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Abstract. We investigate the long-time behaviour of a coupled PDE–ODE system that describes the motion of a rigid body
of arbitrary shape moving in a viscous incompressible fluid. We assume that the system formed by the rigid body and the
fluid fills the entire space R

3. We extend in this way our previous results which were limited to the case when the rigid body
was a ball. More precisely, we show that, under appropriate assumptions (in particular smallness ones) on the initial velocity
field, the position of the rigid body converges to some final configuration as time goes to infinity. Finally, we show that our
methodology can be applied in the case of several rigid bodies of arbitrary shapes moving in a viscous incompressible fluid.

Mathematics Subject Classification. 35Q35, 35B40, 76D03, 76D05.

Keywords. Fluid–structure interaction, Incompressible Navier–Stokes system, Large time behaviour.

1. Introduction

Consider a homogeneous rigid body which occupies at instant t � 0 a smooth bounded domain S(t) which
is moving in a viscous incompressible fluid which fills the remaining part of R3. The domain occupied by
the fluid at instant t is denoted by F(t) := R

3\S(t).
We denote by h(t) and Q(t) the position of the centre of mass at instant t and the orthogonal matrix

giving the orientation of the rigid body at instant t, respectively. We thus have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(t) = {h(t) + Q(t)x | x ∈ S(0)} (t � 0),

Q̇(t)Q(t)−1x = ω̃(t) × x (t � 0, x ∈ R
3),

Q(0) = I3,

(1.1)

where ω̃(t) is the angular velocity of the rigid body at instant t. Moreover, the velocity and pressure fields
in the fluid are denoted by ũ and π̃, respectively. With the above notation, the system describing the
coupled motion of the rigid body and of the fluid is completed by the equations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tũ + (ũ · ∇)ũ − μΔũ + ∇π̃ = 0 (t > 0, x ∈ F(t)),
div ũ = 0, (t > 0, x ∈ F(t)),
ũ(t, x) = ḣ(t) + ω̃(t) × (x − h(t)) (t > 0, x ∈ ∂F(t)),
mḧ(t) = − ∫

∂S(t)
σ(ũ, π̃)ν ds (t > 0),

J ˙̃ω(t) = Jω̃(t) × ω̃(t) − ∫

∂S(t)
(x − h(t)) × σ(ũ, π̃)ν ds (t > 0),

ũ(0, x) = u0(x) (y ∈ F(0)),
h(0) = 0, ḣ(0) = �0, ω̃(0) = ω0.

(1.2)

In the above equations, the fluid is supposed to be homogeneous with density equal to 1 and of constant
viscosity μ > 0. Moreover, the unit vector field normal to ∂S(t) and directed towards the interior of S(t)
is denoted by ν(t, ·). The constant m > 0 denotes the mass of the rigid body and the matrix J(t) stands
for the inertia tensor of the rigid body at time t > 0, whereas the Cauchy stress tensor field in the fluid
is given by the constitutive law

σ(ũ, π̃)k� = −π̃δk� + μ

(
∂ũk

∂y�
+

∂ũ�

∂yk

)

(1 � k, � � 3),

with δk� standing for the Kronecker symbol. The above equations can be easily adapted to the case of
several rigid bodies, situation which will be studied in Sect. 8.

Over the last two decades, there has been considerable interest in the studying of the initial and
boundary value problem (1.1)–(1.2). We refer to Serre [17], Takahashi [19], Takahasi and Tucsnak [20],
Cumsille and Takahashi [1], Geissert et. al [7] and the references therein regarding wellposedness issues for
(1.1)–(1.2), and we discuss the existing results on the large time behaviour of solutions, particularly the
trajectory of the rigid body, in more detail here. For the corresponding system in two space dimensions
Ervedoza et. al [3] considered the case when the rigid body is a disk. They proved that, under suitable
regularity and smallness assumptions on the initial data, the velocity of the mass centre of the rigid body,
denoted by ḣ(t), decays like t−1, as t → ∞, thus not excluding the possibility of an unbounded trajectory
of the rigid disk. Ferriere and Hillairet [5] studied the same system and they were able to remove the
smallness assumption on the initial data. As far as we know, describing the large time behavior in the
two-dimensional case with solids of arbitrary shapes is still an open question. The large time behaviour,
that we are interested in this work, in the case of three space dimensions, has recently been described in
[4], provided that the rigid is a ball. The main result in [4] asserts that, given ε ∈ (0, 1/2), under suitable
regularity and smallness assumptions on the initial data, ḣ(t) decays quicker then t−(3/2−ε). In particular,
this means that the position of the centre of the rigid ball converges to some h∞ ∈ R

3, as t → ∞. Very
recently, Galdi [6] proved that, with a rigid body of arbitrary shape in three space dimensions, the velocity
fields of the fluid and of the solid tend to zero (in appropriate norms). The results in [6] contain no decay
estimates so that they cannot be directly used to investigate the potential stabilization of the position of
the rigid body towards a “final” position.

In this paper we consider rigid bodies of arbitrary shapes and we provide decay rates for fluid velocity
ũ as well as for the solid velocities ḣ and ω̃ (see Theorem 2.3 below). More precisely, we show that, given
ε > 0 arbitrarily small and under suitable regularity and smallness assumptions on the initial data, ḣ(t)
and ω̃(t) decay quicker then t−(3/4−ε) when t → ∞, see Corollary 2.5 below. Due to the necessity of new
estimates (involving, in particular, second order derivatives of the velocity field), these estimates provide
a slower decay than in the case of a rigid ball. Nevertheless, our decay estimates are sufficient to conclude
that the rigid body “asymptotically stops” at some finite distance. More precisely, we show that there

exist p > 1 and η > p−1
p such that the map t �→ (1 + t2)

η
2

[
ḣ(t)
ω̃(t)

]

lies in Lp([0,∞);R6), which implies, in

particular, that h ∈ L∞([0,∞);R3) (see Corollary 2.5 below).
We also show that our methodology adapts to the case of multiple rigid bodies. As far as we know,

this is the first result that describes the long-term behaviour of several rigid bodies moving in a three-
dimensional viscous incompressible fluid. In fact, our results appear to be the first to establish global
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existence and uniqueness (for small initial data) in the three-dimensional case with multiple rigid bodies.
For global wellposedness in two space dimensions and with several moving disks we refer to Sabbagh [16].

The plan of this article is as follows. In Sect. 2, we introduce some notations that will be used through-
out the paper. Our main results are stated in Theorem 2.3 and Corollary 2.5. To this aim, we introduce
a change of variables and rewrite system (1.2) in the reference configuration in Sect. 3. The main result
in the reference configuration is stated in Theorem 3.4. In Sect. 4 we introduce the fluid–structure opera-
tor and we recall some of its properties from [4]. Section 5 is devoted to the establishment of the decay
estimates of the fluid–structure semigroup. We recall, in particular, the Lq − Lr decay estimates already
proved in [4] and then we prove some new decay estimates, which are made necessary by new terms
appearing in the change of variables. In Sect. 6 we prove infinite time maximal type regularity results for
a non homogeneous linear fluid–structure system. Theorems 3.4 and 2.3 are proved in Sect. 7. Finally, in
Sect. 8 we explain how our results extend to the case of several rigid bodies.

2. Main Results

We first introduce several function spaces needed to state our main results. Let G ⊂ R
3 be an open

set with smooth boundary. For every q > 1 and k ∈ N, we denote the standard Lebesgue and Sobolev
spaces by Lq(G) and by W k,q(G), respectively. The notation W s,q(G), with s ∈ R and q > 1 stands for
the Sobolev–Slobodeckij spaces. The norms on [Lq(G)]n and [W s,q(G)]n with n ∈ N, will be denoted by
‖ · ‖q,G and ‖ · ‖s,q,G, respectively. When G = R

3, these norms will be simply denoted by ‖ · ‖q and ‖ · ‖s,q,
respectively. Moreover, the space W k,q

0 (G) is defined as the completion of C∞
0 (G) with respect to the

W k,q(G) norm. For k,m ∈ N, k < m, and for 1 < p < ∞, 1 < q < ∞, we consider the standard definition
of the Besov spaces by real interpolation of Sobolev spaces

Bs
q,p(G) =

(
W k,q(G),Wm,q(G)

)

θ,p
where s = (1 − θ)k + θm, θ ∈ (0, 1).

We refer to Triebel [22] for a detailed presentation of the Besov spaces. We denote by Ck
b (G) the set of

continuous and bounded functions with derivatives continuous and bounded up to the order k on G. For
τ ∈ (0,∞] we set

W 1,2
p,q ((0, τ);G) = Lp((0, τ);W 2,q(G)) ∩ W 1,p((0, τ);Lq(G)). (2.1)

For η � 0, p ∈ [1,∞] and for a Banach space X , we set

Lp
η([0,∞);X ) :=

{
f | (1 + t2)η/2f(t) ∈ Lp([0,∞);X )

}
, (2.2)

W 1,p
η ((0,∞);X ) :=

{
f | (1 + t2)η/2∂m

t f(t) ∈ Lp([0,∞);X ) for m = 0, 1
}

. (2.3)

With the above notation, we define

W 1,2
p,q,η((0,∞);G) := Lp

η([0,∞);W 2,q(G)) ∩ W 1,p
η ((0,∞);Lq(G)). (2.4)

To state our main results we need some Banach spaces of functions defined on time variable domains.

Definition 2.1. Let 1 < p, q < ∞, let m be a non negative integer and let η � 0. Let h ∈ W 1,∞((0,∞);R3),
Q ∈ W 1,∞((0,∞);M3×3(R3)), let S(·) and F(·) be defined by (1.1) and let F(t) := R

3\S(t) for every
t � 0. Let X ∈ W 1,∞((0,∞);C2

b (R3)) be such that for every t � 0 we have that X(t, ·) is a C∞-
diffeomorphism from F(0) onto F(t). We say that u belongs to Lp

η([0,∞);Wm,q(F(·))) (respectively to
W 1,p

η ((0,∞);Lq(F(·)))) if v defined by v(t, y) = u(t,X(t, y)) is in Lp
η([0,∞);Wm,q(F(0))) (respectively

in W 1,p
η ((0,∞);Lq(F(0)))).

Using the above definition we introduce below the concept of solution of (1.1), (1.2) to be used in the
remaining part of this work.
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Definition 2.2. We say (ũ, π̃, h,Q, ω̃) is a global solution of (1.1)–(1.2) if

h ∈ C([0,∞);R3), Q ∈ W 1,∞((0,∞);M3×3(R3)), ḣ, ω̃ ∈ W 1,p((0,∞);R3),

ũ ∈ Lp([0,∞);W 2,q(F(·))) ∩ W 1,p((0,∞);Lq(F(·))), π̃ ∈ Lp([0,∞), Ŵ 1,q(F(·))).
for some p, q ∈ (1,∞), (1.1) holds in a classical sense, equations (1.2)1,2 and (1.2)4,5 hold in the distribu-
tion sense on (0,∞) × F(·), equation (1.2)3 is satisfied in the sense of traces, and the initial conditions
in (1.2)6,7 hold in a classical sense.

We are now in a position to state our main result.

