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Abstract. We consider the large time behavior of the solutions for the initial value problem of the Navier—Stokes equations
with the Coriolis force in the three-dimensional whole space. We show the LP temporal decay estimates with the dispersion
effect of the Coriolis force for the global solutions. Moreover, we prove the large time asymptotic expansion of the solutions
behaving like the first-order spatial derivatives of the integral kernel of the corresponding linear solution.
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1. Introduction

We consider the initial value problem for the 3D incompressible Navier—Stokes equations with the Coriolis
force:

Ou—Au+ Qes xu+ (u-VYu+Vp=0 reR3 >0,
V-ou=0 reR3 t>0, (1.1)
u(z,0) = up(z r € R3.

The unknowns u = u(z,t) = (ui(x,t), uz(x,t),us(x,t)) and p = p(z,t) denote the velocity field and the
pressure of the fluid at the point (z,t) € R? x (0, 00), respectively, while ug = (ug 1(z), uo2(z), uo 3(x)) is
the initial velocity satisfying V - ug = 0. Here, e5 denotes the unit vector (0,0,1), and the term Qes x u
describes the Coriolis force with the Coriolis parameter ) € R.

The purpose of this paper is to study the large time behavior of global solutions to (1.1). In particular,
we shall show the LP temporal decay estimates and the asymptotic behaviors of solutions as ¢t goes to
infinity when the initial data ug is in L(R?). More precisely, we shall prove that the unique global solution
u to (1.1) satisfies

lu®llzr = o (17302 4+ 10 =0=D)) (- o0)

for 2 < p < p, with some upper bound 2 < p, < oo [see (1.14)] when ug € L'(R?) satisfies V - ug = 0.
Moreover, if we further assume |z|ug € L'(R3), we show that the global solution fulfills the temporal
decay estimate

(@) lzr < 017272073 (@ 4 jaln~(3)

for t > 0. We also give the asymptotic expansion of the solution behaving like the first-order spatial
derivatives of the integral kernel of the corresponding linear solution as t goes to infinity.
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Before stating our results, we first review the known results on the large time behavior of global
solutions to (1.1). In the case 2 = 0, the system (1.1) corresponds to the original incompressible Navier—
Stokes equations in R™:

O —Au+ (u-Vu+Vp=0 x € R™ t >0,
V-u=0 z e R t >0, (1.2)
u(z,0) = up(x) rz e R"

with n > 2. Concerning the L? decay of weak solutions u(t) to (1.2), Masuda [23] showed that |lu(t)||z: =
o(1) as t — oo for ug € (L*> N L™)(R™). Schonbek [27] and Kajikiya and Miyakawa [18] established the
temporal decay estimates ||u(t)||rz < Ct=2G=3) for t > 0 when ug € (L? N LP)(R™) with 1 < p < 2.
Wiegner [29] proved that if the initial data ug € L?(R™) satisfies ||e'®uo||z2 < C(1 + ¢)~* with some

a > 0, then weak solutions u(t) to (1.2) have the decay estimate

u()|z: < CA+)7P, B:= min{a, % +Z} (1.3)
In particular, if ug € L2(R") satisfies (14 |z|)up € L'(R™) then it holds ||e"®ug|[ > < C(1+¢)"2~% and
(1.3) holds with the decay rate § = § + 2.
For the LP decay of the strong solution to (1.2), it follows from the results by Kato [17], Miyakawa
[24,25] and Fujigaki and Miyakawa [7] that the unique global solution w(t) to (1.2) satisfies the LP
temporal decay estimates

u(®)| > < Ct=20=3)  and Jlim D) u@)l, =0 (1<p<o0) (1.4)

if the divergence-free initial data ug € (L' N L™)(R™) is small in L"(R"). Fujigaki and Miyakawa [7]
showed the LP decay estimate of the strong solution

Ju@)||r <Ct7272073)  (1<p<oo,t>0) (1.5)

provided that ug is small in L™ (R"™) and satisfies (1 + |z|)ug € L*(R?). Furthermore, they [7] established
the asymptotic expansion of the global solution u(t) behaving like the first-order derivatives of the Gauss
kernel: for 1 < p < oo

+5(1-%)

1
lim ¢2
t—o0

u(®) + 3 0Gi() [ wyuoly) dy

+ iajét(')/ooo /n(uju)(y,s) dy ds
||

Here, Gy(z) := (4mt)~%e~ar is the Gauss kernel, and we set Gy := F1[e~tI¢I" P(¢)], where P(¢) =
(6ik + &k /I€1*)1<jk<n is the Fourier multiplier matrix of the Helmholtz projection. We refer to [24-
26,28] for the L? temporal decay estimates of the global strong solutions to (1.2) when the initial data
belongs to the Hardy spaces, the Besov spaces or the weighted Hardy spaces.

