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1. Introduction

The Stokes and Navier–Stokes systems play a main role in various areas of fluid mechanics, engineering,
biology, chemistry, and there is a huge list of references concerning the mathematical analysis of related
boundary value problems and of their applications. Among of them, we mention the books [4,5,9,13,24,
25,29,41,42,45,46].

Let N ≥ 2 and Ω be an open set in R
N . Let η, κ ≥ 0 and μ > 0 be given constants. Let u and p be

unknown vector and scalar fields. Let us assume that f is a given vector field defined on Ω. Then the
equations

−μΔu + ηu + κ (u · ∇)u + ∇p = f , div u = 0 in Ω (1.1)

determine a Navier–Stokes type system in the incompressible framework. If η = 0 and κ > 0 we then
obtain the well-known Navier–Stokes system in the incompressible case, while for η = κ = 0, (1.1)
becomes the Stokes system, which is an Agmon-Douglis-Nirenberg elliptic and linear system (see, e.g.,
[13,16,29,45] for further details).

Extensions to a more general case of anisotropic Stokes and Navier–Stokes systems with L∞-variable
coefficients, and the analysis of various boundary value problems involving them can be consulted in
[18–21] and the references therein.

Fabes et al. [12] used a layer potential approach in the analysis of the Dirichlet problem for the Stokes
system on Lipschitz domains in the Euclidean setting (see also [10] for applications of the layer potential
approach for strongly elliptic differential operators). Dindos̆ and Mitrea [11] proved the well-posedness
in Sobolev and Besov spaces for the Dirichlet problem for the Stokes and Navier–Stokes systems with
smooth coefficients in Lipschitz domains on compact Riemannian manifolds. Mitrea and Wright [27]
obtained well-posedness results in Sobolev and Besov spaces for Dirichlet problems for the Stokes system
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with constant coefficients in Lipschitz domains in R
n for Dirichlet problems for the Stokes, Oseen and

Navier–Stokes systems with constant coefficients in a non-solenoidal framework (see also the references
therein).

Korobkov et al. [22] studied the flux problem in the theory of steady Navier–Stokes equations with
constant coefficients and non-homogeneous boundary conditions. Amrouche and Rodŕıguez-Bellido [1]
have proved the existence of a very weak solution for the non-homogeneous Dirichlet problem for the
compressible Navier–Stokes system in a bounded domain of the class C1,1 in R

3.
Buĺıček et al. [6] studied a boundary value problem with homogeneous Dirichlet condition associated

with a system of nonlinear partial differential equations that generalize the classical fluid flow models
of Stokes, Darcy, Forchheimer and Brinkman, by assuming that the viscosity and the drag coefficient
depend on the shear rate and the pressure. The authors proved the existence of weak solutions to the
problem under a minimal number of conditions, and analyzed relevant examples of viscosities and drag
coefficients modeling real physical situations.

The authors in [18] analyzed in L2-based Sobolev spaces, the non-homogeneous boundary value prob-
lems of Dirichlet-transmission type for the anisotropic Stokes and Navier–Stokes systems in a compressible
framework in a bounded Lipschitz domain with a transversal Lipschitz interface in R

n, n ≥ 2 (n = 2, 3
for the nonlinear problems). They proved the existence of a weak solution to the Dirichlet problem
and the Dirichlet-transmission problem for the nonlinear anisotropic Navier–Stokes system by using the
Leray–Schauder fixed point theorem and various results and estimates from the linear case, as well as the
Leray-Hopf inequality and some other norm inequalities. Explicit conditions for uniqueness of solutions
to the nonlinear problems have been also provided. Mixed problems and mixed-transmission problems
for the anisotropic Stokes and Navier–Stokes systems in bounded Lipschitz domains with transversal
Lipschitz interfaces have been considered in [19] and analyzed from the variational point of view. The
authors in [17] used a layer potential approach and the Leray–Schauder fixed point theorem and proved
existence results for a nonlinear Neumann-transmission problem for the Stokes and Brinkman systems
in Lp, Sobolev, and Besov spaces. Mazzucato and Nistor [26] obtained well-posedness and regularity
results in Sobolev spaces for the linear elasticity equations in the anisotropic case with mixed boundary
conditions on polyhedral domains.

1.1. Bidisperse Porous Media and Some Related Models

A bidisperse porous medium (BDPM) may be described as a standard porous medium in which the solid
phase is replaced by another porous medium. Thus, a BDPM can be viewed as a medium composed of
clusters of large particles that are agglomerations of small particles (cf. [8], see also [32,33]). The voids
between the clusters are macro-pores and the voids within the clusters, which are much smaller in size,
are micro-pores. We can then define the f -phase (the macro-pores) and the p-phase (the remainder of
the structure). Bidisperse adsorbent or bidisperse capillary wicks in a heat pipe are practical applications
related to bidisperse porous media. There are also various biological structures, such as bone regeneration
scaffolds, that can be described in terms of bidisperse porous media (see also [33]).

Extending the Brinkman model for a monodisperse porous medium, Nield and Kuznetsov [30] con-
sidered a model to describe the steady-state momentum transfer in a BDPM by the following pair of
coupled equations for the velocities v∗

f and vpf
∗ in the macro and micro-pores,{

G = μ
Kf

v∗
f + ζ(v∗

f − v∗
p) − μ̃fΔ∗v∗

f

G = μ
Kp

v∗
p + ζ(v∗

p − v∗
f ) − μ̃pΔ∗v∗

p,

where the asterisks denote dimensional variables, G is the negative of the applied pressure gradient, μ is
the fluid viscosity, Kp and Kf are the permeabilities of the two phases, ζ is the coefficient for momentum
transfer between the two phases, and μ̃f and μ̃p are the effective viscosities of the two phases (cf. also
[32]). In the model proposed by Nield and Kuznetsov [30], the quadratic or Forchheimer terms |v∗

p|v∗
p

and v∗
f |v∗

f have been neglected. This model and various extensions have been considered in many studies
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related to forced, natural and mixed convection. Among them, we mention [7,23,28,31,33,39,40,43] (see
also the references therein). The thermal convection in an anisotropic bidisperse porous medium has been
investigated in [44].