Theorem 2.3. Let p, q ∈ (1,∞) and η > 0 be such that

q ∈ (2,∞), 1 <
1
p

+
3
2q

� 3
2
, 1 − 1

p
< η <

3
2q

. (2.5)

We assume that

u0 ∈ B2(1−1/p)
q,p (F(0))3 ∩ Lq/2(F(0))3, �0 ∈ R

3, ω0 ∈ R
3, (2.6)

satisfy the compatibility conditions

div u0 = 0 in F(0), u0(x) = �0 + ω0 × x for x ∈ ∂S(0). (2.7)

Then there exists ε0 > 0 such that for any u0, �0, ω0 satisfying (2.6), (2.7) and

‖u0‖B
2(1−1/p)
q,p (F(0))3

+ ‖u0‖Lq/2(F(0))3 + ‖�0‖R3 + ‖ω0‖R3 � ε0, (2.8)

the system (1.1)–(1.2) admits a strong solution, in the sense of Definition 2.2. Moreover, this solution,
denoted by (ũ, π̃, h,Q, ω̃), satisfies

ũ ∈ Lp
η([0,∞);W 2,q(F(·))) ∩ W 1,p

η ((0,∞);Lq(F(·))) ∩ Cb([0,∞);B2(1−1/p)
q,p (F(·))),

∇π̃ ∈ Lp
η([0,∞);Lq(F(·))),

h ∈ C([0,∞);R3), Q ∈ W 1,∞((0,∞);M3×3(R)),

ḣ ∈ W 1,p
η ((0,∞);R3), ω̃ ∈ W 1,p

η ((0,∞);R3). (2.9)

Remark 2.4. Theorem 2.3 makes regularity assumptions on the initial data that differ slightly from those
in the main result in [4], where rigid body is assumed to be ball. In [4], u0 was supposed to be in the
Kato [11] type space L3 ∩ Lr, with r ∈ (1, 3/2) and to be small in L3 norm. This is due to the fact that
the method of proof in [4] does not appear to be applicable to the case of a solid with a non-spherical
shape. It is an interesting open question whether the global existence and uniqueness of the solutions of
(1.1)–(1.2) hold for non-spherical solids under the assumptions of [4].

As a consequence of the Theorem 2.3 we obtain large time decay estimates for the velocities of the
rigid and of the fluid.

Corollary 2.5. With the assumptions and notation in Theorem 2.3 we have

‖ũ(t, ·)‖Lq(F(t))3 +
∥
∥
∥ḣ(t)

∥
∥
∥
R3

+ ‖ω̃(t)‖
R3 � C(1 + t2)−η/2 (t � 0), (2.10)

where C is a constant independent of t > 0. Furthermore, if p′ > 1 is such that 1
p + 1

p′ = 1 then
ḣ ∈ Lp

η([0,∞);R3) and ηp′ > 1, we have that h ∈ L∞(0,∞;R3). In particular, the position of the centre
of the moving rigid body converges to some point at finite distance h∞ ∈ R

3 as t → ∞.

Remark 2.6. The best known decay estimate for a spherical solid (see [4]) asserts that ‖ḣ(t)‖R3 =
O(t−3/2+ε) when t → ∞. Establishing a similar estimate in the case of non spherical shape is another
interesting open question.



JMFM Motion of Rigid Bodies of Arbitrary Shape... Page 5 of 29 74

3. Change of Coordinates

One of the difficulties in the study of the system (1.2) is that the Navier–Stokes equations hold in the
non cylindrical (and a priori unknown) domain

Q =
{[

t
x

]

∈ [0,∞) × R
3 | t > 0 and x ∈ F(t)

}

,

where F(t) := R
3\S(t), with S(t) defined in (1.1). A way to overcome this difficulty is to perform a

change of coordinates defined by the rigid transformation mapping, at each instant t > 0, the set S(t)
onto S(0). One of the terms in the transformed equations obtained by this natural change of variables
involves a coefficient which is unbounded when the norm of the spatial variable tends to infinity. This
fact raises several difficulties which we are unable to tackle in the context of the present work. We refers,
for instance, to Hishida [8,9] and references therein for a discussion of this methodology when the motion
of the solid is a prescribed one. This is why in this work we rewrite the system (1.2) in the cylindrical
domain (0,∞)×F(0), by using the diffeomorphism from the reference configuration F(0) onto F(t) which
has been proposed in Cumsille and Takahashi [1]. This change of variables has the advantage of providing
a system equivalent to (1.2) where the involved PDE is written in the cylindrical domain (0,∞) × F(0),
without introducing coefficients which blow up when the norm of the spatial variable tends to infinity.

To attain this aim, we begin by denoting

E := F(0) = R
3\S(0), O := S(0). (3.1)

Let R > 0 and h, ω̃ : [0,∞) → R
3 be such that

diam(O) + ‖h‖L∞([0,∞);R3) < R,

ω̃ ∈ L∞([0,∞);R3). (3.2)

It is easy to see that

S(t) ⊂ BR for all t � 0,

where BR is the open ball of radius R and centered at origin. Let ψ ∈ [C∞
0 (B2R)]3 be a cut-off function

such that ψ = 1 on BR. We introduce a function ζ defined in [0,∞) × R
3 by

ζ(t, x) = ḣ(t) × (x − h(t)) +
|x − h(t)|2

2
ω̃(t) (t � 0, x ∈ R

3),

and Λ : [0,∞) × R
3 → R

3 defined, for every t � 0 and x ∈ R
3, by

Λ(t, x) = ψ(x)
(
ḣ(t) + ω̃(t) × (x − h(t))

)
+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ψ(x)
∂x2

ζ3(t, x) − ∂ψ(x)
∂x3

ζ2(t, x)

∂ψ(x)
∂x3

ζ1(t, x) − ∂ψ(x)
∂x1

ζ3(t, x)

∂ψ(x)
∂x1

ζ2(t, x) − ∂ψ(x)
∂x2

ζ1(t, x)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.3)

We have the following result, see Cumsille and Takahashi [1]:

Lemma 3.1. Assume that ḣ, ω̃ ∈ W 1,p
η (0,∞) and Let Λ be defined by (3.3). Then we have

(1) Λ = 0 outside B2R.
(2) div Λ(t, x) = 0 in [0,∞) × R

3.

(3) Λ(t, x) = ḣ(t) + ω̃(t) × (x − h(t)) for all t ∈ [0,∞) and x ∈ S(t).
(4) Λ is continuous from [0,∞) × R

3 to R
3.

(5) For every t � 0 the map x �→ Λ(t, x) lies in C∞
0 (R3).
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Let X be the flow associated to the vector Λ, defined by:
{

∂tX(t, y) = Λ(t,X(t, y)) (t > 0),
X(0, y) = y ∈ R

3.
(3.4)

The following result was proved in [1, Lemma 2.2].

Lemma 3.2. For every y ∈ R
3 the initial value problem (3.4) admits a unique solution X(·, y) : [0,∞) �→

R
3, which is a C1 function in [0,∞). Furthermore, recalling that E and O have been defined in (3.1), we

have

(1) For every t � 0, the mapping y �→ X(t, y) is a C∞-diffeomorphism from R
3 onto itself and from E

onto F(t).
(2) For every t � 0, we denote by Y (t, ·) = [X(t, ·)]−1

, the inverse of X(t, ·). Then for every x ∈ R
3 the

mapping t �→ Y (t, x) is a C1 function on [0,∞).
(3) For every t > 0, X(t,O) = S(t) (Thus Y (t,S(t)) = O.).
(4) For every t � 0, we have that X(t, y) = y for every y ∈ R

3\B2R. Moreover, Y (t, x) = x for every
x ∈ R

3\B2R.
(5) For every t � 0 and y ∈ R

3 we have that det (∇X(t, y)) = 1.

We consider the change of coordinates and unknown functions defined by

u(t, y) = Cof
(∇X�(t, y))

)
ũ(t,X(t, y)), π(t, y) = π̃(t,X(t, y)) (t � 0, y ∈ F), (3.5)

�(t) = Q−1(t)ḣ(t), ω(t) = Q−1(t)ω̃(t) t � 0, (3.6)

where, given a square matrix B, the notation Cof B stands for the cofactor matrix of B and B� designs
the transposed of the matrix B. According to [1,12], using the above change of variables and denoting

a := Cof (∇Y )�, b := Cof (∇X)� (3.7)

so that

u(t, y) = b(t, y)ũ(t,X(t, y)), ũ(t, x) = a(t, x)u(t, Y (t, x)) (t � 0, x, y ∈ R
3), (3.8)

the system (1.1)–(1.2) can be rewritten

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − div σ(u, π) = F(u, π, �, ω) (t > 0, y ∈ E),
div u = 0 t > 0, y ∈ E,

u(t, y) = �(t) + ω(t) × y (t > 0, y ∈ ∂O),

m�̇ = −
∫

∂O
σ(u, π)ν ds + G1(�, ω) (t > 0),

J(0)ω̇ = −
∫

∂O
y × σ(u, π)ν ds + G2(�, ω) (t > 0),

v(0, y) = u0(y) (y ∈ E),
�(0) = �0, ω(0) = ω0,

(3.9)

⎧
⎪⎨

⎪⎩

Q̇(t)y = Qω × y (t � 0, y ∈ R
3),

ḣ(t) = Q(t)�(t) (t � 0),
Q(0) = I3, h(0) = 0,

(3.10)
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with F,G1 and G2 in (3.9) given by

Fα(u, π, �, ω) = ν
∑

i,j,k

bαi
∂2aik

∂x2
j

(X)uk + 2ν
∑

i,j,k,m

bαi
∂aik

∂xj
(X)

∂uk

∂ym

∂Ym

∂xj
(X)

+ ν
∑

i,j,k

∂2uα

∂yj∂yk

(
∂Yj

∂xi
(X)

∂Yk

∂xi
(X) − δj,iδk,i

)

+ ν
∑

i,j

∂uα

∂yj

∂2Yj

∂x2
i

(X)

−
∑

i,j

∂π

∂yi

(
∂Yα

∂xj
(X)

∂Yi

∂xj
(X) − δα,jδi,j

)

−
∑

i,j,k,m

bαi
∂aik

∂xj
(X)ajm(X)ukum − [(u · ∇)u]α

− [b(∂ta)(X)u]α − [(∇u)(∂tY )(X)]α , α ∈ {1, 2, 3}, (3.11)

G1(�, ω) = −m(ω × �), G2(�, ω) = J(0)ω × ω. (3.12)

Definition 3.3. We say (u, π, �, ω, h,Q) is a global solution to the system (3.9)–(3.12), if

u ∈ Lp((0,∞);W 2,q(E)) ∩ W 1,p((0,∞);Lq(E)), π ∈ Lp((0,∞); Ŵ 1,q(E)),

�, ω ∈ W 1,p((0,∞);R3), h ∈ W 1,∞((0,∞);R3), Q ∈ W 1,∞((0,∞);M3×3(R3))

for some p, q ∈ (1,∞), equations (3.9)1,2 holds in the sense of distribution in (0, τ)×F , equations (3.9)4,5

holds in the sense of distribution in (0, τ), equation (3.9)3 is satisfied the sense of traces, (3.10) holds in
classical sense, and the initial conditions in (3.9)6,7 are satisfied.

We prove the following existence and uniqueness result for the system (3.9)–(3.12).

Theorem 3.4. Let p ∈ (1,∞) and η > 0 satisfy the assumptions in Theorem 2.3. Then there exists ε0 > 0
such that for any u0, �0, ω0 satisfying (2.6), (2.7) and (2.8), the system (3.9)–(3.12) admits a unique
solution (u, π, �, ω, h,Q) in the sense of Definition 3.3. Moreover, this solution satisfy

u ∈ Lp
η([0,∞);W 2,q(E)) ∩ W 1,p

η ((0,∞);Lq(E)) ∩ Cb([0,∞);B2(1−1/p)
q,p (E)),

∇π ∈ Lp
η([0,∞);Lq(E)),

� ∈ W 1,p
η (0,∞;R3), ω ∈ W 1,p

η (0,∞;R3),

h ∈ W 1,∞((0,∞);R3), Q ∈ W 1,∞((0,∞);M3×3(R)). (3.13)

In fact, the equivalence between Theorems 2.3 and 3.4, follows from the following proposition, whose
proof is obvious.

Proposition 3.5. A quintuplet (ũ, π̃, h,Q, ω̃) satisfying (2.9) is a solution of (1.1)–(1.2) in the sense of
definition Definition 2.2 if and only if (u, π, �, ω, h,Q), defined by (3.5)–(3.6), satisfies (3.13) and is a
solution to (3.9), in the sense of Definition 3.3.