Next, we review the known results on the unique existence and the temporal decay estimates for global
solutions to (1.1). Let P be the Helmholtz projection onto the divergence-free vector fields, and let J be
the skew-symmetric constant matrix defined by

(1.6)

=0.
Lp

1

P = (0;x + R, Rx) J = (L.7)

1<j,k<3 "

o = O

0
0

o O O

respectively, where R; = —0,, (—A)*% is the Riesz transform for j = 1,2, 3. Note that the Coriolis force
in (1.1) can be written as e3 x u = Ju. Applying the Helmholtz projection P to (1.1), we have the following
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evolution equations on the velocity field u:

0w — Au+ QPJPu+P(u-V)u =0 reR3 t >0,
V-ou=0 r€R3 t >0, (1.8)
u(z,0) = uo(x) r € R3.

Babin, Mahalov and Nicolaenko [2-4] considered the problem (1.8) in the periodic setting T%, and proved
the global regularity of solutions for sufficiently large |2|. Chemin, Desjardins, Gallagher and Grenier [5, 6]
proved that for the initial velocity ug = vg+wg € L?(R?)? 4+ H'/?(R?)3, there exists a positive parameter
wo = wo(up) such that for any Q € R satisfying |Q2] > wp, the rotating Navier—Stokes equations (1.8)
admits a unique global solution. Furthermore, it is shown in [5,6] that the unique global solution of (1.8)
converges to that of the 2D Navier—Stokes equations with the initial data vy in the local-in-time norm
L? (0,00; LY(R3)) for 2 < q < 6 as || — oo. Hieber and Shibata [10] proved the global well-posedness
of (1.8) for all Q € R under the smallness condition on the initial data wug in Hz(R3). They [10] also
C= C’(||uo||H% ,p) > 0. See also [9,16,21] for the global well-posedness of (1.8) for small initial data in
various scaling invariant spaces. In [15,20], it is shown that the system (1.8) possesses a unique global
solution for the initial data in the scaling subcritical space H*(R3) with 1/2 < s < 9/10. More precisely,
the authors in [20] established the linear decay estimate

1

et A= D ug| o < Clluolort™ F 7270 (1 4 Q) =0 (1.9)
fort >0and Q € R with 2 <p<oo,1<r<p and o € (NU{0})3, and obtained the following result
on the global existence of solutions:

Theorem 1.1 ([15,20]). Suppose that s, q, and 0 satisfy
1 1 7

S
Z < < _Z
10" 3 i1 e

2

3/1 1 1 1 1 1 s 1 1 5 3 s

—=—=) <= - — = — =< =< == — 4 . 1.11
2(2 q)_9 (2 q)7 2q+2 2<0<8 2q+4 ( )

Then, there exists a constant C, = C\(s,q,0) > 0 such that for any ug € H*(R*)3 with V - ug = 0 and
Q € R\ {0} satisfying

<s< g, (1.10)

+

IN
| Ot O ®w

o] e ray < Culf571, (1.12)

the Eq. (1.8) admits a unique global solution u in the class C([0,00); H*(R%))*NLY(0, oc; H;(R?’))?’. Also,
there exists a constant C = C(s,q,0) > 0 such that the global solution u satisfies

14311
[l 0 stz < €121 424D g, (113
for all @ € R\ {0}.

Ahn, Kim and Lee [1] extended Theorem 1.1 to the system (1.8) with the fractional Laplacian (—A)®
for 1/2 < a < 5/2, and also derived the temporal decay estimates of solutions with the same decay rate

as the linear solutions (1.9). In the case aw = 1, the L? decay estimates obtained in [1] is written as
3

u(®)|| e < Clluol|zrt~ ¥ G2 (1 + Q) =05,

for ¢t > 0, where
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and (s, q) are the exponents satisfying (1.10). Kim [19] considered the magnetohydrodynamics equations
with the Coriolis force, and proved the global well-posedness and the temporal decay estimate for ug €
(H* N LY)(R?) with 1/2 < 5 < 3/2:
lu(®)llzr < Ot 2075 () =03
. 1 1 1
with0 <y <s—3 andmax{Z & 8+,y} < 5 <3
In this paper, we consider the LP temporal decay estimate and the large time behavior of the global
solution u to (1.8) constructed in Theorem 1.1 when the initial data ug is in L!(R?). We remark that

the L'-integrability implies [, uo(y) dy = 0, thanks to the divergence-free condition V - ug = 0. Hence,
as is the case (1.4) for the original Navier—Stokes Eq (1 2), it beems natural to expect that the LP-norm

of the global solution u(t) decays faster than ¢~ 0= 2 (1+1QJt) ¢ 1=3) as t — oco. Our first result in this
paper reads as follows:

Theorem 1.2. Assume that the exponents s,q and 0 satisfy (1.10)—(1.11), and that the exponent p satisfies

