I + II.

Now, we estimate I. In view of the mean value theorem and the Bernstein inequality in Lemma 2.1, we
know that

‖v�(x − y) − v�(x)‖Lp+1(R2) ≤ C
(∑

j<N

2j |y|‖Δ̇jv‖Lp+1(R2) +
∑
j≥N

‖Δ̇jv‖Lp+1(R2)

)
. (3.3)

Furthermore, using the Bernstein inequality again and the boundedness of Riesz transforms on Lebesgue
spaces yields that

‖Δ̇jv‖Lp+1(R2) = ‖R⊥Λγ−1Δ̇jθ‖Lp+1(R2) ≤ C2j(γ−1)‖Δ̇jθ‖Lp+1(R2), for 0 < p < ∞.

This together with (3.3) means that

‖v�(x − y) − v�(x)‖Lp+1(R2)

≤ C
(
2N(γ−α)|y|

∑
j<N

2−(N−j)(γ−α)2jα‖Δ̇jθ‖Lp+1(R2)

+2(γ−1−α)N
∑
j≥N

2(N−j)(α+1−γ)2jα‖Δ̇jθ‖Lp+1(R2)

)
. (3.4)

Before going further, in the spirit of [13], we set the following localized kernel

K1(j) =

{
2j(α+1−γ), if j ≤ 0,

2−(γ−α)j , if j > 0,
(3.5)

and we denote ḋj = 2jα‖Δ̇jθ‖Lp+1(R2). As a consequence, we get

‖v�(x − y) − v�(x)‖Lp+1(R2) ≤C
[
2N(γ−α)|y| + 2(γ−1−α)N

] (
K1 ∗ ḋj

)
(N)

≤C(2N |y| + 1)2(γ−1−α)N
(
K1 ∗ ḋj

)
(N).

To bound ‖θ(x − y) − θ(x)‖Lp+1(R2), we denote

K2(j) =

{
2jα, if j ≤ 0,

2−(1−α)j , if j > 0.
(3.6)

Using the same procedure to obtain (3.3) and (3.4) yields

‖θ(x − y) − θ(x)‖Lp+1(R2)

≤ C
(∑

j<N

2j |y|‖Δ̇jθ‖Lp+1(R2) +
∑
j≥N

‖Δ̇jθ‖Lp+1(R2)

)
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≤ C
(
2N(1−α)|y|

∑
j<N

2−(N−j)(1−α)2jα‖Δ̇jθ‖Lp+1(R2) + 2−αN
∑
j≥N

2(N−j)α2jα‖Δ̇jθ‖Lp+1(R2)

)

≤ C(2N |y| + 1)2−αN
(
K2 ∗ ḋj

)
(N). (3.7)

Notice that

sup
N

22N

∫
R2

|h̃(2Ny)|(2N |y| + 1)2dy < ∞.

Hence, we deduce from (3.4) and (3.7) that

I ≤ C2(γ−1−α)N
(
K1 ∗ ḋj

)
(N)2−αN

(
K2 ∗ ḋj

)
(N).

In light of the Bernstein inequality, we infer that

‖v� − SNv�‖Lp+1(R2) ≤
∑
j≥N

‖Δ̇jv‖Lp+1 ≤ C2(γ−1−α)N
(
K1 ∗ ḋj

)
(N),

where we used N > 0. Likewise,

‖θ − SNθ‖Lp+1(R2) ≤ C2−αN
(
K2 ∗ ḋj

)
(N),

from which it follows that

II ≤ C2(γ−1−α)N
(
K1 ∗ ḋj

)
(N)2−αN

(
K2 ∗ ḋj

)
(N).

Consequently, we know that

‖SN (v�θ) − SNv�SNθ‖
L

p+1
2 (R2)

≤ C2(γ−1−α)N
(
K1 ∗ ḋj

)
(N)2−αN

(
K2 ∗ ḋj

)
(N). (3.8)

We conclude by some straightforward calculations that

‖∂�SNθ‖Lp+1(R2) ≤
∑
j≤N

2j‖Δjθ‖Lp+1(R2) ≤ 2N(1−α) (K2 ∗ dj) (N), (3.9)

where dj = 2jα‖Δjθ‖Lp+1(R2). Inserting (3.8) and (3.9) into (3.1) gives
∣∣∣
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx

∣∣∣
≤ C2(γ−3α)N

(
K1 ∗ ḋj

)
(N)

(
K2 ∗ ḋj

)
(N) (K2 ∗ dj) (N)‖SNθ‖p−2

Lp+1(R2)