Nield and Kuznetsov [33] extended their linear model proposed in [30] by adding some semilinear
terms, called the Forchheimer drag terms, as follows{

G = μ
Kf

v∗
f + ζ(v∗

f − v∗
p) − μ̃fΔ∗v∗

f + cfρ

K
1/2
f

|v∗
f |v∗

f

G = μ
Kp

v∗
p + ζ(v∗

p − v∗
f ) − μ̃pΔ∗v∗

p + cpρ

K
1/2
p

|v∗
p|v∗

p,

where ρ is the density of the fluid, and cf and cp are the Forchheimer coefficients.
The Nield–Kuznetsov models described above are based on the same pressure gradient −G in both

phases. Other models consider possible different pressures in the macro and micro phases. For instance,
Straughan [44] having analyzed a model of thermal convection in an anisotropic bidispersive porous
medium with permeability tensors in the macro and micro phases, considers different velocities Uf and
Up and different pressures pf and pp in the macro and micro-pores (see also [7] and the references therein
for similar models of bidisperse porous media with different velocities and different pressures in macro
and micro phases).

Having in view the model of Nield and Kuznetsov [33], where the steady-state momentum transfer is
described by the previous semilinear system, and also the model of Straughan [44], we consider a more
general nonlinear coupled type Navier–Stokes system arising in the analysis of fluid flows in bidisperse
porous media. Thus, our paper is build around the following system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−μ1Δu1 + η1u1 + κ1 (u1 · ∇)u1 + ∇p1

= h1 − α1 |u1|p−1 u1 − γ1 (u1 − u2) in Ω
−μ2Δu2 + η2u2 + κ2 (u2 · ∇)u2 + ∇p2

= h2 − α2 |u2|p−1 u2 − γ2 (u2 − u1) in Ω
div ui = 0 in Ω, i = 1, 2
ui = 0 on ∂Ω, i = 1, 2,

where Ω ⊂ R
N is a bounded domain (N ≤ 3), p ≥ 1, ηi, κi, αi ≥ 0 and μi, γi > 0, i = 1, 2, are given

constants whose meaning depends on the physical properties of fluid flow and porous medium, while hi,
i = 1, 2, are given data in some Sobolev spaces.

In order to analyze this system, we provide a deep analysis of a homogeneous Dirichlet problem of
more general coupled Navier–Stokes systems with various non-homogeneous terms of reaction type, and
obtain existence results by using a variational approach combined with fixed point theorems, a technique
already used for other classes of equations (see [34, Ch. 6], [35], [37, Chs.9-12], [38]).

The paper is structured as follows. First, we mention some well-known but useful results regarding
the stationary Navies-Stokes equations in the incompressible case. The next section is devoted to the
analysis of the homogeneous Dirichlet problem for the Navier–Stokes equations with reaction terms. We
obtain existence results based on the Schauder fixed point theorem and the Leray–Schauder fixed point
theorem. Uniqueness result can be also obtained by using the Banach contraction principle, by imposing
additional conditions to the reaction terms. The third section is devoted to the analysis of a coupled
system of Navier–Stokes equations. The last section is devoted to a coupled system that could describe a
fluid flow in a bidisperse porous medium. We obtain related existence and uniqueness results that follow
as consequences of the results obtained in the previous sections.

1.2. Stationary Navier–Stokes Type Equations

Let N ≤ 3 and Ω ⊂ R
N be an bounded domain.
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Next we recall some well-known results about the system⎧⎨
⎩

−μΔu + ηu + κ (u · ∇)u + ∇p = f in Ω
div u = 0 in Ω
u = 0 on ∂Ω

(1.2)

where μ > 0, κ, η ≥ 0 are given constants and f ∈ H−1 (Ω)N is a given distribution.
The variational form of system (1.2) with the unknown pair (u, p) ∈ V × L2 (Ω) is

μ (u,v)H1
0

+ η (u,v)L2 + κb (u,u,v) − (p,div v)L2 = (f ,v) , v ∈ H1
0 (Ω)N

, (1.3)

where

(u,v)L2 =
N∑

i=1

∫
Ω

uivi, (u,v)H1
0

=
N∑

i=1

∫
Ω

∇ui · ∇vi

b (u,v,w) =
N∑

i,j=1

∫
Ω

uj
∂vi

∂xj
wi, (f ,v) =

N∑
i=1

(fi, vi) ,

V =
{
v = (v1, . . . , vN ) ∈ H1

0 (Ω)N : div v = 0
}

.

For u ∈ V, Eq. (1.3) gives

μ (u,v)H1
0

+ η (u,v)L2 + κb (u,u,v) = (f ,v) , v ∈ V. (1.4)

Once a solution u ∈ V to (1.4) is found, the pressure p ∈ L2 (Ω) is guaranteed by De Rham’s Theorem
(cf., e.g., [45, Proposition 1.1, Chapter 1], [15, Theorem 2.3, Chapter 1], see also [2], [3, Theorem 2.1]).