0)
1 1/1 s 1 1
2_2(q_3)— =3 (1.14)
Let ug € (HS N LY(R3)? with V -ug = 0 and Q € R\ {0} satisfy (1.12). Let u € C([0,00); H*(R?))> N
L%(0, oo; H;(R?))? be the unique global solution to (1.8) constructed in Theorem 1.1. Then, there exists a
constant C' = C(p, ||uol|z1, ||uol|L2) > 0 such that
lu(t)l|e < Ot =2 (1 4 |Qft) =) (1.15)
for allt > 0. Furthermore, it holds that

lim 2070 (1+ Q)7 |u(t)| r = 0. (1.16)

t—oo

We next address the asymptotic behavior of global solutions corresponding to (1.5) and (1.6) for the
original Navier-Stokes Eq. (1.2) by Fujigaki and Miyakawa [7] when (1 + |x|)ug € L*(R?). In order to
state our second result, we introduce some notation. Let P(£) be the Fourier multiplier matrix of the
Helmholtz projection P (1.7) defined by

~

FF(©) = POFO. PO = (0n - if’f) w1

for £ € R3\ {0}. Let Ag := —A + QPJP be the linear operator associated with (1.8). It is known in [8,10]
that the semigroup e~t42 generated by —Agq is given explicitly by

e S L P B

for divergence-free vector fields f € L*(R3)3. Here, I is the 3 x 3 identity matrix and R(£) is the skew-
symmetric matrix related to the Riesz transforms defined as

1 0 53 _52
R :=—=|-¢ 0 & |, £eR*\{0}. (1.19)
€] & —& 0

By the Duhamel principle, the system (1.8) can be transformed into the following integral equation:
t
u(t) = e Moy — / e~ DAY . (u@u)(r)dr, t>0. (1.20)
0

) Birkhauser



JMFM Large Time Behavior of Solutions. .. Page 5 of 31 23

Now, we define the functions Hq(¢,t) and Hq(€,t) as

Ho(&,1) := cos< |§;| >I+sm< f; )R(g) (1.21)
Hq(&,t) = cos< ij' >P(§)+sin( fg’l )R(g) (1.22)

for £ € R?\ {0} and ¢ > 0. Then, we set
Ko(z,t) = F* [e‘tl&leQ(f,t)] (z), Kq(z,t):=F ! [e_tlélzflg(f,t) (x) (1.23)
for z € R3 and t > 0. Note that the functions Kq(z,t) and Kq(z,t) are the integral kernel of the linear
semigroup e~ 42 and e *9P, respectively, and there hold
e Moy = Ko (-, t) xug, e MOPf = Kq(-t) % f.
We set the function space L](R?) of the initial data as
LY = {f € L'®Y) | |olf € L'®Y)}.

Our second result on the asymptotic behavior of global solutions to (1.8) for the initial data uy €
L1(R3)3 reads as follows:

Theorem 1.3. Assume that the exponents s, q and 0 satisfy (1.10)—(1.11), and that the exponent p satisfies

(
L (. 1 L
2 2\g 3)°p°72
Let ug € (H* N L})(R*)3 with V- up =0 and Q € R\ {O} satisfy (1.12). Let u € C([0,00); H*(R?))? N

L%(0, oo; HqS(R3))3 be the unique global solution to (1.8) constructed in Theorem 1.1. Then, there exists a
constant C' = C(p, |||z|uol| L1, [|uol|r2) > 0 such that

()| < Ct 2 2073) (1 4 Q)" (1.24)
for allt > 0. Furthermore, it holds that

<

lim ¢2+201- (1 + 196t

t—oo

3 oo
+>0Fat0) [ [ wuw.s)dyds
= o Jrs
5.3 1 -
JrQZ/ / O;,PJPKq(-,t — Ts) dT/ s(uju)(y, s)dy ds
=il Jo R3

Let us give several remarks on Theorem 1.3. In the case = 0, we see by (1.21), (1.22) and (1.23)
that Ho(¢,t) = I, Ho(&,t) = P(£) and

Ko(z,t) = Gy(2)I, Ko(z,t) = F e P P©)](z) = Gy ().

Hence the asymptotic expansion (1.25) in Theorem 1.3 corresponds to (1.6) for the original Navier—Stokes
equations by [7]. Next, we remark that it follows from Lemma 3.1 and (5.35) that

~ _lel 31 _(1_2
102 K (1)l oo + 0 Ko (- )| 1» < Ct 2 =200 (14 |)t) =075,

+Z(9 Kal(- / yjuo(y) dy

=0. (1.25)
Lr

and then

3l ~
/ 0;,PJPKq(-,t — Ts) dT/ s(uju)(y, s)dyds
o Jo

R3

p
< Ct*%*%(lfi)(l + |Q‘t)7(17%) (126)
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by the L2 decay estimate ||u(t)|[r2 < C(1 +¢)~4 in Lemma 4.2 (2). Hence the functions appeared in
(1.25) would be expected to be the leading terms of the global solutions u(t) to (1.8) as t — cc.