The remaining part of this work is devoted to the proof of Theorem 3.4. The proof relies on a fixed
point theorem and a linearization. The idea is to replace in the above system, the nonlinear terms F,G1

and G2 by given source terms f, g1 and g2, More precisely, we obtain the following linear system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − μΔu + ∇π = f, div u = 0 (t � 0, y ∈ E),
u = � + ω × y (t � 0, y ∈ ∂O),

m�̇ +
∫

∂O
σ(u, π)ν ds = g1 (t � 0),

J ω̇ +
∫

∂O y × σ(u, π)ν ds = g2 (t � 0),
u(0) = u0 (y ∈ E),
�(0) = �0, ω(0) = ω0.

(3.14)
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We refer to the above equations as the linearized fluid–structure system. We can say the considered
system is “monolithic”, in the sense that this linearization preserves the coupling between the equations
describing the fluid and those describing the solid. In the sections below, we will study the regularity and
decay properties of this linear system.

Let us remark that, when the fluid-rigid body system fills a bounded cavity Ω, i.e. E = Ω\O, regularity
as well as decay properties of the above linear system were studied in [14,19].

4. Some Background on the Fluid–Structure Semigroup

In this section we introduce the fluid structure semigroup, which plays an important role in the remaining
part of this work. We first recall, following Ervedoza et al. [4], the definition and some important properties
of this semigroup. Note that these properties have been proved in [4] for a solid of arbitrary shape, so
that they are directly applicable in the context of the present paper. Nevertheless, in order to tackle the
nonlinear problem for arbitrary shape solids, these estimates have to be completed with new ones, see
the forthcoming sections. In the second part of this section we state a maximal regularity property for
this semigroup, which is an adaptation to the context of this paper of the proof of the maximal regularity
property which has been given in Maity and Tucsnak [14] for the similar semigroup in a bounded domain.

Throughout this section we use the notation O for an open bounded set of R3 with smooth boundary.
Moreover, we denote by ν the unit normal vector on ∂O oriented towards the interior of O. Given q > 1
we define the space

X
q = {Φ ∈ Lq

σ | D(Φ) = 0 in O} , (4.1)

where

Lq
σ =

{
ϕ ∈ [C∞

0 (R)]3 | div ϕ = 0
}‖·‖q,R3

,

and the strain rate tensor field D(ϕ) is defined by

D(ϕ)ij =
1
2

(
∂ϕi

∂xj
+

∂ϕj

∂xi

) (
ϕ ∈ [

W 1,q(R3)
]3

, i, j ∈ {1, 2, 3}
)

. (4.2)

Note that, for every q ∈ (1,∞) the dual (Xq)∗ of Xq can be identified with X
q′

, where
1
q

+
1
q′ = 1, with

the duality pairing

〈f, g〉
Xq′ ,Xq =

∫

O
ρf · g dx +

∫

E

f · g dx (f ∈ X
q′

, g ∈ X
q),

where ρ > 0 is a constant (standing for the density of the rigid body). Since every Φ in X
q satisfies

D(Φ) = 0 in O, there exists a unique couple
[

�
ω

]

∈ C
3 × C

3 such that

Φ(y) = ϕ(y)1E(y) + (� + ω × y)1O(y) (y ∈ R
3),

where 1U stands for the characteristic function of the set U (see, for instance, Temam [21, Lemma 1.1]).
Denoting E = R

3\O we can thus use the identification:

X
q �

⎧
⎨

⎩

⎡

⎣
ϕ
�
ω

⎤

⎦ ∈ [Lq(E)]3 × C
3 × C

3, with div (ϕ) = 0 in E,

ϕ(y) · ν(y) = (� + ω × y) · ν(y) for y ∈ ∂O} . (4.3)
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We recall from [4, Section 3] that the fluid–structure operator Aq : D(Aq) → X
q is defined, for every

q > 1, by

D(Aq) =
{

ϕ ∈ [
W 1,q(R3)

]3 ∩ X
q

∣
∣
∣ ϕ|E ∈ [

W 2,q(E)
]3

}
, (4.4)

Aqϕ = PqAqϕ (ϕ ∈ D(Aq)), (4.5)

where Pq is the projection operator from
[
Lq(R3)

]3 onto X
q and Aq : D(Aq) → [Lq(Ω)]3 is defined by

D(Aq) = D(Aq) and for every ϕ ∈ D(Aq),

(Aqϕ) =

⎧
⎨

⎩

μΔϕ in E,

−2μm−1

∫

∂O
D(ϕ)ν dγ −

(

2μJ −1

∫

∂O
y × D(ϕ)ν dγ

)

× y in O.
(4.6)

The mass of the rigid body m and its inertia tensor J appearing in the above equations are defined in
terms of the constant density ρ of the solid by

m =
∫

O
ρdy, J = (Jk,�)k,�∈{1,2,3} with Jk,� =

∫

O
ρ
(
δk,�|y|2 − yky�

)
dx. (4.7)

Recalling the function space defined in (2.1) and by slightly adapting the methodology used in [19,20],
we can obtain the following equivalence:

Lemma 4.1. Let 1 < p, q < ∞, and let τ � ∞. Assume

u ∈ W 1,2
p,q ((0, τ);E), π ∈ Lp((0, τ); Ŵ 1,q(E)),

[
�
ω

]

∈ W 1,p((0, τ);R6), (4.8)

is a solution of (3.14), then

U̇(t) = AqU(t) + F (t), U(0) = U0, (4.9)

where
⎧
⎪⎨

⎪⎩

U(t, y) = u(t, y)1E(y) + (�(t) + ω(t) × y)1O(y) (t ∈ [0, τ), y ∈ R
3),

F (t, y) = Pq

(
f(t, y)1E(y) + (m−1g1(t) + J −1)1O(y)

)
(t ∈ [0, τ), y ∈ R

3),
U0(y) = u0(y)1E(y) + (�0 + ω0 × y)1O(y) (y ∈ R

3).
(4.10)

Conversely, assume that U ∈ Lp([0, τ);D(Aq)) ∩ W 1,p((0, τ);Xq) satisfy (4.9). Then there exists π ∈
Lp((0, τ); Ŵ 1,q(E)) such that (u, π, �, ω) satisfies the system (3.14), where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = U |E , � = 1
m

∫

O
U dy, ω = −J −1

∫

O
U × y dy,

f = F |E , g1 = 1
m

∫

O
F dy, g2 = −J −1

∫

O
F × y dy,

u0 = U0|E , �0 = 1
m

∫

O
U0 dy, ω0 = −J −1

∫

O
U0 × y dy.

(4.11)

We describe next some properties the operator Aq which will be essential in the remaining part of this
work.

Theorem 4.2. For every 1 < q < ∞ and θ ∈ (
π
2 , π

)
there exists Mq,θ > 0 such that the operator Aq

satisfies
∥
∥λ(λI − Aq)−1

∥
∥

L(Xq)
� Mq,θ (λ ∈ Σθ). (4.12)

Consequently, Aq generates a bounded analytic semigroup T
q = (Tq

t )t�0 on X
q.

For the proof of the above theorem we refer to [4, Theorem 6.1]. In the remaining part of this work T
q

will be designed as the fluid–structure semigroup. A second important property of Aq and of the generated
semigroup is given in the result below.
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Theorem 4.3. Let 1 < p, q < ∞. Then Aq has the maximal Lp regularity property, which means that for
every τ > 0 the maps

F �→ d
dt

∫ t

0

T
q
t−sF (s) ds (t ∈ [0, τ ], F ∈ Lp([0, τ ];Xq),

F �→ Aq

∫ t

0

T
q
t−sF (s) ds (t ∈ [0, τ ], F ∈ Lp([0, τ ];Xq),

are bounded from Lp([0, τ ];Xq) into Lp([0, τ ];Xq).

Proof. For F ∈ Lp([0, τ ];Xq) we denote

f = F |E , g1 =
1
m

∫

O
F dy, g2 = −J −1

∫

O
F × y dy.

Then

⎡

⎣
f
g1
g2

⎤

⎦ ∈ Lp([0, τ ]; [Lq(E)]3 × R
3 × R

3) and, according to [7, Theorem 4.1], there exists a unique

triple

⎡

⎣
u
l
ω

⎤

⎦ with

u ∈ W 1,p((0, τ); [Lq(E)]3) ∩ Lp([0, τ ];
[
W 2,q(E)

]3
), (4.13)

π ∈ Lp([0, τ ]; Ŵ 1,q(E)),
[
�
ω

]

∈ W 1,p((0, τ);R6), (4.14)

satisfying the system (3.14) with (u0, �0, ω0) = (0, 0, 0).
We set

U(t, x) = u(t, x)1E(x) + (�(t) + ω(t) × x)1O(x) (t ∈ [0, τ ], x ∈ R
3).

From (4.13)–(4.14) it follows that

U ∈ Lp([0, τ ];D(Aq)) ∩ W 1,p((0, τ);Xq)),

and, according to Lemma 4.1, U solves (4.9) with U0 = 0.
Since the unique solution of (4.9) with U0 = 0 is

U(t) =
∫ t

0

T
q
t−sF (s) ds (t ∈ [0, τ ], F ∈ Lp([0, τ ];Xq),

we obtain the conclusion of the theorem. �
Remark 4.4. Alternatively, one can directly show that the operator Aq is an R-sectorial operator on X

q of
angle θ > π/2. For the fluid–structure semigroup on a bounded spatial domain, R-sectoriality was proved
in [13, Theorem 3.11]. By slightly modifying the arguments of [13], it can be shown that the operator Aq

considered here is also an R-sectorial operator. Then according to [23, Theorem 4.3], the operator Aq has
maximal Lp regularity property.

By combining Theorems 4.2, 4.3 and [2, Theorem 2.4] we obtain:

Corollary 4.5. With the notation and assumptions in Theorem 4.2, for every λ > 0 the operator Aq − λ
generates and exponentially stable C0 semigroup T

q,λ on X
q. Moreover, Aq − λ has the infinite time

maximal regularity property, which means that the maps

f �→ d
dt

∫ t

0

T
q,λ
t−sf(s) ds (t � 0, f ∈ Lp([0,∞);Xq),

f �→ Aq

∫ t

0

T
q,λ
t−sf(s) ds (t � 0, f ∈ Lp([0,∞);Xq),
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are bounded from Lp([0,∞);Xq) into Lp([0,∞);Xq).

We end this section by recalling the following estimate from [4], which gives a characterization of the
norm in D(Am

q ).

Proposition 4.6. [4, Proposition 7.3 and 7.4] Let 1 < q < ∞.

(1) For every m ∈ N, if U0 ∈ D(Am
q ), then U0|E ∈ W 2m,q(E) and

‖U0‖2m,q,E � C
(∥
∥Am

q U0

∥
∥
Xq + ‖U0‖Xq

)
(U0 ∈ D(Am

q )). (4.15)

(2) For any m ∈ N, there exists a positive constant Cm > 0 such that
∥
∥Am

q U0

∥
∥
Xq � Cm

(
‖U0‖2m,q,E + ‖U0‖Xq

) (
U0 ∈ D(Am

q )
)
. (4.16)

5. Decay Estimates for the Fluid–Structure Semigroup

In this section we continue to use the notation introduced at the beginning of the previous one, namely for
the spaces Xq, the fluid–structure semigroup Tq and its generator Aq. Moreover, we refer to the beginning
of Sect. 2 for the definition of the various function spaces and norms appearing in the estimates below.

We begin by recalling that in [4, Theorem 7.1], we have obtained several decay estimates for the fluid–
structure semigroup that were sufficient to tackle the nonlinear problem for a rigid body of spherical
shape. However, at least within the methodology proposed in this paper, these estimates have to be
completed in order to study the case of a rigid body of arbitrary shape. More precisely, we need decay
estimates for the second order derivatives with respect to the space variables, the derivative with respect
to time and of the associated pressure term.

We first remark that we have the following estimates on the fluid–structure semigroup which follow
from classical properties of analytic semigroups, together with Theorem 4.2 and Proposition 4.6.