On H1
0 (Ω)N consider the inner product and norm

(u,v)0 :=
∫

Ω

(μ∇u · ∇v + ηu · v) , |u|20 :=
∫

Ω

(
μ |∇u|2 + η |u|2

)
,

which when applied to the subspace V will be denoted by (·, ·)V and |·|V , respectively. Then the embedding
constants and the corresponding inequalities for the inclusions V ⊂ L2 (Ω)N ⊂ V ′ are

|u|L2 ≤ 1√
μλ1 + η

|u|V (u ∈ V ) , |h|V ′ ≤ 1√
μλ1 + η

|h|L2

(
h ∈ L2 (Ω)N

)
, (1.5)

where λ1 is the first eigenvalue of −Δ with respect to the homogeneous Dirichlet problem. Indeed, knowing
that

|u|L2 ≤ 1√
λ1

|u|H1
0

(
u ∈ H1

0 (Ω)N
)

, |h|H−1 ≤ 1√
λ1

|h|L2

(
h ∈ L2 (Ω)N

)
,

we have

|u|2V = μ |u|2H1
0

+ η |u|2L2 ≥ (μλ1 + η) |u|2L2 , (1.6)

whence the first inequality in (1.5). Based on (1.6), the second inequality is obtained as follows:

|h|V ′ = sup
v∈V

|(h,v)|
|v|V

≤ |h|L2 sup
v∈V

|v|L2

|v|V
≤ 1√

μλ1 + η
|h|L2 .

Also V ⊂ H1
0 (Ω)N ⊂ H−1 (Ω)N ⊂ V ′ and

|h|V ′ = sup
v∈V

|(h,v)|
|v|V

≤ sup
v∈H1

0 (Ω)N

|(h,v)|
|v|V

= |h|H−1

(
h ∈ H−1 (Ω)N

)
. (1.7)

Recall that the trilinear functional b : V × V × V → R satisfies

b (u,v,w) + b (u,w,v) = 0 (u,v,w ∈ V ) ,

|b (u,v,w)| ≤ M |u|V |v|V |w|V ,
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where M > 0 is a constant depending on μ and η. Also, using the Galerkin method, one can prove that
for every f ∈ V ′, Eq. (1.4) has at least one solution u ∈ V (see, e.g., [13,45]).

Uniqueness: For every f ∈ V ′, with |f |V ′ < 1/ (κM) , Eq. (1.4) has at most one solution u ∈ V. Indeed,
if u1,u2 ∈ V are solutions and we let u = u1 − u2, then using (1.4) one has

0 = (u,v)V + κb (u1,u1,v) − κb (u2,u2,v)
= (u,v)V + κ (b (u1,u1,v) − b (u1,u2,v) + b (u1,u2,v) − b (u2,u2,v))
= (u,v)V + κ (b (u1,u,v) + b (u,u2,v)) ,

which for v = u, since b (u1,u,u) = 0, gives

|u|2V = −κb (u,u2,u) ≤ κM |u|2V |u2|V .

On the other hand for u2, taking in (1.4) v = u = u2, one has

|u2|2V = (f ,u2) ≤ |f |V ′ |u2|V .

Then

|u|2V (1 − κM |f |V ′) ≤ 0,

which for |f |V ′ < 1/ (κM) yields |u|V = 0, that is u1 = u2. Denote the unique solution by uf .
Thus we may define the solution operator

S : D0 → V, f 	−→ uf .

Here D0 := {f ∈ V ′ : κM |f |V ′ < 1} . In addition, since the trilinear functional b satisfies

b (u,v,w) + b (u,w,v) = 0,

one has b (u,u,u) = 0, whence taking in (1.4) v = u = S (f) we see that

|S (f)|V ≤ |f |V ′ . (1.8)

Also using the linearity of b in each of its variables gives

b (u,u,w) − b (v,v,w)
= b (u,u,w) − b (v,u,w) + b (v,u,w) − b (v,v,w)
= b (u − v,u,w) + b (v,u − v,w) .

Then

|S (f) − S (g)|2V = (f − g, S (f) − S (g))
+κb (S (g) , S (g) , S (f) − S (g))
−κb (S (f) , S (f) , S (f) − S (g))

= (f − g, S (f) − S (g))
+κb (S (g) − S (f) , S (g) , S (f) − S (g))
+κb (S (f) , S (g) − S (f) , S (f) − S (g)) .

Hence

|S (f) − S (g)|2V ≤ |f − g|V ′ |S (f) − S (g)|V
+κM |S (f) − S (g)|2V (|S (g)|V + |S (f)|V )

≤ |f − g|V ′ |S (f) − S (g)|V
+κM (|f |V ′ + |g|V ′) |S (f) − S (g)|2V .

As a result, if |f |V ′ , |g|V ′ ≤ ρ, then

(1 − 2κMρ) |S (f) − S (g)|V ≤ |f − g|V ′ . (1.9)
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Therefore, if 1 − 2κMρ > 0, i.e., ρ < 1
2κM , then the operator S is Lipschitz continuous on the ball of V ′

centered at the origin and of radiusρ. Note that in the case κ = 0, inequality (1.9) shows that the solution
operator S is Lipschitz continuous on the entire space V ′. Let us introduce a notation for the Lipschitz
constant, namely

L (ρ) := (1 − 2κMρ)−1
.

Note that, in the case of the Stokes system, one has κ = η = 0 and thus S is well-defined and Lipschitz
continuous on the whole space V ′.