Finally, let us mention the proof of the asymptotic behavior (1.25) and give the comparisons with the
previous studies. In [7], the authors applied the mean value theorem to the Gauss kernel Gz —y,t—s)
with respect to both the space and the time variables, and proved the asymptotic expansion (1.6) for the
solutions to (1.2). Ishige, Kawakami and Kobayashi [14] established a general method to show the higher-
order asymptotic expansion of solutions for various nonlinear parabolic equations (see also [11-13]). The
authors [14] introduced the operator Py (t) having the cancellation property [p, 2%[Px(t)f](z)dz = 0 of
moments for all & € (NU {0})" with |a| < k, and obtained the higher-order asymptotic expansion of
solutions without using the time derivatives of the integral kernel. In our situation for (1.8), since it holds

0, Kq(z,t) = AKq(z,t) — QPJPKq(z, 1)
and PJP is the Fourier multiplier of the 0-th order, we see that the time differentiation does not give
a faster decay than the original kernel Kg. Also, since the kernel Kq(-,¢) does not belong to L'(R")
because of the fact that &3/|¢] in (1.22) is not continuous at & = 0, it seems difficult to consider the
moment conditions in [14]. For the proof of Theorem 1.3, we adapt the arguments in [1,7,29] with the
correction term QPJPKg (w,t), and show the asymptotic behavior (1.25) by using the L? temporal decay
estimates and the space-time integrability of the solution u in L?(0, oo; H, 5 (R?)).

This paper is organized as follows. In Sect. 2, we prepare several function spaces and recall the known
results on linear estimates. In Sect. 3, we show the temporal decay estimates and the asymptotics of the
linear solutions. In Sect. 4, we prove the L? decay estimates (1.15) and (1.24) for the nonlinear solutions.
In Sect. 5, we present the proof of the nonlinear asymptotic behaviors (1.16) and (1.25) for the global
solution to (1.8).

2. Preliminaries

In this section, we introduce the definitions of several function spaces, and recall the known results on
the linear estimates for the semigroup e~*4¢.

Let .(R3) be the Schwartz space of all rapidly decreasing infinitely differentiable functions on R?,
and let ./ (R?) be the set of all tempered distributions. The Fourier transform and the inverse Fourier
transform of ¢ € .(R3) are defined by

FIelle) = 20 = [ ety e, Fw) = G [ e Sple)de

for £, @ € R?, respectively. Also, Z2(R3) denotes the set of all polynomials in R3.

Definition 2.1. (i) Let s € R and 1 < p < oo. The homogeneous Sobolev space H;‘ (R3) is defined by
R = {f € 'R/ 2®) | |Ifll g, < o0},
1l = |7 [l Feo)] |-
(ii) For s € R, the homogeneous Sobolev space H®(R?) is defined by

P (BS) = BB, ||fll. = || 161 F@)]|

_ 1
L2 (2#)%

[5¥16]

L2’

Next, we recall the definition of the Littlewood—Paley decomposition. Let o € .#(R?) satisfy the
following properties:

0<P0(§) <1 forall { €R®, suppipy C {{€R? | 1/2< ¢ <2},
and Z@({“) =1 for £ € R*\ {0},

JEZL
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where @;(z) := 237 ¢y(27z). Then, we define the Littlewood Paley operators {A;};ez by Ajf == ¢, = f
for f € .7/ (R3). Also, we put ¥(£) =1 — Y1 @i(6) for € € R3.

Definition 2.2. (i) Let s € R and 1 < p,¢q < co. The homogeneous Besov space B;,q (R?) is defined by
55 M3y . 3 3
B (RP) = {f e ' (R3)) P (R?)
. = |[{2%9|A, ) .
1715 , = {27 1220} e

(ii) Let s € R and 1 < p,q < oo. The inhomogeneous Besov space B, (R?) is defined by

B, (R®) := {fey'Ri’*

<+oo},

By, = I+ fllos + [ {27 llAjflle}jeN

fa(N)

For s > 0, it is known that the norm equivalence

alfllss, < (2.1)
holds for 1 < p,q < oo with some positive constants ¢; and cs.
Finally, we recall the known results on the linear estimates for the semigroup e~ *42. We set
1 €3 ~
0. (@) = s [ e i fag, aeRrer (2:2)
(2m)? Jgs

Then, the linear semigroup e *4¢

as

generated by the linear operator Ag = —A+QPJP is explicitly written

ritng = 5ot oot Lo (0 )If(§)+sin< =0 reofo}]

= %@(m)etﬂu +R)f + 5g_(Qt)em(lr ~R)f (2.3)
for f € L*(R®)? with V - f = 0, where

0 Rs —Ry
R=|-Rs 0 R (2.4)
Ry —R; 0

1

and Rj = —0,,(—A)72 is the Riesz transform. See [8,10,15] for the derivation of the explicit formula
(2.3) of the semigroup e~*42.
The dispersion estimate for Gy (7) was obtained in [20].