Proposition 5.1. Let 1 < q < ∞. Then for any τ ∈ (0,∞), there exists a constant C > 0, depending on τ
and q, such that

‖Tq
tU0‖Xq � C ‖U0‖Xq (t > 0, U0 ∈ X

q), (5.1)
∥
∥Ak

qT
q
tU0

∥
∥
Xq � Ct−k ‖U0‖Xq (t > 0, k ∈ N, U0 ∈ X

q), (5.2)
∥
∥
∥
∥

d
dt

(Tq
tU0)

∥
∥
∥
∥
Xq

+ ‖Tq
tU0‖2,q,E � C

(
‖U0‖2,q,E + ‖U0‖Xq

)
(t ∈ [0, τ ], U0 ∈ D(Aq)). (5.3)

The main result of this section is the following:

Theorem 5.2. Let 1 < q � r < ∞ and σ = 3
2

(
1
q − 1

r

)
. Then there exists a constant C > 0, depending on

q and on r, such that:

‖Tq
tU0‖Xr � Ct−σ ‖U0‖Xq (t > 0, U0 ∈ X

q). (5.4)

‖∇ (Tq
tU0)‖r,E � Ct−γ1(t,q,r) ‖U0‖Xq (t > 0, U0 ∈ X

q), (5.5)
∥
∥∇2 (TtU0)

∥
∥

r,E
� Ct−γ2(t,q,r) ‖U0‖Xq (t > 0, U0 ∈ X

q), (5.6)
∥
∥
∥
∥

d
dt

(TtU0)
∥
∥
∥
∥
Xr

� Ct−σ−1 ‖U0‖Xq (t > 0, U0 ∈ X
q). (5.7)

where

γ1(t, q, r) =

⎧
⎪⎨

⎪⎩

1
2

+ σ if t � 1,

min
{

1
2

+ σ,
3
2q

}

if t > 1,
(5.8)
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∇2f denotes the hessian of the function f and

γ2(t, q, r) =

⎧
⎨

⎩

1 + σ if t � 1,

min
{

1 + σ,
3
2q

}

if t > 1.
(5.9)

Moreover, estimate (5.4) also holds for r = ∞, in the sense that there exists a constant C > 0, depending
on r, such that

‖Tq
tU0‖X∞ � Ct−

3
2q ‖U0‖Xq (t > 0, U0 ∈ X

q). (5.10)

The remaining part of this section is devoted to the proof of Theorem 5.2. We first show that the
estimates in Theorem 5.2 hold for small time. More precisely, we have:

Proposition 5.3. Let 1 < q � r < ∞ and σ = 3
2

(
1
q − 1

r

)
. Then for each τ ∈ (0,∞) there exists a constant

C > 0, depending on τ, q and r, such that

‖Tq
tU0‖Xr � Ct−σ ‖U0‖Xq (t ∈ [0, τ ], U0 ∈ X

q), (5.11)

‖∇T
q
tU0‖r,E � Ct−σ− 1

2 ‖U0‖Xq (t ∈ [0, τ ], U0 ∈ X
q). (5.12)

∥
∥∇2

T
q
tU0

∥
∥

r,E
� Ct−σ−1 ‖U0‖Xq (t ∈ [0, τ ], U0 ∈ X

q), (5.13)

‖AqT
q
tU0‖Xr � Ct−σ−1 ‖U0‖Xq (t ∈ [0, τ ], U0 ∈ X

q), (5.14)
∥
∥
∥
∥

d
dt

(Tq
tU0)

∥
∥
∥
∥
Xr

� Ct−σ−1 ‖U0‖Xq (t ∈ [0, τ ], U0 ∈ X
q), (5.15)

Proof. Let N = [2σ], where [2σ] denotes the integer part of 2σ and assume that N is even. Using
Proposition 4.6, (5.3) and (5.2), it follows that there exists a constant C > 0, depending on τ, q and r,
such that, recalling from the beginning of Sect. 2 that ‖·‖N,q,E stands for the standard norm in WN,q(E),

‖Tq
tU0‖N,q,E + |�(t)| + |ω(t)| � C

(∥
∥
∥A

N/2
q T

q
tU0

∥
∥
∥
Xq

+ ‖Tq
tU0‖Xq

)

� C
(
t−

N
2 ‖U0‖Xq + τ

N
2 t−

N
2 ‖U0‖Xq

)
� Ct−

N
2 ‖U0‖Xq (t ∈ (0, τ ], U0 ∈ X

q). (5.16)

In a similar manner, we obtain that

‖Tq
tU0‖N+4,q,E + |�(t)| + |ω(t)| � Ct−

N+4
2 ‖U0‖Xq (t ∈ (0, τ ], U0 ∈ X

q). (5.17)

The above estimates, combined with standard Sobolev embeddings and interpolation inequalities, imply
that for every j ∈ {0, 1, 2} we have

∥
∥∇j

T
q
tU0

∥
∥
Xr � C

(
‖Tq

tU0‖j,r,E + |�(t)| + |ω(t)|
)

� C
(
‖Tq

tU0‖2σ+j,q,E + |�(t)| + |ω(t)|
)

� C
(
‖Tq

tU0‖
2σ+j−N

4
N+4,q,E ‖Tq

tU0‖
N+4−j−2σ

4
N,q,E + |�(t)| + |ω(t)|

)

� Ct−σ−j/2 ‖U0‖Xq (t ∈ (0, τ ], U0 ∈ X
q).

This proves the estimates (5.11), (5.12) and (5.13). We next combine (5.11)–(5.13) and Proposition 4.6
to obtain that

‖AqT
q
tU0‖Xr � C

(
‖Tq

tU0‖2,r,E + ‖Tq
tU0‖Xr

)
� Ct−σ−1 ‖U0‖Xq (t ∈ (0, τ ], U0 ∈ X

q).

This proves (5.14), and the estimate (5.15) also follows. �

We next recall the following local decay estimates from [4, Theorem 7.10]:
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Proposition 5.4. With the notation and assumptions in Theorem 5.2, let R0 > 0 be such that O ⊂ BR0 ,
d > R0 + 5, m ∈ N, and Ed = {y ∈ E | |y| < d}. Then there exists a positive constant C, depending only
on E, d,m and q, such that, for every t � 0 and every U0 ∈ Ran(Tq

1), denoting U(t) = T
q
tU0, we have

‖u(t, ·)‖2m,q,Ed
+ |�(t)| + |ω(t)| � C(1 + t)− 3

2q

(
‖u0‖[3/q]+2m+2,q,E + |�0| + |ω0|

)
, (5.18)

‖∂tu(t, ·)‖2m,q,Ed
+ |�̇(t)| + |ω̇(t)| � C(1 + t)− 3

2q

(
‖u0‖[3/q]+2m+4,q,E + |�0| + |ω0|

)
, (5.19)

where [s] denotes the integer part of s ∈ R, u0, l0, ω0 and u, l, ω are defined from U0, respectively from
U , by (4.11). Moreover,

‖π(t, ·)‖2m+1,q,Ed
� C(1 + t)− 3

2q

(
‖u0‖[3/q]+2m+4,q,E + |�0| + |ω0|

)
, (5.20)

where π is the pressure field associated to (u, �, ω) via the system (3.14) with (f, g1, g2) = (0, 0, 0).

The result below provides decay estimates for the restriction of u(t, ·) to the exterior of the bounded
set Ed.

Proposition 5.5. With the notation and assumptions in Theorem 5.2 and Proposition 5.4, for every q ∈
(1,∞) and r ∈ [q,∞) there exists a positive constant C, depending only on E, d and q, such that

‖u(t, ·)‖r,{|y|>d} � C(1 + t)−σ
(
‖u0‖[3/q]+[2σ]+7,q,E + |�0| + |ω0|

)
, (5.21)

‖∇u(t, ·)‖r,{|y|>d} � C(1 + t)−min{(1/2+σ),3/2q}
(
‖u0‖[3/q]+[2σ]+9,q,E + |�0| + |ω0|

)
, (5.22)

∥
∥∇2u(t, ·)∥∥

r,{|y|>d} � C(1 + t)−min{(1+σ),3/2q}
(

‖u0‖[3/q]+[2σ]+10,q,E + |�0| + |ω0|
)
, (5.23)

for every t � 0 and U0 ∈ RanT
q
1.

Proof. The proof of the estimate (5.21) follows from [4, Proposition 7.11]. We focus on the remaining two
estimates.

Let χ ∈ C∞(R3) be such that χ(y) = 1 for |y| > d and χ(y) = 0 for |y| < d − 1. It follows that
for every t � 0 we have that supp div(χu(t, ·)) ⊂ {d − 1 < |y| < d} . Then there exists v3(t, ·) such that
div v3 = div(χu), supp v3(t, ·) ⊂ {d − 1 < |y| < d} and for every m ∈ N, we have

‖v3(t, ·)‖m,q � C(1 + t)− 3
2q

(
‖u0‖[3/q]+m+2,q,E + |�0| + |ω0|

)
, (5.24)

‖∂tv3(t, ·)‖m,q � C(1 + t)− 3
2q

(
‖u0‖[3/q]+m+4,q,E + |�0| + |ω0|

)
, (5.25)

for some constant C > 0 depending on m and q. We refer to [4, Proposition 7.11] for a proof of the
existence of v3 satisfying the above two estimates.

We now define

v4(t, y) = χ(y)u(t, y) − v3(t, y) (t > 0, y ∈ R
3). (5.26)

Note that div v4 = 0 so that v4 satisfies
{

∂tv4 − μΔv4 + ∇(χπ) = h, div v4 = 0, (t > 0, y ∈ R
3),

v4(0, x) = v40(x) (y ∈ R
3),

(5.27)

where

h = −2(∇χ · ∇)u(t) − μ(Δχ)u + ∂tv3 − μΔv3 + π∇χ, (5.28)

and

v40(y) = χ(x)U0(y) − v3(0, y) (y ∈ R
3). (5.29)
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Moreover, the function y �→ h(t, y) is supported in the annulus {d − 1 � |y| � d} and from (5.24), (5.25)
we obtain

‖v40‖m,q � C
(

‖u0‖2m,q,E + |�0| + |ω0|
)
, (m ∈ N), (5.30)

‖h(t)‖m,q � C(1 + t)−3/2q
(

‖u0‖[3/q]+m+4,q + |�0| + |ω0|
)

(m ∈ N). (5.31)

Let S be the Stokes semigroup in R
3. According to well known estimates of the heat kernel (see, for

instance, [10, Lemma 5.1]), for any m ∈ Z+, there exists a constant Cm > 0, depending on q and r, such
that

‖∇m
Stf‖r � Cm(1 + t)−σ−m/2 ‖f‖[2σ]+m+1,q (t � 0). (5.32)

With the above notation v4(t, ·) can be written as

v4(t, ·) = Stv40 +
∫ t

0

St−sh(s) ds := v41(t, ·) + v42(t, ·). (5.33)

From (5.32) we have, for j = 1, 2
∥
∥∇jv41(t, ·)

∥
∥

r
� C(1 + t)−(j/2+σ) ‖v40‖[2σ]+j+1,q . (5.34)

In order to estimate v42(t, ·) we consider three cases.
Case 1 : 3/2q > 1. Using (5.32) and (5.31) it follows that

∥
∥∇jv42(t, ·)

∥
∥

r
� C

(
‖u0‖[3/q]+[2σ]+j+5,q + |�0| + |ω0|

)∫ t

0

(1 + (t − s))−(j/2+σ)(1 + s)−3/2q ds.