1.3. Notions of Vector Analysis in Fixed Point Theory

In this paper we assume that the reader is familiar with Banach contraction principle and Schauder and
Leray–Schauder fixed point theorems. However, we consider it useful to present some less known elements
of vector analysis in fixed point theory. For more details we refer the reader to [36].

A square matrix A with nonnegative entries is said to be convergent to zero if its power Ak tends to
the zero matrix as k tends to infinity. This property is equivalent to the fact that the spectral radius of
A is less than one, and also to the property that J − A is invertible and its inverse also has nonnegative
entries (here J is the unit matrix).

A matrix A = [aij ]i,j=1,2 of size two is convergent to zero if and only if

tr A < min {2, 1 + det A} . (1.10)

The property of being convergent to zero of a matrix A is useful to pass from a matrix inequality of
the form (J − A)u ≤ v, where u,v are column vectors and the inequality is understood on components,
to the inequality u ≤ (J − A)−1 v, without change of inequality. The notion is even more important
since it extends to matrices the situation on real numbers 0 ≤ a < 1, asked on the Lipschitz constant
in Banach contraction theorem. More exactly we have the following result, a special case of the more
general Perov’s fixed point theorem:

Let k ≥ 1 be a given integer, (X, |.|X) be a Banach space, and Xk := X × · · · × X︸ ︷︷ ︸
k−times

. If D ⊂ Xk is

closed, and T : D → D, T = (T1, · · ·, Tk) is a mapping satisfying the matrix condition⎡
⎢⎣

|T1 (u) − T1 (v)|X
...

|Tk (u) − Tk (v)|X

⎤
⎥⎦ ≤ A

⎡
⎢⎣

|u1 − v1|X
...

|uk − vk|X

⎤
⎥⎦

for all u = (u1, · · ·, uk) , v = (v1, · · ·, vk) ∈ D and some matrix A, which is convergent to zero, then T
has a unique fixed point u ∈ D, i.e., Ti (u) = ui for i = 1, . . . , k.

2. Navier–Stokes Type Equations with Reaction Terms

Consider now the problem⎧⎨
⎩

−μΔu + ηu + κ (u · ∇)u + ∇p = h + F (u) in Ω
div u = 0 in Ω
u = 0 on ∂Ω

(2.1)

where h ∈ H−1 (Ω)N and F : H1
0 (Ω)N → H−1 (Ω)N

. The problem can be reduced to the fixed point
equation in V,

u = S (h + F (u)) (2.2)

having in mind that the solution operator S is defined and Lipschitz continuous on the open ball of
H−1 (Ω)N centered at the origin and of radius 1/ (2κM) .
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Theorem 2.1. Assume that F : H1
0 (Ω)N → H−1 (Ω)N

, F (0) = 0 and

|F (u) − F (v)|H−1 ≤ a |u − v|0
(

|u|0 , |v|0 <
1

2κM

)
(2.3)

for some constant a < 1. Then for each h ∈ H−1 (Ω)N with

|h|H−1 <
(1 − a)2

2κM
, (2.4)

Equation (2.2) has a unique solution u ∈ V such that

|u|V <
1 − a

2κM
. (2.5)

Proof. First, we consider the case κ > 0. Let ε be arbitrarily closed to 1/a with 1 < ε < 1/a, such that

|h|H−1 ≤ (1 − a)
ε − 1
2κMε

.

Denote R = R(ε) :=
ε − 1
2κMε

. Thus |h|H−1 ≤ (1 − a) R. Clearly R < 1−a
2κM < 1

2κM , hence inequality (2.3)

holds for all u,v in the closed ball BR of (V, |.|V ) centered at the origin and of radius R. In addition, for
u ∈ BR, one has

|h + F (u)|V ′ ≤ |h + F (u)|H−1 ≤ |h|H−1 + a |u|V
≤ |h|H−1 + aR ≤ (1 − a) R + aR = R <

1
2κM

. (2.6)

Consequently the operator

T (u) := S (h + F (u))

is well defined in BR and for |u|V , |v|V ≤ R, using (1.9) one has

|T (u) − T (v)|V ≤ L (R) |F (u) − F (v)|V ′ ≤ L (R) |F (u) − F (v)|H−1

≤ aL (R) |u − u|V .

Since aL (R) < 1 (which can be checked easily), we have that T is a contraction on BR. In addition from
(1.8) and (2.6) we have

|T (u)|V ≤ |h + F (u)|H−1 ≤ R, (2.7)

which proves that T (BR) ⊂ BR. Thus the Banach contraction principle applies and gives the existence

and uniqueness of solution u in BR, where R = R(ε) =
1 − ε−1

2κM
. Since R(ε) → 1−a

2κM as ε → 1
a , we obtain

the existence and uniqueness of solution u satisfying (2.5). This closes the proof in the case κ > 0.
In the case κ = 0, the operator T is a contraction on the entire space V and hence the solution exists

and is unique in V . �

For the next result, instead of the Lipschitz continuity, we only assume a linear growth of F.

Theorem 2.2. Assume that F : H1
0 (Ω)N → H−1 (Ω)N is completely continuous, satisfies the growth

condition

|F (u)|H−1 ≤ a |u|V
(

|u|0 <
1

2κM

)
(2.8)

with some constant a > 0 and h is as in (2.4). Then Eq. (2.2) has at least one solution u ∈ V satisfying
(2.5).

Proof. As above, T maps the ball BR of (V, |·|V ) into itself. In addition, the operator T is completely
continuous. The result follows from Schauder’s fixed point theorem. �
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A better result can be derived from the Leray–Schauder fixed point theorem, without the linear growth
condition on F .