≤ C2(γ−3α)N
(
K1 ∗ ḋj

)
(N)

(
K2 ∗ ḋj

)
(N) (K2 ∗ dj) (N)‖θ‖p−2

Lp+1(R2). (3.10)

By choosing α satisfying
{

γ − 1 < α < γ,

0 < α < 1,
(3.11)

we know that K1,K2 ∈ l1(Z).
Case 1: If we choose α = γ

3 , then by (3.11), 0 < γ < 3
2 . It follows from (3.10) that

∣∣∣
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx

≤ C
(
K1 ∗ ḋj

)
(N)

(
K2 ∗ ḋj

)
(N)‖θ‖p−1

Bα
p+1,∞(R2). (3.12)
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Since θ ∈ Lp+1(0, T ;B
γ
3
p+1,c(N)(R

2)), we have
∫ T

0

∣∣∣
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx

∣∣∣dt

≤ C

∫ T

0

(
K1 ∗ ḋj

)
(N)

(
K2 ∗ ḋj

)
(N)‖θ‖p−1

Bα
p+1,∞(R2)dt

≤ C

∫ T

0

‖θ(t)‖p+1
Bα

p+1,∞(R2)dt < ∞.

Hence, we conclude by the the dominated convergence theorem that∫ T

0

∣∣∣
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx

∣∣∣dt

≤ C

∫ T

0

(
K1 ∗ ḋj

)
(N)

(
K2 ∗ ḋj

)
(N)‖θ(t)‖p−1

Bα
p+1,∞(R2)dt → 0, as N → +∞

Case 2: When 3
2 ≤ γ < 2, we choose α satisfying γ

3 ≤ γ − 1 < α < 1. From (3.10), we get∣∣∣
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx

∣∣∣
≤ C2(γ−3α)N‖θ‖p+1

Bα
p+1,∞(R2),

which gives ∫ T

0

∣∣∣
∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dx

∣∣∣dt

≤ C2(γ−3α)N

∫ T

0

‖θ(t)‖p+1
Bα

p+1,∞(R2)dt → 0, as N → +∞.

Hence, no matter in which case, we have∣∣∣
∫ T

0

∫
R2

[
SN (v�θ) − SNv�SNθ

]
∂�SNθ|SNθ|p−2dxdt

∣∣∣→ 0, as N → +∞.

Then we can complete the proof of Theorem 1.1.

Approach 2: Constantin-E-Titi type commutator estimates in Onsager type spaces.
Mollifying system (1.1) in spatial direction (see the notations in Sect. 2) and using the divergence-free

condition, we know that

θε
t + div(vθ)ε = 0,

which yields that
1
p

d

dt

∫
R2

|θε|pdx = (p − 1)
∫
R2

(v�θ)ε∂�θ
ε|θε|p−2dx.

The incompressible condition allows us to formulate the above equation as
1
p

d

dt

∫
R2

|θε|pdx = (p − 1)
∫
R2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

ε|θε|p−2dx,

which immediately means

1
p

(‖θε(x, t)‖Lp(R2) − ‖θε(x, 0)‖Lp(R2)

)
= (p − 1)

∫ t

0

∫
R2

(
(v�θ)ε − vε

�θ
ε
)
∂�θ

ε|θε|p−2dxds. (3.13)

The Hölder inequality enables us to get∣∣∣
∫ t

0

∫
R2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

ε|θε|p−2dxds
∣∣∣
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≤ C‖(v�θ)ε − vε
�θ

ε‖
L

p+1
2 (0,T ;L

p+1
2 (R2))

‖∂�θ
ε‖Lp+1(0,T ;Lp+1(R2))‖|θε|p−2‖

L
p+1
p−2 (0,T ;L

p+1
p−2 (R2))

. (3.14)

Since Bs
p,q = Ḃs

p,q ∩ Lp for s > 0, the hypothesis θ ∈ Lp+1(0, T ;Bα
p+1,c(N)(R

2)) means θ ∈ Lp+1

(0, T ; Ḃα
p+1,c(N)(R

2)). This together with the boundedness of Riesz transforms in homogeneous Besov
spaces gives

v = R⊥Λγ−1θ ∈ Lp+1(0, T ; Ḃα−γ+1
p+1,c(N)(R

2)).