Noting that
∫ t/2

0

(1 + (t − s))−( j
2+σ)(1 + s)−3/2q ds � C(1 + t)−( j

2+σ)

∫ t/2

0

(1 + s)−3/2q ds � C(1 + t)−( j
2+σ),

and that
∫ t

t/2

(1 + (t − s))−( j
2+σ)(1 + s)−3/2q ds � C(1 + t)−3/2q

∫ t

t/2

(1 + (t − s))−( j
2+σ) ds

�

⎧
⎪⎨

⎪⎩

C(1 + t)−3/2q if j/2 + σ > 1,

C(1 + t)−(1/2+σ) if j = 1, σ � 1/2,

C(1 + t)−1 if j = 2, σ = 0(q = r).

it follows that for j ∈ {1, 2} we have
∥
∥∇2v42(t, ·)

∥
∥

r
� C(1 + t)−min{ j

2+σ,3/2q}
(

‖u0‖[3/q]+[2σ]+j+5,q + |�0| + |ω0|
)
. (5.35)

Case 2 : 3/2q � 1 and r > 3/2 if j = 1. We take 1 < q0 < 3/2, and let σ0 = 3/2(1/q0 − 1/r). Thus for
j ∈ {1, 2} we have j/2 + σ0 > 1, so that, using (5.32), (5.31) and the fact that h is compactly supported,
it follows that

∥
∥∇jv42(t, ·)

∥
∥

r
� C

∫ t

0

(1 + (t − s))−(j/2+σ0) ‖h(s)‖[2σ0]+j+1,q0
ds

� C

∫ t

0

(1 + (t − s))−(j/2+σ0) ‖h(s)‖[2σ0]+j+1,q ds

� C
(

‖u0‖[3/q]+j+8,q + |�0| + |ω0|
)∫ t

0

(1 + (t − s))−(j/2+σ0)(1 + s)−3/2q ds.
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We next note that
∫ t/2

0

(1 + (t − s))−(j/2+σ0)(1 + s)−3/2qds � C(1 + t)−(j/2+σ0)

∫ t/2

0

(1 + s)−3/2q

� C

{
(1 + t)−(j/2+σ0)ln(1 + t) � (1 + t)−(j/2+σ) if 3

2q = 1,

(1 + t)−(j/2+σ0)(1 + t)1−3/2q � (1 + t)−(1+σ) if 3
2q < 1,

and
∫ t

t/2

(1 + (t − s))−(j/2+σ0)(1 + s)−3/2q ds � C(1 + t)−3/2q.

Consequently,
∥
∥∇jv42(t, ·)

∥
∥

r
� C(1 + t)−min{(j/2+σ),3/2q}

(
‖u0‖[3/q]+j+8,q + |�0| + |ω0|

)
(j ∈ {1, 2}). (5.36)

Case 3 : It remains to consider the case j = 1 and q = r = 3/2. We take q0 < 3/2. Then

‖∇v42(t, ·)‖3/2 � C

∫ t

0

(1 + (t − s))−3/2q0+1/2 ‖h(s)‖2,q0
ds

� C

∫ t

0

(1 + (t − s))−3/2q0+1/2 ‖h(s)‖2,q ds

� C
(

‖u0‖[3/q]+6,q + |�0| + |ω0|
)∫ t

0

(1 + (t − s))−3/2q0+1/2(1 + s)−1 ds

� C(1 + t)−1/2
(

‖u0‖[3/q]+6,q + |�0| + |ω0|
)
.

Combining the above estimate with (5.30), (5.31), (5.34), (5.35) and (5.36), we deduce that
∥
∥∇jv4(t, ·)

∥
∥

r
� C(1 + t)−min{(j/2+σ),3/2q}

(
‖u0‖[3/q]+[2σ]+j+8,q + |�0| + |ω0|

)
.

We can thus conclude the proof of the proposition by combining the above estimate and (5.24). �

We are now in a position to prove the main result in this section.

Proof of Theorem 5.2. For every U0 ∈ X
q, we have T1U0 ∈ D(Ak

q ) for all k ∈ N. Thus combining (5.12),
(5.13), (5.22) and (5.23) we obtain (5.5) and (5.6).

Finally, we apply (5.2) and (5.4) to obtain that for every t > 0 and U0 ∈ Xq we have
∥
∥
∥
∥

d
dt

(TtU0)
∥
∥
∥
∥
Xr

= ‖AqTtU0‖Xr � Ct−1
∥
∥Tt/2U0

∥
∥
Xr � Ct−(1+σ) ‖U0‖Xq .

This proves the estimate (5.7), and the proof the theorem is complete. �

6. Regularity of the Linear Non Homogeneous System

In this section, we study the regularity and the decay properties of the solutions of the non homogeneous
linear system

dU

dt
(t) = AqU(t) + F (t) t > 0, U(0) = U0. (6.1)

We continue here to use the definitions of time weighted Sobolev spaces from Sect. 2 and we recall that
the operator Aq has been introduced in (4.4), (4.5). We essentially study maximal regularity (in infinite
time) properties of these system. Let us recall the time weighted spaces from (2.2)–(2.4),

The main result in this section is:
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Theorem 6.1. Let p, q0, q ∈ (1,∞) and η > 0 satisfy

q0 < q, (6.2a)

1 < η +
1
p

<
3
2

(
1
q0

− 1
q

)

. (6.2b)

Then for every U0 ∈ X
q0 ∩ (Xq,D(Aq))1−1/p,p and for every F ∈ Lp

η([0,∞);Xq0 ∩X
q), the system (6.1)

admits a unique solution U ∈ Lp
η([0,∞);D(Aq)) ∩ W 1,p

η ([0,∞);Xq). Moreover, there exists a positive
constant CL, (the index L coming from “Linear”) depending only on p, q0, η, E and O such that

‖U‖Lp
η([0,∞);D(Aq))∩W 1,p

η ([0,∞);Xq) � CL

(
‖U0‖Xq0∩(Xq,D(Aq))1−1/p,p

+ ‖F‖Lp
η([0,∞);Xq0∩Xq)

)
. (6.3)

The guiding idea in proving the above result is borrowed from Shibata [18] (see also Murata and
Shibata [15]). More precisely, we look for a solution to the system (6.1) in the form

U = U1 + U2, (6.4)

where U1 satisfies
dU1

dt
(t) = (Aq − I)U1(t) + F (t), U1(0) = U0, (6.5)

and U2 satisfies
dU2

dt
(t) = AqU2(t) + U1(t), U2(0) = 0. (6.6)

From Corollary 4.5, we know that, Aq − I has the infinite time maximal Lp regularity property and
generates an exponentially stable semigroup. Thus, for any p, q ∈ (1,∞) and η � 0, and for every U0 ∈
(Xq,D(Aq))1−1/p,p , F ∈ Lp

η([0,∞);Xq), we have that U1 belongs to Lp
η([0,∞);D(Aq))∩W 1,p

η ((0,∞);Xq)
(see Theorem 6.2 below). Using Duhmael’s principle we have that

U2(t) =
∫ t

0

Tt−sU1(s) ds (t � 0).

In order to estimate U2 and its derivatives with respect to the space and time variables, we are going to
use Lq0 −Lq, with q0 < q, decay estimates of the fluid–structure semigroup (see Theorem 5.2). To do this,
we need to have U1 ∈ Lp

η([0,∞);Xq0), which can be ensured by taking U0 ∈ X
q0 and F ∈ Lp

η([0,∞);Xq0).
We pass now to the detailed proof of Theorem 6.1. We first prove a maximal Lp type regularity of the

system (6.5).

Theorem 6.2. Assume 1 < p, q < ∞, and let η � 0. Then for any U0 ∈ (Xq,D(Aq))1−1/p,p , and for every
F ∈ Lp

η([0,∞);Xq), the system (6.5) admits a unique strong solution

U1 ∈ Lp
η([0,∞);D(Aq)) ∩ W 1,p

η (0,∞);Xq).

Moreover, there exists a constant C > 0 such that

‖U1‖Lp
η([0,∞);D(Aq))∩W 1,p

η ((0,∞);Xq) � C
(

‖U0‖(Xq,D(Aq))1−1/p,p
+ ‖F‖Lp

η([0,∞);Xq)

)
. (6.7)

Proof. We first note that, since η � 0, we have F ∈ Lp([0,∞);Xq). Therefore, by Corollary 4.5 and [13,
Theorem 2.7], the system (6.5) admits a unique solution

U1 ∈ Lp([0,∞);D(Aq)) ∩ W 1,p((0,∞);Xq). (6.8)

In particular, this proves the theorem for η = 0. Let us now assume that η ∈ (0, 1] and set

V (t) = (1 + t2)η/2U1(t) (t � 0).

Then V satisfies
dV

dt
(t) = (Aq − I)V (t) + G(t), V (0) = U0, (6.9)
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where

G(t) = (1 + t2)η/2F (t) −
(

d
dt

(1 + t2)η/2

)

U1(t).

Therefore, using the hypothesis of the theorem, (6.8) and the fact that 0 < η � 1, we obtain G ∈
Lp([0,∞);Xq). Therefore,

(1 + t2)η/2U1 = V ∈ Lp([0,∞);D(Aq)) ∩ W 1,p((0,∞);Xq). (6.10)

The result for η > 1 can be obtained by repeatedly using the above argument. This completes the proof
of the theorem. �

As a consequence of the above theorem, we have the following result.

Theorem 6.3. With the assumptions in Theorem 6.1, for every U0 ∈ X
q0 ∩ (Xq,D(Aq))1−1/p,p and for

every F ∈ Lp
η([0,∞);Xq0 ∩ X

q) the system (6.5) admits a unique strong solution

U1 ∈ Lp
η([0,∞);D(Aq)) ∩ W 1,p

η ((0,∞);Xq) ∩ Lp
η([0,∞);Xq0).

Moreover, there exists a constant C > 0 (possibly depending on η) such that

‖U1‖Lp
η([0,∞);D(Aq))∩W 1,p

η ((0,∞);Xq)∩Lp
η([0,∞);Xq0 )

� C
(

‖U0‖Xq0∩(Xq,D(Aq))1−1/p,p
+ ‖F‖Lp

η([0,∞);Xq∩Xq0 )

)
, (6.11)

for every U0 ∈ X
q0 ∩ (Xq,D(Aq))1−1/p,p and F ∈ Lp

η([0,∞);Xq ∩ X
q0).

Proof. It only remains to show U1 ∈ Lp
η([0,∞);Xq0). We note that U1 = U11 + U12, with

dU11

dt
(t) = (Aq − I)U11(t), U1(0) = U0,

and
dU12

dt
(t) = (Aq − I)U12(t) + F (t), U12(0) = 0.

Recall that for every q > 1 the operator Aq − I generates an exponentially stable semigroup on X
q (see

Corollary 4.5). Thus there exists C > 0 and λ1 > 0 such that

‖U11(t)‖Xq0 � Ce−λ1t ‖U0‖Xq0 (t > 0, U0 ∈ X
q0).

Thus we clearly have U11 ∈ Lp
η([0,∞);Xq0). On the other hand, since F ∈ Lp

η([0,∞);Xq0), we can
argue similarly to the proof of Theorem 6.2 to obtain that (1 + t2)η/2U12 ∈ Lp([0,∞);D(Aq0)) ∩
W 1,p((0,∞);Xq0). In particular, U12 ∈ Lp

η([0,∞);Xq0). This completes the proof of the theorem. �
We are now going to show that, under the assumptions in Theorem 6.1, the solution U2 of the system

(6.6) lies in Lp
η([0,∞);D(Aq)) ∩ W 1,p

η ([0,∞);Xq).
Consequently, the conclusion of Theorem 6.1 follows from Theorems 6.3 and 6.4 below.