Theorem 2.3. Assume that the operator F : H1
0 (Ω)N → H−1 (Ω)N is completely continuous and there

exists c < 1 such that

(F (u) ,u) ≤ c |u|20
(
u ∈ H1

0 (Ω)N
)

. (2.9)

Then for each R > 0 satisfying

(1 − c) R + σ <
1

2κM
,

where σ = supu∈BR
|F (u)|H−1 and BR = {u ∈ V : |u|V ≤ R} , Eq. (2.2) has at least one solution u ∈ BR

for every h ∈ H−1 (Ω)N with

|h|H−1 ≤ (1 − c) R. (2.10)

Moreover, any solution u satisfies

|u|V ≤ 1
1 − c

|h|H−1 . (2.11)

Proof. For u ∈ BR, one has

|h + F (u)|H−1 ≤ |h|H−1 + σ ≤ (1 − c) R + σ <
1

2κM
.

Hence T is well-defined and continuous on the closed ball BR of V. Moreover, the Lipschitz continuity
of the solution operator S implies that S is a bounded operator (it maps bounded sets into bounded
sets) which together with the complete continuity of F implies that the operator T is also completely
continuous on BR. (Recall that T (u) := S (h + F (u)).)

Next we show that the Leray–Schauder condition holds, namely

|u|V = R ⇒ T (u) �= λu for all λ > 1.

Assume the contrary, i.e. T (u) = λu for some u with |u|V = R and λ > 1. Then as in (1.4) we obtain
the variational equation

λμ (u,v)H1
0

+ λη (u,v)L2 + λ2κb (u,u,v) = (h + F (u) ,v) , v ∈ V.

Choosing v = u in the above equation and using inequalities (1.7) and (2.9) one obtains

|u|2V < λ |u|2V = (h + F (u) ,u)

≤ |h|V ′ |u|V + c |u|2V ≤ |h|H−1 |u|V + c |u|2V .

Since |u|V = R, it follows that

R < |h|H−1 + cR ≤ (1 − c) R + cR = R,

a contradiction. Thus, the Leray–Schauder fixed point theorem guarantees the existence of a solution.
To prove (2.11), assume that u ∈ V is a solution of Eq. (2.2). Then, as above, we find

|u|V ≤ |h|H−1 + c |u|V ,

whence the conclusion. �

Remark 2.4. (a) If F : L2 (Ω)N → L2 (Ω)N and there exists a constant a0 > 0 such that

|F (u) − F (v)|L2 ≤ a0 |u − v|L2

(
u,v ∈ L2 (Ω)N

)
,



JMFM Analysis of Navier–Stokes Models Page 9 of 16 38

then using twice Poincaré’s inequality gives

|F (u) − F (v)|H−1 ≤ 1√
λ1

|F (u) − F (V)|L2 ≤ a0√
λ1

|u − v|L2

≤ a0√
λ1 (μλ1 + η)

|u − v|V

for all u,v ∈ V and so condition (2.3) holds with a = a0/
√

λ1 (μλ1 + η).
(b) Analogously, if F : L2 (Ω)N → L2 (Ω)N and

|F (u)|L2 ≤ a0 |u|L2

(
u ∈ L2 (Ω)N

)
,

then condition (2.8) holds with a = a0/
√

λ1 (μλ1 + η).
(c) If F : Lp (Ω)N → Lq (Ω)N is continuous and either p < 2∗, q ≥ (2∗)′

, or p ≤ 2∗, q > (2∗)′
, then F

is completely continuous from H1
0 (Ω)N to H−1 (Ω)N

. This follows from the continuous (compact)
embeddings H1

0 (Ω) ⊂ Lp (Ω) for p ≤ 2∗ (p < 2∗) , and Lq (Ω) ⊂ H−1 (Ω) for q ≥ (2∗)′ (
q > (2∗)′)

.

In particular, if F : L2 (Ω)N → L2 (Ω)N is continuous, then it is completely continuous from H1
0 (Ω)N

to H−1 (Ω)N
.

Recall that for N > 2, 2∗ = 2N
N−2 , while for N = 2, 2∗ = +∞. In addition, 1

2∗ + 1
(2∗)′ = 1.

3. A Coupled System of Two Navier–Stokes Type Equations

Consider now the system⎧⎨
⎩

−μiΔui + ηiui + κi (ui · ∇)ui + ∇pi = hi + Fi (u) in Ω
div ui = 0 in Ω
ui = 0 on ∂Ω (i = 1, 2)

(3.1)

where u stands for the pair (u1,u2) , hi ∈ H−1 (Ω)N and Fi : H1
0 (Ω)2N → H−1 (Ω)N (i = 1, 2) . The

problem can be reduced to the fixed point equation in V 2

ui = Si (hi + Fi (u)) , i = 1, 2, (3.2)

where u = (u1,u2) ∈ V 2, and Si stands for the solution operator corresponding to ui ∈ V . (Here Si is
the solution operator corresponding to system (3.1) with fixed i, compare also with (2.1).)

Denote by (·, ·)i and |·|i the inner product (·, ·)0 and norm |·|0 corresponding to μi and ηi. Also denote
by Mi the constant M with respect to the norm |·|i of V.