Lemma 2.3 ([20, Lemma 2.2]). For 2 < p < oo, there exists a positive constant C' = C(p) such that
—(1-2
192 fll ;. < O+ 1)) f

s _2
Jet3(1-2)
p’.q

SHSO RS) with 1/p+1/p = 1.

forallT € R, s € R, 1<q<oocmdf€B

We end this section by recalling the LI-LP smoothing estimates for the linear semigruops e~*4¢ and

etd,

Lemma 2.4 ([10, Proposition 2.4]). Let « € (NU{0})3 and 1 < ¢ < 2 < p < co. Then, there exists a
constant C' = C(a, p,q) > 0 such that

lozet4% fl . < Ot 3 3G )| £ o
forall Qe R, t >0 and f € LI(R3)3 with V- f = 0.

T Birkhauser
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Lemma 2.5 ([20, Lemma 3.2], [19, Lemma 2.5]). Let s > 0, 2 < p < oo and 1 < ¢ < p’. Then, there exists
a constant C = C(s,p,q) > 0 such that

et fllgy < €753 1+ 191~ £
forall Q€R, t >0 and f € LY(R3)3 with V- f = 0.
Lemma 2.6 ([22, Lemma 2.2]). For —oco < 5o < 1 < 00, there exists a positive constant C' = C(sg, $1)
such that

A 1 —
e fll gs1, < CE2C 20| £ geo.

5s 3
forallt >0,1<p,qg< 0 ‘mdfeBp?q(R )-

3. Linear Decay Estimates and Asymptotics

In this section, we shall establish the temporal decay estimates for the linear solution e 42wy, when
ug € LY*(R3) or (1+|z|)ug € L*(R3). Furthermore, we obtain the asymptotic profile of the linear solution
e~ tAoy) as t — 0.

3.1. Linear Decay Estimates

Let us set

Hq(€,t) := cos (Qgét) I+ sin (QEt) R(¢), Kq(a,t):=F " |e ¥ Ho (8, 1) (2), (3.1)

where R(&) is the skew-symmetric matrix defined by (1.19). Then, it follows from (2.3) that the linear
solution e~ *42yq can be written as

e~ oug(z) = Ko(-,t) * up(z) = \ Ko(z —y,t)uo(y) dy. (3:2)
R
We firstly show the LP estimates for the integral kernel Kq(-,t). Let Gy(x) be the Gauss kernel in R3,

which is defined as

1 x)?
Gt(x) = We_%, t> 0, T e R3.
)2

Note that it holds Gy(¢) = e~t€I” and Gy € .7(R?).

Lemma 3.1. For 2 <p < oo and o € (NU{0})3, there exists a positive constant C = C(p, ) such that
109 Ko ()|, < Ct 3 3073 (14 Q)= (3.3)

for all Q2 € R and all t > 0.

Proof. Since Hq(&,t) is homogeneous of degree 0 in £, the change of variable £ — % gives

el = ﬁ Ag<i£>aeim'fe*t‘f‘2HQ<s,t) dg

|

- t_(ajr)_ag /R €' (i6) eV Ho (6, ) d
— i [ Hale 0] () (3.4

) Birkhauser
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Moreover, we directly calculate as

F [FEanomaten] (2)

dg
2m)3

_ /1;3 Bl‘ﬁ 3 {2(61955315 + G_ZQ%t)I—F Z(ezﬂ%t _ 6—Zﬂ%t)R(€)} 89%01(5)

—~

1 iz QB e dg
=5 [ e R RO G

+3 [T ROITEG) o

1 o T 1 o T
= 30O+ RG] () + jo-@n - Rjezc (). (35)

where R is defined in (2.4). Therefore, it follows from (3.4) to (3.5) that
10 Ko (- t)ll e
~l-30-3)
S 5 UG+ @[T + R)FZG]ll 1o +11G- () = R)IFZGAlll o} (3.6)

We first consider the case 2 < p < oo. It follows from Lemma 2.3 and the continuous embedding
B 5 (R?) — LP(R?) that

194Q0[( £ RY2G] 1 < C G (T = R)IF Gl g,
<O+~ T £ RG] ai-2)

p’,2
_(1—2
SO+ NG joresa-2) - (3.7)
p’,2
Since G € .7(R?), we see by (2.1) that
||G1||B|2?g = ||G1||H\a| <oo and |Gy lal+3(1-2) < CO|Gal la+3(1—2) < (3.8)
p’,2 p’,2

for p =2 and 2 < p < oo, respectively. For the case p = oo, we have by Lemma 2.3 and the continuous

embedding BY, ;(R?) < L>(R?) that
1G+(Q0)[(I £ R)Z Gl |G (Q)[(1 £ R)Z Gl o,

+1Q[) (I £ R)ZG s |

<C|
< C(
<C+1Q~! ||Gl||3\1a1|+3 (3.9)

1
1
l+s < 00. Therefore, we obtain from (3.6) to (3.9) that

and HGlHB\lalH'a < O||G1||B|1a1

|62 Ko Dlze < Ct~ 3 ~30-3) (1 + |Qj =0
for all ¢ > 0. This completes the proof of Lemma 3.1. O

Applying Lemma, 3.1, we show the following L!-LP temporal decay estimates for the linear semigroup
et

Lemma 3.2. (1) For2 <p < oo and a € (NU{0})3, there exists a positive constant C = C(p, ) such
that

[

loget 4 flle < Ct= 2 720D L4 1Q)) =D £ (3.10)
orallt>0,2eR an € satisfying V - f = 0.
f Il 0, Q€ R and f € L*(R3)3 isfying V- f =0

T Birkhauser



23 Page 10 of 31 T. Egashira, R. Takada JMFM

(2) For2<p< oo and a € (NU{0})3, there exists a positive constant C = C(p,«) such that
jazet4e £ e < O 30D (1 4 Q)0 2] £ 1 (3.11)
forallt >0, Q€R and f € LY(R3)? satisfying V- f =0 and |x|f € L*(R3)3.