Theorem 6.4. With the assumptions in Theorem 6.1, let U1 be the solution constructed in Theorem 6.3.
Then the solution U2 of (6.6) belongs to Lp

η([0,∞);D(Aq)) ∩ W 1,p
η ([0,∞);Xq). Moreover, there exists a

constant C > 0 such that

‖U2‖Lp
η([0,∞);D(Aq))∩W 1,p

η ([0,∞);Xq) � C
(

‖U0‖Xq0∩(Xq,D(Aq))1−1/p,p
+ ‖F‖Lp

η([0,∞);Xq∩Xq0 )

)
. (6.12)

Proof. To simplify the notation and when there is no risk of confusion, the fluid–structure semigroup will
be simply denoted by T. In what follows, we will set

J = ‖U0‖Xq0∩(Xq,D(Aq))1−1/p,p
+ ‖F‖Lp

η([0,∞);Xq∩Xq0 ) . (6.13)

The constants C appearing in this proof depend only on p, q, q0, η and O, and may change from line to
line. In some cases it will be precisely stated that C also depends on a fixed time τ . The proof is divided
into several parts.
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Step 1: Reformulation of the problem
By virtue of Duhamael’s principle, U2 can be written as

U2(t) =
∫ t

0

Tt−sU1(s) ds (t � 0). (6.14)

Moreover, for t > 2, we express U2 as

U2(t) =
∫ t/2

0

Tt−sU1(s) ds +
∫ t−1

t/2

Tt−sU1(s) ds +
∫ t

t−1

Tt−sU1(s) ds

:= U21(t) + U22(t) + U23(t). (6.15)

Step 2: Small time estimates Let τ ∈ (0,∞). According to Proposition 5.1, there exists a constant C > 0,
depending on τ , such that for every t ∈ (0, τ ] we have

‖U2(t)‖Xq � C ‖U1(t)‖Xq , (6.16)
∥
∥
∥
∥

dU2

dt
(t)

∥
∥
∥
∥
Xq

+ ‖U2(t, ·)‖2,q,E � C
(

‖U1(t, ·)‖2,q,E + ‖U1(t)‖Xq

)
. (6.17)

Combining the above estimates and (6.11), we obtain that
(

‖U2‖L∞
η ([0,τ ];Xq) + ‖U2‖Lp

η([0,τ ];Xq) +
∥
∥
∥
∥

dU2

dt

∥
∥
∥
∥

Lp
η([0,τ ];Xq)

+ ‖U2‖Lp
η([0,τ ];W 2,q(E))

)
� CJ . (6.18)

Step 3: Estimates of U2 in Lp(Lq) norm For t > 2 we consider the decomposition of U2 given in (6.15).
In view of (6.2b), there exists β > 0 such that

1 < η +
1
p

< β � min
{

3
2

(
1
q0

− 1
q

)

, γ1(t, q0, q), γ2(t, q0, q)
}

, (6.19)

where γ1(t, q0, q) and γ2(t, q0, q) are defined in (5.8), (5.9). Note that, the condition (6.2b) implies that

ηp′ > 1, where
1
p

+
1
p′ = 1.

To estimate U21 we note that for every t > 2 we have

‖U21(t)‖Xq +
2∑

j=1

∥
∥∇jU21(t)

∥
∥

q,E

�
Eq.(5.4),(5.5),(5.6)

C

∫ t/2

0

(

(t − s)− 3
2

(
1

q0
− 1

q

)

+ (t − s)−γ1(q0,q) + (t − s)−γ2(q0,q)

)

‖U1(s)‖Xq0

�
(6.19)

Ct−β

∫ t/2

0

(1 + s2)−η/2(1 + s2)η/2 ‖U1(s)‖Xq0 ds

� Ct−β ‖U1‖Lp
η([0,∞);Xq0 )

(∫ ∞

0

(1 + t2)−ηp′/2 dt

)1/p′

�
(ηp′>1)

Ct−β ‖U1‖Lp
η([0,∞);Xq0 ) �C(1 + t2)−β/2 ‖U1‖Lp

η([0,∞);Xq0 ) .

Consequently,

∫ ∞

2

(1 + t2)
pη
2

⎛

⎝‖U21(t)‖p
Xq +

∑

j=1,2

∥
∥∇jU21(t)

∥
∥p

q,E

⎞

⎠ dt

� C ‖U1‖p
Lp

η([0,∞);Xq0 )

∫ ∞

2

(1 + t2)
p
2 (η−β) dt � C ‖U1‖p

Lp
η([0,∞);Xq0 ) . (6.20)
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In order to estimate U22, we note that for every t > 2 we have

‖U22(t)‖Xq +
2∑

j=1

∥
∥∇jU22(t)

∥
∥

q,E

�
Eq.(5.4),(5.5),(5.6)

C

∫ t−1

t/2

(

(t − s)− 3
2

(
1

q0
− 1

q

)

+ (t − s)−γ1(t,q0,q) + (t − s)−γ2(t,q0,q)

)

‖U1(s)‖Xq0

�
(6.19)

C

∫ t−1

t/2

(t − s)−β(1 + s2)−η/2(1 + s2)η/2 ‖U1(s)‖Xq0 ds

�C(1 + t2)−η/2

∫ t−1

t/2

(t − s)−β(1/p+1/p′)(1 + s2)η/2 ‖U1(s)‖Xq0 ds ( as 4(1 + s2) > (1 + t2))

�C(1 + t2)−η/2

(∫ t−1

t/2

(t − s)−β ds

)1/p′ (∫ t−1

t/2

(t − s)−β(1 + s2)pη/2 ‖U1(s)‖p
Xq0 ds

)1/p

�C(1 + t2)−η/2

(∫ t−1

t/2

(t − s)−β(1 + s2)pη/2 ‖U1(s)‖p
Xq0 ds

)1/p

.

Thus
∫ ∞

2

(1 + t2)
pη
2

⎛

⎝‖U22(t)‖p
Xq +

∑

j=1,2

∥
∥∇jU22(t)

∥
∥p

q,E

⎞

⎠ dt

�C

∫ ∞

2

∫ t−1

t/2

(t − s)−β(1 + s2)pη/2 ‖U1(s)‖p
Xq0 dsdt

�C

∫ ∞

1

(1 + s2)pη/2 ‖U1(s)‖p
Xq0

(∫ 2s

s+1

(t − s)−βdt

)

ds� C ‖U1‖p
Lp

η([0,∞);Xq0 ) . (6.21)

To estimate U23, we first note that for j ∈ {0, 1, 2} and t > 2 we have

‖U23(t)‖Xq +
∥
∥∇jU23(t)

∥
∥

q,E

�
Eq.5.3

C

∫ t

t−1

(
‖U1(s)‖2,q,E + ‖U1(s)‖Xq

)
ds

� C(1 + t2)−η/2

∫ t

t−1

(1 + s2)η/2
(
‖U1(s)‖2,q,E + ‖U1(s)‖Xq

)
ds,

where the last inequality follows from the fact that 3(1 + s2) > (1 + t2) for every s ∈ [t − 1, t].
Proceeding similarly as in the estimate of U22 above we obtain

∫ ∞

2

(1 + t2)
pη
2

⎛

⎝‖U21(t)‖p
Xq +

∑

j=1,2

∥
∥∇jU21(t)

∥
∥p

q,E

⎞

⎠ dt

� C
(
‖U1‖p

Lp
η([0,∞);W 2,q2 (E)) + ‖U1‖p

Lp
η([0,∞);Xq)

)
. (6.22)

Combining the estimates (6.20)–(6.22), (6.18) (for some fixed τ � 2) and (6.11), we obtain

‖U2‖p
Lp

η([0,∞);W 2,q2 (E)) + ‖U2‖p
Lp

η([0,∞);Xq) � CJ . (6.23)

Step 4: Estimates of the derivative with respect to time in Lp(Lq) norm From (6.14), we have

dU2

dt
(t) = U1(t) +

∫ t

0

d
dt

(Tt−sU1(s)) ds (t > 0).
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Then using the similar arguments as in step 3 above, we obtain
∥
∥
∥
∥

dU2

dt

∥
∥
∥
∥

Lp
η([0,∞);Xq)

� CJ . (6.24)

Final step Finally, combining the estimates (6.23), (6.24), we get the estimate (6.12). This completes the
proof of Theorem 6.4. �

7. Proof of the Main Result

The aim of this section is to prove Theorems 3.4 and 2.3. The main ingredients of the proofs are the
estimates on the linearized problem which we proved in the previous sections, combined with a fixed point
argument. Due to the fact that the estimates on the linearized system include second order derivatives
with respect to the space variables and pressure terms we can use a maximal regularity based fixed point
argument which is slightly simpler than the Kato type one used in [4].

We begin by replacing the nonlinear terms F, G1 and G2 in (3.9) by given source terms f, g1 and g2,
and study the regularity and the decay properties of this linear system. More precisely, we first consider
the system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − μΔu + ∇π = f, div u = 0 (t � 0, x ∈ E),
u = � + ω × x (t � 0, x ∈ ∂O),
m�̇ +

∫

∂O σ(u, π)ν ds = g1 (t � 0),
J ω̇ +

∫

∂O x × σ(u, π)ν ds = g2 (t � 0),
u(0) = u0 (x ∈ E),
�(0) = �0, ω(0) = ω0.

(7.1)

In the spirit of Lemma 4.1, the above system can be seen as an alternative manner of writing the Eq. 6.1
studied in the previous section. The reason for which we prefer to write the linearized system in the form
(7.1) instead of (6.1) is that our fixed point procedure requires estimates on terms explicitly involving
the pressure. Due to this fact it is important for our approach to rephrase the results in Theorem 6.1 in
terms of the solution (u, π, l, ω) of (7.1).

We are going to apply Theorem 6.1 to the system (7.1) with suitable choice of exponents. To this aim,
let us take p, q ∈ (1,∞) and η > 0 such that

q ∈ (2,∞), 1 <
1
p

+
3
2q

� 3
2
, 1 − 1

p
< η <

3
2q

. (7.2)

For p, q0, q ∈ (1,∞) and η > 0, satisfying the above conditions, we define

Wη =
{

(u, π, �, ω) | u ∈ Lp
η([0,∞);W 2,q(E)) ∩ W 1,p

η ((0,∞);Lq(E)),

π ∈ Lp
η([0,∞); Ŵ 1,q(E)), �, ω ∈ W 1,p

η ([0,∞);R3)
}

, (7.3)

equipped with the norm

‖(u, π, �, ω)‖Wη
:= ‖u‖Lp

η([0,∞);W 2,q(E))3 + ‖∂tu‖Lp
η([0,∞);Lq(E))3 + ‖u‖

L∞
η ((0,∞);B

2(1−1/p)
q,p (E))3

+ ‖∇π‖Lp
η([0,∞);Lq(E))3 + ‖�‖L∞

η ([0,∞);R3) + ‖�‖W 1,p
η ((0,∞);R3)

+ ‖ω‖L∞
η ([0,∞);R3) + ‖ω‖W 1,p

η ((0,∞);R3) .

(7.4)
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We introduce the set of initial data

I =
{

(u0, �0, ω0) | u0 ∈ Lq/2(E)3 ∩ B2(1−1/p)
q,p (E)3, �0 ∈ R

3, ω0 ∈ R
3,

div u0 = 0 in E, u0 = �0 + ω0 × x on ∂O
}

, (7.5)

equipped with the norm

‖(u0, �0, ω0)‖I := ‖u0‖B
2(1−1/p)
q,p (E)3

+ ‖u0‖Lq/2(E)3 + ‖�0‖R3 + ‖ω0‖R3 . (7.6)

Finally, we introduce the space of source terms

Rη =
{

(f, g1, g2) | f ∈ Lp
η([0,∞);Lq/2(E)3) ∩ Lp

η([0,∞);Lq(E)3)

g1 ∈ Lp
η([0,∞);R3), g2 ∈ Lp

η([0,∞);R3)
}

, (7.7)

equipped with the norm

‖(f, g1, g2)‖Rη
:= ‖f‖Lp

η([0,∞);Lq(E))3 + ‖f‖Lp
η([0,∞);Lq/2(E))3 + ‖g1‖Lp

η([0,∞);R3) + ‖g2‖Lp
η([0,∞);R3) . (7.8)

We have the following result:

Theorem 7.1. Let p, q ∈ (1,∞) and η > 0 satisfying (7.2). Let Wη, I and Rη be the spaces defined in
(7.3), (7.5) and (7.7), respectively. Then for every (u0, �0, ω0) ∈ I and every (f, g1, g2) ∈ Rη, the system
(7.1) admits a unique solution (u, π, �, ω) ∈ Wη. Moreover, there exists a positive constant CL, depending
only on p, q, η, E and O (as in Theorem 6.1, the index L comes from “linear”), such that

‖(u, π, �, ω)‖Wη
� CL

(
‖(u0, �0, ω0)‖I + ‖(f, g1, g2)‖Rη

)
, (7.9)

for every (u0, �0, ω0) ∈ I and (f, g1, g2) ∈ Rη.