Combining θ ∈ Lp+1(0, T ; Ḃα
p+1,c(N)(R

2)) with v ∈ Lp+1(0, T ; Ḃα−γ+1
p+1,c(N)(R

2)) and invoking Lemma 2.3, we
see that, as ε → 0,

‖(v�θ)ε − vε
�θ

ε‖
L

p+1
2 (0,T ;L

p+1
2 (R2))

≤ o(ε2α−γ+1), (3.15)

where α is selected to satisfy 0 < α < 1 and 0 < α − γ + 1 < 1. Using Lemma 2.2, we know that, as
ε → 0,

‖∂�θ
ε‖Lp+1(0,T ;Lp+1(R2)) ≤ o(εα−1). (3.16)

Moreover, in view of the definition of Besov spaces, we have

‖|θε|p−2‖
L

p+1
p−2 (0,T ;L

p+1
p−2 (R2))

≤ C‖θε‖p−2
Lp+1(0,T ;Lp+1(R2)) ≤ C‖θ‖p−2

Lp+1(0,T ;Bα
p+1,c(N)(R

2)). (3.17)

Then substituting (3.15)–(3.17) into (3.14), setting α = γ
3 with 0 < γ < 3

2 , we have
∣∣∣
∫ t

0

∫
R2

[
(v�θ)ε − vε

�θ
ε
]
∂iθ

ε|θε|p−2dxds
∣∣∣ ≤ o(ε3α−γ)‖θ‖p−2

Lp+1(0,T ;Bα
p+1,c(N)(R

2)) → 0, as ε → 0.

Then we have completed the proof of the first part of Theorem 1.1. By using a similar argument to get
(3.15)-(3.17), we can conclude the second part of Theorem 1.1 for θ ∈ Lp+1(0, T ;Bα

p+1,∞(R2)). �

Proof of Corollary 1.2. By a slight variant of the above proof, one can show this corollary. Indeed, we
conclude by (3.13) with p = 2 that

‖θε(x, t)‖L2(R2) − ‖θε(x, 0)‖L2(R2) = 2
∫ t

0

∫
R2

(
(v�θ)ε − vε

�θ
ε
)
∂�θ

εdxds. (3.18)

With the help of Hölder’s inequality, we discover that
∣∣∣
∫ t

0

∫
R2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

εdxds
∣∣∣

≤ C‖(v�θ)ε − vε
�θ

ε‖
L

3
2 (0,T ;L

3
2 (R2))

‖∂�θ
ε‖L3(0,T ;L3(R2)). (3.19)

A combination of θ ∈ L3(0, T ; Ḃα
3,c(N)(R

2)) and the boundedness of Riesz transforms in homogeneous

Besov spaces yield v = R⊥Λγ−1θ ∈ L3(0, T ; Ḃα−γ+1
3,c(N) (R2)). Hence, by applying Lemma 2.3 to θ ∈

L3(0, T ; Ḃα
3,c(N)(R

2)) and v ∈ L3(0, T ; Ḃα−γ+1
3,c(N) (R2)), we derive that, as ε → 0,

‖(v�θ)ε − vε
�θ

ε‖
L

3
2 (0,T ;L

3
2 (R2))

≤ o(ε2α−γ+1), (3.20)

where 0 < α < 1 and 0 < α − γ + 1 < 1 are required. Moreover, according to Lemma 2.2, we observe
that, as ε → 0,

‖∂�θ
ε‖L3(0,T ;L3(R2)) ≤ o(εα−1). (3.21)

By plugging (3.20)-(3.21) into (3.19) and taking α = γ
3 with 0 < γ < 3

2 , we end up with
∣∣∣
∫ t

0

∫
R2

[
(v�θ)ε − vε

�θ
ε
]
∂iθ

εdxds
∣∣∣ ≤ o(ε3α−γ) → 0, as ε → 0.

At this stage, this corollary is proved. �
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Next, we present the proof of Theorem 1.3. To prove Theorem 1.3, it suffices to replace (3.4) by

‖v�(x − y) − v�(x)‖Lp+1(R2)

≤ C

⎛
⎝2N(1−α)|y|

∑
j≤N

2−(N−j)(1−α)2jα‖Δ̇jv‖Lp+1(R2) + 2−αN
∑
j>N

2(N−j)(α)2jα‖Δ̇jv‖Lp+1(R2)

⎞
⎠

≤ C
[
2N(1−α)|y| + 2−αN

] (
K1 ∗ ḋj

)
(N)

≤ C(2N |y| + 1)2−αN
(
K1 ∗ ḋj

)
(N),

where

K1(j) =

{
2jα, if j ≤ 0,

2−(1−α)j , if j > 0,

and ḋj = 2jα‖Δ̇jv‖Lp+1 . We omit the details here. We only outline its proof by Constantin-E-Titi type
commutator estimates in physical Onsager type spaces in the following.