Remark 3.3. We remark that the temporal decay estimate (3.10) for f € L!(R?) has already been shown
by Kim [19, Lemma 2.5]. Here, we shall give an alternative proof by using Lemma 3.1.

Proof of Lemma 3.2. (1) Applying the Hausdorff-Young inequality and Lemma 3.1, we have by (3.2)
that

10942 fll o < |02 Ka ()|l f o < CtF 207214 |01) "D £ 10
(2) Since f € L'(R?)? and V - f = 0, we see that it holds

f(0) = . fly)dy = 0. (3.12)
Then, applying the mean value theorem, the Minkowski inequality and Lemma 3.1, we obtain
|85 e~ f e = OFKa(-—y, 1) f(y)dy
R3 Lr

- /3{3§KQ(- —y.t) — 07 Ka( 1)} f(y) dy

Lr

_ /R 32 / 00,02 K- — 0y, 1)(—y,) dOf (y) dy

Lr

oy [ 100,050 = 00,001 a0l )
j=1

3
- Z 0,02 Ka-0llr [ |7l dy

00 (1 4 1) D)ol f o

This completes the proof of Lemma 3.2. (]

3.2. Linear Asymptotics
In this subsection, we shall show the following asymptotic profiles of the linear solution e 42w as t goes
to infinity.
Theorem 3.4. (1) Suppose that ug satisfies ug € L*(R?)? and V -ug = 0. Then, for 2 < p < oo, it holds
that
Jim (1 + Qft)' =242 e~ g | 1y = 0, (3.13)
—00

(2) Let m € N. Suppose that ug satisfies (1 + |z|)™ug € L*(R3)? and V - ug = 0. Then, for 2 < p < oo,
it holds that

. _2 my3q_1y| _ -1 N N
lim (14 [Qf)'—rt#+2075) flemtday, — %™ ( ? <axKQ><~,t>/sy uo(y) dy

Lp

(3.14)
=0.
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)dy = 0 and then
0) = [ {Ka(e = 9.1) = Kale,O}uo(w) dv.
Similarly to (3.4) and (3.5), we have
3
t—2
Ko(x,t) = > G () (T + oR)GH] (ﬁ) .
oe{£}
Therefore, we see that
He_tA“UoHLP

(3.15)

oce{t} k3

Go () [(I + oR)G1] <\/iy>
g o ()

U;}/ G, (1) [(I + 0R)G] ( _ >

7
= Go(Q) [(I +oR)GA] ()

t—%(l Z / ‘
oe{£}

Go(2) [(1 +0R) {Ga(- = yt=H) = G1O ]| Tuolw)ldy
In the case p = 2, we have (3.16) that

(3.16)
e ulie <0 [ 6 =u8) =G|, kol dy

— N .
Hence the desired result (3.13) follows from the dominated convergence theorem
Next we consider the case 2 < p < co. Applying the embedding
to (3.16), we have

luo(y)| dy

Lr

luo(y)| dy

Lr

e~ tao

(R3) — LP(R3) and Lemma 2.3
UO”LP
<cr 3ty Go () [+ oR) {Gr(- =yt H) = (]|, Tuoy)lay
oe{+} P2
<t 20-3) (14 Q)= 4= /]Rg HGl(. —yt73) — Gy )’ 50-2) luo(y)] dy. (3.17)
Here, since it holds
Gi(w —yt™ ) = Gi(@) = e |Gy (- —yt™h) - G4 ()] (@),
it follows from Lemma 2.6 and the embedding L*' (R?) < B, ,(R3) that
, N
66— ut3) =610 ooz <€ (5) —uh-6,0)|,
B,," By
SCHG%C—yt‘%)—G%(')‘ - (3.18)
Hence we have by (3.17) and (3.18) that
AR e gl < © [ 636 =wH = 6,0, v
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Then, the dominated convergence theorem yields (3.13) for 2 < p < oo.
Finally, we treat the case p = co. Similarly to (3.17), we apply the embedding Bgoyl(ﬂ@) — L>(R3)
and Lemma 2.3 to (3.16) to obtain

He_tA”UoHLOO < C’t_%(l +1Q[t)~! /]R?» HG1(- - yt_%) - Gl(')‘ 8 luo(y)| dy.

1,1

Note that it holds
[fllse, < Clifllsg, <Clifllss,, =ClI(A - A fllgy . < O =AY f|pa.