Assume that the following conditions hold:
(H1) for i = 1, 2, one has Fi : H1

0 (Ω)2N → H−1 (Ω)N
, Fi (0) = 0 and

|Fi (u) − Fi (v)|H−1 ≤ ai1 |u1 − v1|1 + ai2 |u2 − v2|2 ,

∀uj , vj ∈ H1
0 (Ω)N such that |uj |j , |vj |j < θj , j = 1, 2,

where ai1, ai2 are nonnegative constants such that ai1 + ai2 < 1, and θj := 1/ (2κjMj).
(H2) there exist εi > 1, i = 1, 2, such that

ε1a11 + ε2a22 < min {2, 1 + ε1ε2 (a11a22 − a12a21)} . (3.3)

(H3) hi ∈ H−1 (Ω)N and

|hi|H−1 ≤ (1 − ai1 − ai2) R (i = 1, 2) ,

where

R := min {R1, R2} , Ri :=
εi − 1

2κiεiMi
. (3.4)

The next result extends Theorem 2.1 to system (3.1).
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Theorem 3.1. Under assumptions (H1)-(H3), system (3.2) has a unique solution u = (u1,u2) ∈ V 2 such
that

|ui|i ≤ R, i = 1, 2.

Proof. First note that the operator Ti (u) := Si (hi + Fi (u)) is well-defined on

DR :=
{
u = (u1,u2) ∈ V 2 : |ui|i ≤ R, i = 1, 2

}
. (3.5)

Indeed, using (H1) one has

|hi + Fi (u)|H−1 ≤ |hi|H−1 + |Fi (u)|H−1

≤ |hi|H−1 + ai1 |u1|1 + ai2 |u2|2
≤ (1 − ai1 − ai2) R + ai1R + ai2R

= R ≤ Ri =
εi − 1

2κiεiMi

<
1

2κiMi
.

Also if T = (T1, T2) , then T (DR) ⊂ DR. Indeed, if u ∈ DR, then according to (1.8) and the last
estimate,

|Ti (u)|i = |Si (hi + Fi (u))|i ≤ |hi + Fi (u)|H−1 ≤ R,

that is T (u) ∈ DR. Next, again from (H1), we have

|Ti (u) − Ti (v)|i ≤ Li (Ri) (ai1 |u1 − v1|1 + ai2 |u2 − v2|2) , i = 1, 2,

where

Li(Ri) =
1

1 − 2κiMiRi
, i = 1, 2.

These inequalities can be put under the vector form[ |T1 (u) − T1 (v)|1
|T2 (u) − T2 (v)|2

]
≤ M

[ |u1 − v1|1
|u2 − v2|2

]
in terms of the matrix

M = [Li (Ri) aij ]i,j=1,2 .

Here, a direct computation based on the expression of Ri given by (3.4) shows that

Li (Ri) = εi,

and hence M = [εiaij ]i,j=1,2 . Moreover, inequality (3.3), in view of (1.10), implies that M is a matrix
that converges to zero, equivalently, whose spectral radius is less than one. Therefore Perov’s fixed point
theorem applies to T and guarantees that T has in DR a unique fixed point.

Again we recall that if κi = 0 for some i ∈ {1, 2}, one has that Ri = +∞. Moreover, if κ1 = κ2 = 0,
then DR = V 2. �
Remark 3.2. (a) A sufficient condition for (H2) to hold is that the matrix A := [aij ]i,j=1,2 is convergent
to zero, i.e.

a11 + a22 < min {2, 1 + a11a22 − a12a21} . (3.6)

Indeed, the strict inequality in (3.6) remains true if we insert, as condition (3.3) requires, the coefficients
ε1, ε2 > 1 sufficiently closed to 1.

(b) A sufficient condition for (3.6) to hold is that ai1 + ai2 < 1 for i = 1, 2. Indeed, summing up the

two inequalities gives
2∑

i,j=1

aij < 2, whence one has even more a11 + a22 < 2. In addition, the inequality

a11 + a22 < 1 + a11a22 − a12a21 also holds in view of its equivalent form a12a21 < (1 − a11) (1 − a22) and
of the assumptions a12 < 1 − a11 and a21 < 1 − a22.
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Remark 3.3. In the case of the Stokes type equations, when κ1 = κ2 = 0, under condition (H1) with
ai1 + ai2 < 1 for i = 1, 2, problem (3.1) has a unique solution for every (h1,h2) ∈ H−1 (Ω)2N

.

If instead of the Lipschitz condition (H1) and of condition (H3) we consider the more relaxed hypothe-
ses:

(H1∗) for i = 1, 2, Fi : H1
0 (Ω)2N → H−1 (Ω)N is completely continuous and

|Fi (u)|H−1 ≤ ai1 |u1|1 + ai2 |u2|2
(
|uj |j < θj , j = 1, 2

)
;

(H3∗) 1 > ai1 + ai2, hi ∈ H−1 (Ω)N and

|hi|H−1 < (1 − ai1 − ai2) θ (i = 1, 2) , (3.7)

where

θ := min {θ1, θ2} ,

then we can prove the existence of at least one solution.

Theorem 3.4. Under assumptions (H1∗) and (H3∗ ), system (3.2) has at least one solution u = (u1,u2)
∈ V 2 such that

|ui|i < θ (i = 1, 2) .

Proof. In view of the strict inequalities (3.7), we may chose a number R with 0 < R < θ such that

|hi|H−1 ≤ (1 − ai1 − ai2) R, i = 1, 2.

Then, as in the proof of Theorem 3.1, the operators Ti are well-defined and for T = (T1, T2) and DR

given by (3.5) with R as above, one has T (DR) ⊂ DR. Here in addition T is completely continuous,
hence Schauder’s fixed point theorem applies and gives the conclusion. �

The next result is the version for systems of Theorem 2.3.