Proof of Theorem 1.3. Based on the second proof of Theorem 1.1, we just give the key estimates. It
follows from the Hölder inequality that∣∣∣

∫ t

0

∫
R2

[
(v�θ)ε − vε

�θ
ε
]
∂iθ

ε|θε|p−2dxds
∣∣∣

≤ C‖(v�θ)ε − vε
�θ

ε‖
L

r1r2
r1+r2 (0,T ;L

p+1
2 (R2))

‖∂�θ
ε‖Lr2 (0,T ;Lp+1(R2))‖|θε|p−2‖

Lp4 (0,T ;L
p+1
p−2 (R2))

, (3.22)

where r1+r2
r1r2

+ 1
r2

+ 1
p4

= 1.

From v ∈ Lr1(0, T ; Ḃ
1
3
p+1,c(N)) and θ ∈ Lr2(0, T ; Ḃ

1
3
p+1,∞), we deduce from Lemma 2.3 that, as ε → 0,

‖(v�θ)ε − vε
�θ

ε‖
L

r1r2
r1+r2 (0,T ;L

p+1
2 (R2))

≤ Co(ε
2
3 ). (3.23)

From Lemma 2.2, we infer that, as ε → 0,

‖∂�θ
ε‖Lr2 (0,T ;Lp+1(R2)) ≤ CO(ε− 2

3 ). (3.24)

According to the definition of Besov spaces, we have

‖|θε|p−2‖
Lp4 (0,T ;L

p+1
p−2 (R2))

≤ C‖θε‖p−2

Lp4(p−2)(0,T ;Lp+1(R2))
≤ C‖θ‖p−2

Lr2 (0,T ;B
1
3
p+1,∞)

, (3.25)

where we used p4(p − 2) = r2, which means p
r2

+ 1
r1

= 1 and p ≥ 2.
Then substituting (3.23)–(3.25) into (3.22) and letting ε → 0, we have∣∣∣

∫ t

0

∫
R2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

ε|θε|p−2dxds
∣∣∣ ≤ Co(1)‖θ‖p−2

Lp4(p−2)(0,T ;B
1
3
p+1,∞)

→ 0.

Then we have completed the proof of Theorem 1.3. �

3.2. Energy Conservation in Besov VMO Spaces

We address the energy conservation of weak solutions of the generalized surface quasi-geostrophic Eq. (1.1)
in Besov VMO spaces in this subsection.

Proof of Theorem 1.4. (1) With (3.13) in hand, it suffices to show that
∫ t

0

∫
T2

[
(v�θ)ε−vε

�θ
ε
]
∂�θ

ε|θε|p−2dxds
converges to 0 as ε → 0. We deduce from (3.14) that∣∣∣

∫ t

0

∫
T2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

ε|θε|p−2dxds
∣∣∣
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≤ C‖(v�θ)ε − vε
�θ

ε‖
L

p+1
2 (0,T ;L

p+1
2 (T2))

‖∂�θ
ε‖Lp+1(0,T ;Lp+1(T2))‖|θε|p−2‖

L
p+1
p−2 (0,T ;L

p+1
p−2 (T2))

. (3.26)

We conclude from θ ∈ Lp+1(0, T ;B
γ
3
p+1,∞(T2)) that θ ∈ Lp+1(0, T ; Ḃ

γ
3
p+1,∞(T2)). A combination of this

and v = R⊥Λγ−1θ implies that v ∈ Lp+1(0, T ; Ḃ1− 2γ
3

p+1,∞(T2)).

According to θ ∈ Lp+1(0, T ;B
γ
3
p+1,V MO(T2)), v ∈ Lp+1(0, T ; Ḃ1− 2γ

3
p+1,∞(T2)) and Lemma 2.4, we obtain,

as ε → 0,

‖(v�θ)ε − vε
�θ

ε‖
L

p+1
2 (0,T ;L

p+1
2 (T2))

≤ o(ε1− γ
3 ). (3.27)

From Remark 2.1, we know that, as ε → 0,

‖∂�θ
ε‖Lp+1(0,T ;Lp+1(T2)) ≤ o(ε

γ
3 −1). (3.28)

Inserting (3.27), (3.28) and (3.17) into (3.26), we end up with

∣∣∣
∫ t

0

∫
T2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

ε|θε|p−2dxds
∣∣∣ ≤ o(1)‖θ‖p−2

Lp+1(0,T ;B
γ
3

p+1,∞(T2))
→ 0, ε → 0.