1,1 —

Hence we have by the dominated convergence theorem that
§
£2 (14 |920)[le” A2 uo| L

<C

(L= A)%G1(- —yt™3) = (L= A)2G1 ()|, Juoly) dy — 0

R3
as t — oo. This completes the proof of Theorem 3.4 (1).
(2) By the Taylor theorem, we have

Ko(z —y,t) — Ko(z,t)

. 6 KQ(.%'t m 1« «
- 3 By 3 oot - o 0a-o)

a'

1<]|a|<m—1 |a|=
—1)lal
= Y S orkatop
1<|a|<m ’
+ 3 / )y {02 Kol — 0y, 1) — 02 Ka(r, 1)} d0(—y)°. (3.19)

o=
Then, since it holds [,s uo(y) dy = 0, we have by (3.19) that

ety (x)

_ /Rs{KQ(x —y,t) — Kol ) }uo(y) dy
_1)lad
=y (;) %Koz, t)/ Y uo(y) dy

3
1<]al<m R

Z al /Rs/ —0)" T {07 Ka(w — Oy, t) — 07 Ka(x, 1)} d6(—y) uo(y) dy,

which yields

—1)lel
o= 3 EE K [ ytunt)dy
: R3

1<]a|<m r

1
<Cn 30 [ [ 192K~ 00.0) = 2K Lo o) a0y (3:20
la]=
Similarly to (3.4) and (3.5), we have
1 _Jal_s
8 Ko(z,t) = it’lT"E S Go () [(T + 0R)IGH] (%) : (3.21)

oce{t}
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Therefore, similarly to (3.16), we obtain by (3.20) and (3.21) that

mysq_1y| _ —1)lel o
t2 +2(1 p) e tAQuo _ Z ( a? 8TKQ(.’t)/3y uo(y) dy
. R®

1<|a|<m

Lp
1
< Cnm, azmg}/d/o |g-0) [(1+oR) {261 —yorh) — o260} ] |
x |y[™|uo(y)| dbdy. (3.22)

Then, since [y|™|ug(y)| is in L'(R3 x (0,1)y), we can apply the exactly same arguments as Theorem 3.4
(1) to (3.22), and obtain the desired asymptotics result. O

4. Nonlinear Decay Estimates

In this section, we adapt the ideas in [1,29], and show the L? temporal decay estimates for the global
solution u to (1.8).

4.1. L2-decay Estimates

Lemma 4.1. Suppose that the exponents s, q,0 and the initial data ug € (HS N LY)(R3)? satisfy the asu-
umptions in Theorem 1.1, and let u € C([0, 00); H*(R?))? be the unique global solution to (1.8) constructed
in Theorem 1.1. Then, there exists a absolute constant C' > 0 such that

t 2
lut)||F2elo 9"

t
< luoll7 +C/ g(s)2elo 9r)dr {6 uol|z2 + g(s (/ [[u(r) deT) }
0

for allt >0 and all bounded positive function g € C(]0,00); (0,00)).

Proof. We remark that the inequality in Lemma 4.1 was obtained by Wiegner [29, (2.1)] for global weak
solutions to the original Navier-Stokes equations Since ug € (H* N L')(R?)3, we see by the Sobolev
embedding H*(R3) — L4(R?) with 2 =3 — 5 and the interpolation inequality that

oz < fluoll 5

uOH 3+2:. < CHUOH 3+2.s

uoll . 3“5 (4.1)

Hence the solution u also belongs to C([0, o0); L?(R?))3. Since there hold

(QPJPu, u); > =0, ‘ej“ﬂ\uo({)‘ = ’t’:‘m/\uo(f) ;

we can apply the same argument as [29, (2.1)] and obtain the desired inequality. (]

Lemma 4.2. Suppose that the exponents s,q,0 and the initial data uy € (Hs N LY)(R3)? satisfy the asu-
umptions in Theorem 1.1, and let u € C([0,00); H*(R?))3 be the unique global solution to (1.8) constructed
in Theorem 1.1.

(1) There ezists a positive constant C = C(||ug||r1, ||uol|r2) such that
Jullz> < €1 +1)7
for allt > 0.
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(2) Assume further that |z|luge L' (R3)3. Then, there exists a positive constant C=C(|||x|uol|z1, |uol|L2)
such that

lu(t)||e < C(1+1t)~F
for allt > 0.