Theorem 3.5. Assume that the operators Fi : H1
0 (Ω)2N → H−1 (Ω)N (i = 1, 2) are completely continuous

and there exist ci, di ≥ 0 with ci + di < 1 such that that for each i,

(Fi (u) ,ui) ≤ ci |ui|2i + di |u1|1 |u2|2 , u ∈ H1
0 (Ω)2N

. (3.8)

Then for each R > 0 satisfying

σi (R) < θi − (1 − ci − di) R, (3.9)

where σi (R) := supu∈DR
|Fi (u)|H−1 , system (3.2) has at least one solution u ∈ DR for every (h1,h2) ∈

H−1 (Ω)2N with

|hi|H−1 ≤ (1 − ci − di) R. (3.10)

Moreover, for any solution u = (u1,u2) one has the matrix estimate[ |u1|1
|u2|2

]
≤ (I − A)−1

[ |h1|H−1

|h2|H−1

]
, (3.11)

where

A =
[

c1 d1

d2 c2

]

and I is the unit matrix.
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Proof. We follow the same ideas as in the proof of Theorem 2.3. Here the Leray–Schauder theorem applies
on the set DR.

For u ∈ DR, using (3.9) one has

|hi + Fi (u)|H−1 ≤ |hi|H−1 + |Fi (u)|H−1 ≤ |hi|H−1 + σi(R)

≤ (1 − ci − di) R + σi(R) <
1

2κiMi
= θi.

Hence T is well-defined and continuous on the closed subset DR of V 2. Moreover, the Lipschitz continuity
of Si implies that Si is a bounded operator (maps bounded sets into bounded sets) which together with the
complete continuity of Fi implies that T = (T1, T2) , Ti (u) = Si (hi + Fi (u)) , is completely continuous
on DR. Next we show that the Leray–Schauder condition holds.

Assume the contrary, i.e. T (u) = λu for some u ∈ DR with |u1|1 = R or |u2|2 = R and some λ > 1.
Assume that |u1|1 = R. Then multiplying by u1 the equation

−λμ1Δu1 + λη1u1 + λ2κ1 (u1 · ∇)u1 + ∇p1 = h1 + F1 (u) ,

and using (1.7) gives

|u1|21 < λ |u1|21 = (h1 + F1 (u) ,u1) ≤ |h1|H−1 |u1|1 + (F1 (u) ,u1) . (3.12)

Furthermore,using (3.8) we obtain

(F1 (u) ,u1) ≤ c1 |u1|21 + d1 |u1|1 |u2|2 ≤ (c1 + d1) R2.

Hence

R2 < |h1|H−1 R + (c1 + d1) R2.

Similarly, in case that |u2|2 = R we derive

R2 < |h2|H−1 R + (c2 + d2) R2.

Hence in view of (3.10), we arrive to the contradiction R < R.
To prove (3.11) we start with

|ui|2i = (hi + Fi (u) ,ui) ≤ |hi|H−1 |ui|i + ci |ui|2i + di |u1|1 |u2|2
which give

|u1|1 ≤ |h1|H−1 + c1 |u1|1 + d1 |u2|2 ,

|u2|2 ≤ |h2|H−1 + c2 |u2|2 + d2 |u1|1 .

These can be put together under the matrix form

(I − A)
[ |u1|1

|u2|2

]
≤

[ |h1|H−1

|h2|H−1

]
.

From the assumption ci + di < 1 (i = 1, 2) we easily can check that matrix A is convergent to zero,
which guarantees that I − A has an inverse whose entries are nonnegative. Thus the multiplication by
(I − A)−1 does not change inequality and yields (3.11). �

Remark 3.6. Simple computation of (I − A)−1 shows that estimate (3.11) means explicitly:

|u1|1 ≤ (1 − c2) |h1|H−1 + d1 |h2|H−1

(1 − c1) (1 − c2) − d1d2
,

|u2|2 ≤ d2 |h1|H−1 + (1 − c1) |h2|H−1

(1 − c1) (1 − c2) − d1d2
.

Remark 3.7. In the case of the Stokes type equations, when κ1 = κ2 = 0, under condition (3.8) with the
coefficients ci, di such that the matrix A is convergent to zero, the problem has a unique solution for
every (h1,h2) ∈ H−1 (Ω)2N

. Indeed, in this case the operator T is defined and completely continuous on
the whole space V 2 and (3.11) gives the a priori bounds of solutions.
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4. Navier–Stokes Type Model for Fluid Flow in Bidisperse Porous Media

Now we come back to the specific model of Navier–Stokes type for bidisperse porous media. Thus we
consider the following system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−μ1Δu1 + η1u1 + κ1 (u1 · ∇)u1 + ∇p1

= h1 − α1 |u1|p−1 u1 − γ1 (u1 − u2) in Ω
−μ2Δu2 + η2u2 + κ2 (u2 · ∇)u2 + ∇p2

= h2 − α2 |u2|p−1 u2 − γ2 (u2 − u1) in Ω
div ui = 0 in Ω, i = 1, 2
ui = 0 on ∂Ω, i = 1, 2,

(4.1)

where 1 ≤ p < 2∗ − 1 (N ≤ 3). Here for

F1 (u) = − α1 |u1|p−1 u1 − γ1 (u1 − u2)

F2 (u) = −α2 |u2|p−1 u2 − γ2 (u2 − u1) ,

we have Fi : H1
0 (Ω)2N → L2∗/p (Ω)N

. Indeed, from H1
0 (Ω) ⊂ L2∗

(Ω) we have |u|p−1 u ∈ L2∗/p (Ω)N
.

Wishing to prove the existence of solutions we shall guarantee that all the assumptions of Theorem
3.5 can be satisfied.