This yields the desired energy balance.

(2) v ∈ Lr1(0, T ;B
1
3
p+1,V MO(T2)), θ ∈ Lr2(0, T ;B

1
3
p+1,∞(T2)) and Lemma 2.4 guarantee that

‖(v�θ)ε − vε
�θ

ε‖
L

r1r2
r1+r2 (0,T ;L

p+1
2 (T2))

≤ Co(ε
2
3 ), as ε → 0, (3.29)

where we have to require r2 ≥ 1 + 1
p .

Plugging (3.29), (3.24) and (3.25) into (3.22), we arrive at, as ε → 0,

∣∣∣
∫ t

0

∫
T2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

ε|θε|p−2dxds
∣∣∣ ≤ o(1)‖θ‖p−2

Lr2 (0,T ;B
1
3
p+1,∞(T2))

.

This implies the desired energy law.

(3) It follows from v ∈ Lr1(0, T ;B
1
3
p+1,∞(T2)), θ ∈ Lr2(0, T ;B

1
3
p+1,V MO(T2)) and Lemma 2.4 that

‖(v�θ)ε − vε
�θ

ε‖
L

r1r2
r1+r2 (0,T ;L

p+1
2 (R2))

≤ Co(ε
2
3 ), as ε → 0, (3.30)

where we need r1 ≥ 1 + 1
p .

Thanks to Remark 2.1, we discover that

‖∂�θ
ε‖Lr2 (0,T ;Lp+1(R2)) ≤ Co(ε− 2

3 ). (3.31)

Making use of the definition of Besov VMO space, we calculate

‖|θε|p−2‖
Lp4 (0,T ;L

p+1
p−2 (T2))

≤ C‖θε‖p−2

Lp4(p−2)(0,T ;Lp+1(T2))
≤ C‖θ‖p−2

Lr2 (0,T ;B
1
3
p+1,V MO(T2))

, (3.32)

and p
r2

+ 1
r1

= 1. Substituting (3.30)–(3.32) into (3.22), we infer that, as ε → 0,

∣∣∣
∫ t

0

∫
T2

[
(v�θ)ε − vε

�θ
ε
]
∂�θ

ε|θε|p−2dxds
∣∣∣ ≤ o(1)‖θ‖p−2

Lr2 (0,T ;B
1
3
p+1,V MO(T2))

.

This means the desired energy relation. The theorem is thus proved. �
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4. Conclusion

We apply the Littlewood-Paley theory as [13] and the Constantin-E-Titi type commutator estimates in
Onsager type spaces to study the energy conservation of weak solutions for the generalized surface quasi-
geostrophic equation with the velocity v determined by v = R⊥Λγ−1θ with 0 < γ < 2, respectively. For
the case 0 < γ < 3

2 , the sufficient conditions for the energy conservation of weak solutions of this equation
in Onsager’s critical space are derived. For the more singular case 3

2 ≤ γ < 2, we obtain the corresponding
results in subcritical spaces. For periodic domain, we consider the energy conservation of weak solutions
in Besov VMO space recently introduced by Fjordholm-Wiedemann in [18]. As pointed in [3], the space

B
1
3
3,V MO is an almost optimal regularity class for the conservation of energy. It is worth remarking that

the sufficient conditions for implying the conservation of Lp-norm for p ∈ (1, 2) are unknown in the
generalized surface quasi-geostrophic equation.

A natural question is to extend our results to other models which modify the velocity field. A possible
candidate is the inviscid Leary-α or Euler-α system. After we completed the main part of this paper, we
learned the energy conservation of these models recently studied by Beekie-Novack in [4] and Boutros-
Titi in [6]. Compared with their results, the results here give how the critical regularity for the energy
conservation of the weak solutions depends on the the parameter γ of the velocity. It seems that the
arguments in this paper can be applicable to other fluid models such as the surface growth model without
dissipation

ht + ∂xx(hx)2 = 0, (4.1)

where h stands for the height of a crystalline layer. The background of the surface growth model (4.1) can
be found in [5,24,25,29]. The energy conservation in the Besov space L3(0, T ;Bα

3,∞(T3)) with α > 1/3
was considered in [29]. One can establish the persistence of energy criterion in the Onsager’s critical
spaces for the inviscid surface growth model (4.1).

The non-uniqueness of weak solutions to the standard surface quasi-geostrophic Eq. (1.2) can be found
in [7,19]. It would be interesting to show that the weak solutions to the generalized quasi-geostrophic
Eq. (1.1) are not unique.
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