Proof. Let us set

U0 = u01E + (�0 + ω0 × y)1O, F = Pq (f1E + (f� + fω × y)1O) .

Then

U0 ∈ X
q/2 ∩ (Xq,D(Aq))1−1/p,p ,

and

F ∈ Lp
η([0,∞);Xq/2 ∩ X

q.

Moreover, since p, q ∈ (1,∞) and η > 0 satisfy (7.2), it is easy to see that (p, q, η) satisfies the condition
(6.2) with q0 = q/2.

Let U be the solution to
dU

dt
(t) = AqU(t) + F (t) (t > 0),

U(0) = U0.

By applying Theorem 6.1, we have U ∈ Lp
η([0,∞);D(Aq)) ∩ W 1,p

η ([0,∞);Xq). According to Lemma 4.1,
there exists π such that (u, π, �, ω) satisfies the system (7.1), where

u = U |E , � =
1
m

∫

O
U dy, ω = −J −1

∫

O
U × y dy,

which gives the desired regularity of u, � and ω. Finally, from (7.1)1, we obtain

∇π ∈ Lp
η([0,∞);Lq(E)).

This completes the proof of the result. �
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We are now in a position to prove the fixed point argument. We assume that, p, q ∈ (1,∞) and η > 0
satisfy (7.2). Let us also fix R > 0 such that

diam(O) <
R

2
. (7.10)

Recalling the definition of Wη from (7.3), we define, for every γ > 0, the ball Wη,γ in Wη by

Wη,γ =
{

(u, π, �, ω) ∈ Wη | ‖(u, π, �, ω)‖Wη
� γ

}
. (7.11)

We are now going to derive various estimates for the nonlinear terms F,G1 and G2 defined in (3.11) -
(3.12), beginning with X and Y : (Recall that X, Y, a and b have been defined in Sect. 3 (see (3.4).).
(3.7)).

Lemma 7.2. There exist constants γ0 ∈ (0, 1) and C > 0, both depending on p, q0, q1, q2 and η, such that
for every γ ∈ (0, γ0) and for every (u, π, �, ω) ∈ Wη,γ , the functions h, a, b,X and Y defined in (3.6),
(3.7), (3.4) and Lemma 3.2, satisfy

‖h‖L∞((0,∞);R3) <
R

2
(in particular (3.2) holds) ,

‖∇X‖L∞((0,∞)×R3) + ‖∇Y (X)‖L∞((0,∞)×R3) � C,

‖a(X)‖L∞((0,∞)×R3) + ‖∇b‖L∞((0,∞)×R3) � C,

‖∇X − I3‖L∞((0,∞)×R3) + ‖∇Y (X) − I3‖L∞((0,∞)×R3) � Cγ,

‖a(X) − I3‖L∞((0,∞)×R3) + ‖b − I3‖L∞((0,∞)×R3) � Cγ,

‖∂ta(X)‖L∞((0,∞)×R3) + ‖∂tY (X)‖L∞((0,∞)×R3) � Cγ.

Moreover, for all i, j, k ∈ {1, 2, 3}, we have
∥
∥
∥
∥

∂aik

∂xj
(X)

∥
∥
∥
∥

L∞((0,∞)×R3)

+

∥
∥
∥
∥
∥

∂2aik

∂x2
j

(X)

∥
∥
∥
∥
∥

L∞((0,∞)×R3)

+
∥
∥
∥
∥

∂2Yj

∂x2
i

(X)
∥
∥
∥
∥

L∞((0,∞)×R3)

� Cγ,

∥
∥
∥
∥

∂Yj

∂xi
(X)

∂Yk

∂xi
(X) − δj,iδk,i

∥
∥
∥
∥

L∞((0,∞)×R3)

� Cγ.

Proof. Recall the definition of h from (3.6). Since Q(t) is an isometry for every t � 0 and ηp′ > 1, we
deduce that for every t > 0 we have

|h(t)| �
∫ t

0

|�(s)|ds �
∫ ∞

0

(1 + t2)−η/2(1 + t2)η/2|�(t)| dt � C0 ‖�‖Lp
η(0,∞) � C0γ,

for some constant C0 > 0 depending only on η and p′. By setting

γ0 = min
{

1,
R

2C0

}

, (7.12)

we have that

‖h‖L∞([0,∞);R3) <
R

2
.

The rest of the proof follows easily from the definition of X (see for instance proof of Proposition 6.3 of
[13]). �

We next provide estimates of the term F defined in (3.11).
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Lemma 7.3. Let γ0 is defined in (7.12). There exists a positive constant CF, depending on p, q0, q1, q2 and
η, such that for every γ ∈ (0, γ0), (u, π, �, ω) ∈ Wη,γ , and (ui, πi, �i, ωi) ∈ Wη,γ , i = 1, 2, we have

‖F(u, π, �, ω)‖Lp
η([0,∞);Lq/2(E))3 + ‖F(u, π, �, ω)‖Lp

η(0,∞;Lq(E))3 � CFγ2,
∥
∥F(u1, π1, �1, ω1) − F(u2, π2, �2, ω2)

∥
∥

Lp
η([0,∞);Lq/2(E))3

+
∥
∥F(u1, π1, �1, ω1) − F(u2, π2, �2, ω2)

∥
∥

Lp
η([0,∞);Lq(E))3

� CFγ
∥
∥(u1, π1, �1, ω1) − (u2, π2, �2, ω2)

∥
∥

Wη
.

Proof. Note that, in view of Lemma 3.2, all the terms in the definition of F, with the exception of the
seventh one are supported in B2R. Thus for these terms it is enough to estimate Lp

η([0,∞);Lq(E)) norm
only. Using Lemma 7.2, we estimate the first term of F by noticing that for α ∈ {1, 2, 3} we have

∥
∥
∥
∥
∥
∥
ν
∑

i,j,k

bαi
∂2aik

∂x2
j

(X)uk

∥
∥
∥
∥
∥
∥

Lp
η((0,∞);Lq(E))

� C
∑

i,j,k

‖bαi‖L∞((0,∞)×R3)

∥
∥
∥
∥
∥

∂2aik

∂x2
j

(X)

∥
∥
∥
∥
∥

L∞((0,∞)×R3)

‖uk‖Lp
η(0,∞;Lq(E)) � Cγ2.

The other five compactly supported terms can be estimated in a similar way.
Concerning the seventh term of F, we use Hölder’s inequality to obtain that

‖(u · ∇)u‖Lp
η([0,∞);Lq/2(E)) � ‖u‖L∞

η ([0,∞);Lq(E)) ‖∇u‖Lp
η([0,∞);Lq(E)) � γ2.

Since
1
p

+
3
2q

� 3
2
, we have the following embeddings (see for instance [7, Proposition 4.3], [12, Eq.

(6.5), (6.7)] )

Lp((0,∞);W 2,q(E)) ∩ W 1,p((0,∞);Lq(E)) ↪→ L3p(0,∞;L3q(E)),

Lp((0,∞);W 2,q(E)) ∩ W 1,p((0,∞);Lq(E)) ↪→ L3p/2(0,∞;W 1,3q/2(E)).

Using the above embeddings, we get

‖(u · ∇)u‖Lp
η([0,∞);Lq(E)) � ‖u‖L3p

η ([0,∞);L3q(E)) ‖∇u‖
L

3p/2
η ([0,∞);L3q/2(E))

� Cγ2

which ends the proof. �

Concerning G1 and G2 defined in (3.12), it can be easily checked that we have:

Lemma 7.4. Let γ0 is defined in (7.12). There exists a positive constant CG, depending on p, q0, q1, q2 and
η, such that for every γ ∈ (0, γ0), (u, π, �, ω) ∈ Wη,γ , and (ui, πi, �i, ωi) ∈ Wη,γ , i = 1, 2, we have

‖G1(�, ω)‖Lp
η(0,∞;R3) + ‖G2(�, ω)‖Lp

η(0,∞;R3) � CGγ2,
∥
∥G1(�1, ω1) − G1(�2, ω2)

∥
∥

Lp
η(0,∞;R3)

+
∥
∥G2(�1, ω1) − G2(�2, ω2)

∥
∥

Lp
η(0,∞;R3)

� CGγ
∥
∥(u1, π1, �1, ω1) − (u2, π2, �2, ω2)

∥
∥

Wη
.

We are now in a position to prove Theorems 3.4, 2.3 and Corollary 2.5.
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Proof of Theorems 3.4 and 2.3. In view of Proposition 3.5, it is enough to prove Theorem 3.4. We take
(v, ψ, �v, ωv) ∈ Wη,γ , and consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − μΔu + ∇π = F(v, ψ, �v, ωv), div u = 0 (t � 0, x ∈ E),
u = � + ω × x (t � 0, x ∈ ∂O),

m�̇ +
∫

∂O
σ(u, π)ν ds = G1(�v, ωv) (t � 0),

J ω̇ +
∫

∂O
x × σ(u, π)ν ds = G2(�v, ωv) (t � 0),

u(0) = u0 (x ∈ E),
�(0) = �0, ω(0) = ω0.

(7.13)

Let

γ < min
{

γ0,
1

4CLCF
,

1
4CLCG

}

and ε0 =
γ

2CL
, (7.14)

where γ0 is defined in (7.12), and CL, CF and CG are the constants appearing in Theorem 7.1, Lemmas 7.3
and 7.4 respectively. Assume that, p, q ∈ (1,∞) and η > 0 satisfy (7.2). Moreover, suppose that

‖(u0, �0, ω0)‖I � ε0,

where ε0 satisfies (7.14). Let us define the map N : Wη,γ → Wη,γ by

N (v, ψ, �v, ωv) = (u, π, �, ω) ((v, ψ, �v, ωv) ∈ Wη,γ),

where (u, π, �, ω) is the solution to the system (7.13). We are going to show that N is a strict contraction
in Wη,γ .

Since (v, ψ, �v, ωv) ∈ Wη,γ , we can apply Theorem 7.1, Lemmas 7.3 and 7.4 to the system (7.13) and
using the choice of γ and ε0 above, we deduce

‖(u, π, �, ω)‖Wη
� CL

(
‖(u0, �0, ω0)‖I + ‖(F(v, ψ, �v, ωv),G1(�v, ωv),G2(�v, ωv))‖Rη

)

� CLε0 + CLCFγ2 + CLCGγ2 � γ.

Therefore N maps Wη,γ into itself.
For j ∈ {1, 2}, we take (vj , ψj , �j

v, ωj
v) ∈ Wη,γ , and we set

N (vj , ψj , �j
v, ωj

v) := (uj , πj , �j , ωj). (7.15)

Using Theorem 7.1, Lemmas 7.3, 7.4 and (7.14), we obtain
∥
∥(u1, π1, �1, ω1) − (u2, π2, �2, ω2)

∥
∥

Wη

� γCL(CF + CG)
∥
∥(v1, ψ1, �1v, ω1

v) − (v2, ψ2, �2v, ω2
v)

∥
∥

Wη

� 1
2

∥
∥(v1, ψ1, �1v, ω1

v) − (v2, ψ2, �2v, ω2
v)

∥
∥

Wη
.