First, since p < 2∗ − 1, 2∗/p > (2∗)′, and so one has L2∗/p (Ω) ⊂ H−1 (Ω) compactly. It follows that
Fi is completely continuous from H1

0 (Ω)2N to H−1 (Ω)N
.

Secondly, if for some R > 0 we take |u1|1 , |u2|2 ≤ R, then we have

|F1 (u)|H−1 ≤ α1

∣∣∣|u1|p−1 u1

∣∣∣
H−1

+ γ1 (|u1|H−1 + |u2|H−1)

≤ α1c1 |u1|pL2∗ +
γ1√
λ1

(|u1|L2 + |u2|L2)

≤ α1c̃1R
p + 2γ1c̃2R,

where c1 is the embedding constant of the inclusion L2∗/p (Ω) ⊂ H−1 (Ω) and c̃1, c̃2 take into account
the embedding constants for V ⊂ L2∗

(Ω)N and V ⊂ L2 (Ω)N
, respectively. Similarly

|F2 (u)|H−1 ≤ α2c̃1R
p + 2γ2c̃2R.

Therefore

σi (R) = sup
u∈D

|Fi (u)|H−1 ≤ αic̃1R
p + 2γic̃2R (i = 1, 2) .

Third, we have

(F1 (u) ,u1) =
(
− α1 |u1|p−1 u1 − γ1 (u1 − u2) , u1

)
≤ γ1 (u2,u1)

≤ γ1 |u1|L2 |u2|L2 ≤ Cγ1 |u1|1 |u2|2 ≤ Cγ1R
2,

where

C =
1√

(λ1μ1 + η1) (λ1μ2 + η2)
, (4.2)

and analogously

(F2 (u) ,u2) ≤ Cγ2R
2.

Thus, in this example, one has ci = 0, di = Cγi, i = 1, 2, and condition (3.9) holds if

(1 − Cγi) R + αic̃1R
p + 2γic̃2R < θi. (4.3)

Therefore Theorem 3.5 yields the following existence result.
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Theorem 4.1. Let the coefficients μi, αi, γi > 0 and κi, ηi ≥ 0 be given with γi < 1/C, i = 1, 2, where C
is the constant given by (4.2). Then for each R > 0 satisfying (4.3), system (4.1) has at least one solution
u ∈ DR for every (h1,h2) ∈ H−1 (Ω)2N with

|hi|H−1 ≤ (1 − Cγi) R. (4.4)

Moreover, for any solution u = (u1,u2) ∈ V 2, one has

|u1|1 ≤ |h1|H−1 + Cγ1 |h2|H−1

1 − C2γ1γ2
, |u2|2 ≤ Cγ2 |h1|H−1 + |h2|H−1

1 − C2γ1γ2
.

Notice that condition (4.3) is fulfilled if R is sufficiently small and that it can be chosen like this,
according to (4.4), provided that |hi|H−1 are small enough. Thus we have

Corollary 4.2. Let the coefficients μi, αi, γi > 0 and κi, ηi ≥ 0 be given with γi < 1/C. Then problem
(4.1) has solutions for each (h1,h2) ∈ H−1 (Ω)2N with small |hi|H−1 .

If now hi are given arbitrarily, then (4.4) is fulfilled by some large enough R. Under this number R,
condition (4.3) holds provided that θi are large (equivalently, κi are small, that is system (4.1) is close to
a Stokes type system). Thus we have

Corollary 4.3. For every coefficients μi, αi, γi > 0 and κi, ηi ≥ 0 with γi < 1/C, and every (h1,h2) ∈
H−1 (Ω)2N

, problem (4.1) has solutions provided that κi are small enough.

We note that in the case of the Stokes equations, when κ1 = κ2 = 0, the above theorem guarantees
the existence of a solution for every (h1,h2) ∈ H−1 (Ω)2N

, under the only condition that γi < 1/C for
i = 1, 2. Recall that 1/C =

√
(λ1μ1 + η1) (λ1μ2 + η2). However, a better result is the following:

Theorem 4.4. Let κ1 = κ2 = 0. Then problem (4.1) has a solution for every (h1,h2) ∈ H−1 (Ω)2N

provided that

γ1γ2 < (λ1μ1 + η1) (λ1μ2 + η2) . (4.5)

Proof. In this case, the operator T being well-defined and completely continuous on the whole space V 2,
it remains to guarantee the a priori boundedness of the solutions of the equations T (u) = λu for λ ≥ 1.
For any such a solution, one has

|ui|2i ≤ |hi|H−1 |ui|i + Cγi |u1|1 |u2|2 , i = 1, 2.

These can be put under a matrix form[ |u1|1
|u2|2

]
≤

[ |h1|H−1

|h2|H−1

]
+
[

0 Cγ1

Cγ2 0

] [ |u1|1
|u2|2

]
.

The involved square matrix A is convergent to zero if γ1γ2 < 1/C2, which is our assumption (4.5). Thus
the above matrix inequality is equivalent to[ |u1|1

|u2|2

]
≤ (I − A)−1

[ |h1|H−1

|h2|H−1

]
which gives the desired a priori bounds. The result follows from the Leray–Schauder fixed point theorem. �

Remark 4.5. If in (4.1), α1 = α2 = 0, under some suitable conditions on h1 and h2, one can obtain an
existence and uniqueness result by using Banach contraction principle and a similar argument as in [19].

Finally we note that our analysis can be developed in order to treat some models of fluid flows in
tridisperse porous media. Moreover, the analysis can be adapted to treat some models with variable
coefficients in the anisotropic case. For a numerical approach related to such models we refer the reader
to the paper [14] and the references therein.
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