Thus N is a strict contraction of Wη,γ . This completes the proof of Theorem 3.4. �

Proof of Corollary 2.5. Since p > 1, the estimate (2.10) follows easily from the proof Theorem 2.3. Note

that, the condition (2.5) implies that ηp′ > 1, where
1
p

+
1
p′ = 1. Therefore, for any t > 0

‖h(t)‖
R3 �

∫ t

0

(1 + s2)−η/2(1 + s2)η/2
∥
∥
∥ḣ(s)

∥
∥
∥
R3

ds

�
(∫ ∞

0

(1 + t2)−ηp′/2 dt

)1/p′ ∥
∥
∥ḣ

∥
∥
∥

Lp
η([0,∞);R3

< ∞. (7.16)

Thus indeed h ∈ L∞([0,∞);R3). �
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A few remarks are in order:

Remark 7.5. Let us set hf := limt→∞ h(t), and recall that we have assumed h(0) = 0 in (1.2)7. Then
according to the estimate (7.16), ‖hf − h(0)‖

R3 can be made arbitrary small by choosing sufficiently small
initial data. This is necessary to extend our result to the case of several rigid bodies.

Remark 7.6. Let us point out that Theorems 2.3 and 3.4 hold for more general class of initial data. Let
p, q0, q ∈ (1,∞) and η � 0 satisfy the following conditions

1 < q0 < q,
1
p

+
3
2q

� 3
2
, 1 − 1

p
< η <

3
2

(
1
q0

− 1
q

)

,

‖fg‖Lq0 (E) � ‖f‖W 1,q(E) ‖g‖
B

2(1−1/p)
q,p (E)

.

Then Theorem 2.3 is valid for u0 ∈ Lq0(E) ∩ B
2(1−1/p)
q,p (E). To simplify the presentation, in Theorem 2.3

we have chosen q0 = q/2.
Another interesting choice is p = q = 2 and q0 = 1 + ε.

8. The Case of Several Rigid Bodies

In this section, we briefly explain why our main result in Theorem 2.3 can be extended to the case of
several rigid bodies moving in a viscous incompressible fluid. We insist only on the adaptations needed in
the definition of solutions and, most importantly, in the change of variables used to write the governing
equations in a fixed spatial domain. With the exception of the above mentioned adaptation of the change
of variables, the proofs are very close to those we presented above for a single immersed body, we will
not provide their details.

Let m ∈ N be the number of rigid bodies. We assume that they are homogeneous and that at instant
t � 0 they occupy the smooth bounded domains Si(t), with i ∈ {1, 2, . . . m}. We assume that the viscous
incompressible fluid fills the remaining part of R3. The domain occupied by the fluid is denoted by

F(t) := R
3\ ∪m

i=1 Si(t).

We also suppose that initially there is no contact between the rigid bodies, i.e., that

Si(0) ∩ Sj(0) = ∅ (i, j ∈ {1, 2 . . . ,m}, i �= j). (8.1)

We denote by hi(t), ω̃i(t) and Qi(t) the position of the centre of mass, the angular velocity, and the or-
thogonal matrix giving the orientation of the ith rigid body at instant t. We thus have, for i = 1, 2, . . . ,m,

⎧
⎪⎨

⎪⎩

Si(t) = {hi(t) + Qi(t)x | x ∈ Si(0)} (t � 0),
Q̇i(t)Qi(t)−1x = ω̃i(t) × x (t � 0, x ∈ R

3),
Qi(0) = I3.

(8.2)

Moreover, the velocity and pressure fields in the fluid are denoted by ũ and π̃, respectively. With the
above notation, the equations modelling the evolution of several rigid bodies in a viscous incompressible
fluid can be written:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tũ + (ũ · ∇)ũ − μΔũ + ∇π̃ = 0 (t > 0, x ∈ F(t)),
div ũ = 0, (t > 0, x ∈ F(t)),
ũ(t, x) = ḣi(t) + ω̃i(t) × (x − h(t)) (t > 0, x ∈ ∂Si(t)),

miḧi(t) = −
∫

∂Si(t)

σ(ũ, π̃)νi ds (t > 0),

Ji
˙̃ωi(t) = Jiω̃i(t) × ω̃i(t) −

∫

∂Si(t)

(x − h(t)) × σ(ũ, π̃)νi ds (t > 0),

ũ(0, x) = u0(x) (y ∈ F(0)),
hi(0) = h0,i, ḣi(0) = �0,i, ω̃i(0) = ω0,i.

(8.3)
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In the above equations, νi denotes the unit normal to ∂Si(t) directed towards the interior of Si(t). The
constant mi > 0 denotes the mass of the ith rigid body and the matrix Ji(t) stands for the inertia tensor
of the ith rigid body at time t > 0.

We now introduce the notion of strong solutions to the system (8.3). To this aim, we first define

δ(t) = min
i,j∈{1,2,...,m},i 
=j

dist
(
Si(t),Sj(t)

)
. (8.4)

Notice that, our assumption (8.1), i.e., there is no contact initially between the rigid bodies, imply that
δ(0) > 0.

Definition 8.1. We say (ũ, π̃, (hi)m
i=1, (Qi)m

i=1(ω̃i)m
i=1) is a solution of the system (8.2)–(8.3) if

hi ∈ C([0,∞);R3), Qi ∈ W 1,∞(0,∞;M3×3(R3)) ḣi, ω̃i ∈ W 1,p((0,∞);R3), i ∈ {1, 2, . . . ,m},

ũ ∈ Lp([0,∞);W 2,q(F(·))) ∩ W 1,p((0,∞);Lq(F(·))), π̃ ∈ Lp([0,∞), Ŵ 1,q(F(·))),
for some p, q ∈ (1,∞), (8.2) holds in a classical sense, equations (8.3)1,2 in the sense of distribution in
(0,∞)×F(·), equations (8.3)4,5 are satisfied in the sense of distributions on (0,∞), equation (8.3)3 holds
in the sense of traces, the initial conditions (8.3)6,7 hold in a classical sense and δ(t) > 0 for every t � 0.

We now state the main result of this section.

Theorem 8.2. Let p, q ∈ (1,∞) and η > 0 be such that

q ∈ (2,∞), 1 <
1
p

+
3
2q

� 3
2
, 1 − 1

p
< η <

3
2q

. (8.5)

Let h0,1, h0,2, . . . , h0,m ∈ R
3, be such that δ(0) > 0. We assume

u0 ∈ B2(1−1/p)
q,p (F(0))3 ∩ Lq/2(F(0))3, (8.6)

�0,i ∈ R
3, ω0,i ∈ R

3, i = 1, 2, . . . ,m (8.7)

satisfying the compatibility conditions

div u0 = 0 in F(0), u0(x) = �0,i + ω0,i × x for x ∈ ∂Si(0), i = 1, 2, . . . ,m. (8.8)

Then there exists ε0 > 0 such that for any (u0, (�0,i)m
i=1, (ω0,i)m

i=1) satisfying (8.7), (8.7), (8.8) and

‖u0‖B
2(1−1/p)
q,p (F(0))3

+ ‖u0‖Lq/2(F(0))3 +
m∑

i=1

(‖�0,i‖R3 + ‖ω0,i‖R3

)
� ε0, (8.9)

the system (8.3) admits a unique solution (ũ, π̃, (hi)m
i=1, (Qi)m

i=1, (ω̃i)m
i=1) in the sense of definition Defi-

nition 8.1. Moreover, this solution satisfies

ũ ∈ Lp
η([0,∞);W 2,q(F(·))) ∩ W 1,p

η ((0,∞);Lq(F(·))) ∩ Cb([0,∞);B2(1−1/p)
q,p (F(·))),

π̃ ∈ Lp
η((0,∞); Ŵ 1,q(F(·))),

hi ∈ C([0,∞);R3), Qi ∈ W 1,∞(0,∞;M3×3(R3)),

ḣi ∈ W 1,p
η (0,∞;R3), ω̃i ∈ W 1,p

η (0,∞;R3), i = 1, 2, . . . , m.

The proof of the above theorem is similar to the proof of Theorem 2.3. The main difference is in
the construction of flow X that allows us to reformulate the problem in a fixed cylindrical domain.
Thus we limit our presentation to the description of the adaptations needed for the construction of
X. In order to be coherent with the notation used for the single rigid body case, we begin by setting
E := F(0) = R

3\ ∪m
i=1 Si(0) and Oi := Si(0). For i ∈ {1, 2, . . . ,m}, let Ri > 0 and hi : [0,∞) → R

3 be
such that

diam Oi + ‖hi‖L∞([0,∞);R3) < Ri � δ(0)
3

, (8.10)
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It is then easy to see that

S(t) ⊂ B(hi, Ri) for all t � 0,

where B(hi, Ri) is the open ball of radius Ri and centered at hi. Let ψi ∈ [C∞
0 (B2Ri

)]3 be a cut-off
function such that ψi = 1 on BRi

. For i = 1, 2, . . . ,m, we introduce a function ζi defined in [0,∞) × R
3

by

ζi(t, x) = ḣi(t) × (x − hi(t)) +
|x − hi(t)|2

2
ω̃i(t) (t � 0, x ∈ R

3),

For i ∈ {1, 2, . . . ,m} and t � 0 we define Λi(t, ·) : R3 → R
3 by

Λi(t, x) = ψi(x)
(
ḣi(t) + ω̃i(t) × (x − hi(t))

)
+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ψi(x)
∂x2

ζi3(t, x) − ∂ψi(x)
∂x3

ζi2(t, x)

∂ψi(x)
∂x3

ζi1(t, x) − ∂ψi(x)
∂x1

ζi3(t, x)

∂ψi(x)
∂x1

ζi2(t, x) − ∂ψi(x)
∂x2

ζi1(t, x)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (8.11)

for every x ∈ R
3 and we set

Λ(t, x) =
m∑

i=1

Λi(t, x) (t � 0, x ∈ R
3). (8.12)

By obvious adaptations of the proof of Lemma 3.1, we can easily check that Λ has the following properties:

Lemma 8.3. Assume that ḣi, ω̃i ∈ W 1,p
η (0,∞) for every i ∈ {1, 2, . . . ,m} and that δ satisfies (8.4). Let Λ

be defined by (8.12). Then we have

(1) Λ = 0 outside B2R.
(2) div Λ(t, x) = 0 in [0,∞) × R

3.

(3) Λ(t, x) = ḣi(t) + ω̃i(t) × (x − hi(t)) for every t ∈ [0,∞) and x ∈ Si(t).
(4) Λ is continuous from [0,∞) × R

3 to R
3.

(5) For every t � 0 the map x �→ Λ(t, x) lies in C∞
0 (R3).

Let X be the flow associated to the vector Λ, defined by:
{

∂tX(t, y) = Λ(t,X(t, y)) (t > 0),
X(0, y) = y ∈ R

3.
(8.13)

Using Lemma 8.3 and following line by line the proof of Lemma 3.2 we obtain

Lemma 8.4. For every y ∈ R
3 the initial value problem (3.4) admits a unique solution X(·, y) : [0,∞) �→

R
3, which is a C1 function in [0,∞). Furthermore, we have

(1) For every t � 0, the mapping y �→ X(t, y) is a C∞-diffeomorphism from R
3 onto itself and from E

onto F(t).
(2) For every t � 0 we denote by Y (t, ·) = [X(t, ·)]−1 the inverse of X(t, ·). Then for every x ∈ R

3 the
mapping t �→ Y (t, x) is a C1 function on [0,∞).

(3) For every t > 0 and i ∈ {1, 2, . . . ,m} we have X(t,Oi) = Si(t) (Thus Y (t,Si(t)) = Oi.).
(4) For every t � 0 and y ∈ R

3 we have that det (∇X(t, y)) = 1.

The rest of the proof is similar to the proof of Theorem 2.3. We can define a change of co-ordinates
similar to (3.5)–(3.6). The system in new variables will satisfy a system similar to (3.9)–(3.12). Then
we can define the associated fluid structure operator. This new operator has the same properties as the
fluid–structure operator associated with the single rigid body. Then one can mimic the steps given in
Sects. 4–7, to obtain the proof of Theorem 8.2. In particular, in the spirit of Remark 7.5, we can choose
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the initial data sufficiently small in order to avoid contacts between the various rigid bodies. Since the
calculations are almost identical, lengthy and too much of a repetition, we omit the details here.
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