Proof. We follow the same argument as [29]. Firstly, suppose that there hold

0

leuollzs < CL1+ 7%, Jlu(t)]lz2 < Co(1+1)72 (4.2)
with some ap > 0 and 0 < 8 < 1. Then, take an exponent « and a function g(¢) so that
a%
(1+1)z
Then, we see that fo r)2dr = log(1 +t)®, and Lemma 4.1 and (4.2) yield
l[u(®)[r2(1+1)*

t g o
< ”uO”QL?_"O/ T8 lle Bugl|72 + </ lu(r)]1Z d?“>
0 S

t k) s 2
<ol +Ca [ (1457 G+ + 2L 02 ([aenar) tas
0 (1+s) 0
7

1
a > max{ao, 5 +26} , g(t) =

K Ccc:
< |luoll3e + CCfa/ (1+s)* > 1ds + ﬁ/o (14 s)>~ (201 gg
CC3a CChaz L4 p)e-h429),

< ||’LL0||L2 + (1 +t>a @0 +
o — ap

{a — (% +20) } (
Hence we have
[w(®)]|2> < luol|2s(1+ 1)~ + CC2(1 + 1)~ + CCL(1 4 t)~ (3120
< Alluollzz + C(CF + C3)} (1 +1)77, (4.3)
where
ﬁmin{ao, ;+2ﬂ}. (4.4)

(1) Let ug € (H* N LY)(R?)3. Note that it holds ug € L?(R?®)? by (4.1). Hence it follows from the
smoothing estimates for the heat semigroup that

_3
le"®uollzz < Ot~ uollzr,  [le™ uollze < uollz,
which yield
_3
leuoll 2 < C(lluollLs + lluollL2) (1 +¢)~* (4.5)
for all + > 0. Moreover, taking the L? inner product of (1.8) with u(t) gives
1d

5 llu®)llze + [IVut)|z. = 0.
Hence we have the energy equality:
t
s +2 [ 196 dr = ol (16)

which yields the estimate ||u(t)||z2 < ||ug||r2. Therefore, the estimates (4.2) hold for ay = 3/2 and
3 =0, and then we have by (4.3) and (4.4) that

lu(®)llZ: < C(L+1)~

SIS
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with some constant C' = C(||luo||z1, [|uo||r2) > 0. Again, applying (4.3) and (4.4) with ap = 3/2 and

B =1/2, we obtain
u(®)]|2. < C(L+1)"%

with some constant C' = C(||uol| L1, ||uol|z2) > 0.
(2) Assume further that |z|ug € L'(R?)3. Then, since there hold

_5
le"®ull L2 < Ct™3 |[|xluoll i, e uollL2 < lluollz2,
we have

_5
le"®uollz2 < C(llleluo pr + [luo ] r2) (1 + )~

(4.7)

(4.8)

for all £ > 0. Hence, we see that the estimates (4.2) hold for ap = 5/2 and 5 = 0. Then, (4.3) and

(4.4) give
Jullz: < CL+1)73

with some constant C' = C(|||x|uo||L1, ||uol|z2z) > 0. Then, similarly to (4.7), we have
lu@lf: <C1+0)73

for all ¢ > 0. Here, we remark that (4.9) gives

| i< [ —oarsc<o
0 o (147r)2

Now, take an exponent « and a function g(t) so that
az
Then, it follows from Lemma 4.1, (4.8) and (4.10) that
[[u(®)llz> (1 + )%

t 5 s 2
« oz
§u2+0/71+so‘ eSAuz—i—(/ uerr) ds
H 0||L2 0 1+s( ) {” OHL2 (1+5)% o || ()HL2

t
< JluollZ2 + Ca / (1+s)°F ds
0

5
e t) =
a> o, g(t)

< lluollz2 +C(1+8)* 73,
which yields
lu(®)172 < Juollz=(1+ ) +C(1+1)72
<C(+1)3
for all £ > 0. This completes the proof of Lemma 4.2.

4.2. LP-decay Estimates

In this subsection, we adapt the arguments in [1] and show the LP temporal decay estimates for the

solution u to (1.8). For 1 < p < oo and j =0,1, we put

Jy3(1_1 _2
lullxyo = sup rH 0D+ Q) F (), ¢ > 0
T7
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Lemma 4.3. Suppose that the exponents s,q and 0 satisfy (1.10)—(1.11), and that the exponent p satisfies

1 1/1 S 1 1 1
(22 )<< (<2, 4.11
2 2<q 3)‘19‘(1( 2) ()

Let € > 0 be the constant in (1.12). Then, there exists a constant 0 < C,. < C. such that for any
ug € H*(R3)3 with V -ug = 0 and Q € R\ {0} satisfying

HUOHHS(]RS) < C**|Q‘%_%7 (4.12)

the unique global solution u € C(]0, 00); H*(R?))3 N LY(0, o0; Hg(R?’))?’ constructed in Theorem 1.1 satis-
fies

t
1 Ji_3(1_1 2
/ le=ETIABY - (w@u)(r)l|r dr < Sllullxzat 22T (14 1000
t J
2

forallt >0 and j =0,1.

Proof. Let us set
1 1 s 1 1 1

e ¢ 3 1 p g
Then, we see that the exponents p and 7 satisfy 1 <r < p' <2 < p < oo. Applying Lemma 2.5 and the
embedding H(R?) — L% (R?) gives

t
/ e~ AP div(u @ u)(7)| e dT
%
t —a-2) ~3-3¢2-1)
<C [ {1+Q =) Tt =) 2T (w @ u)(7)]| e dr
2

t
SC/t {1+|Q‘(t—7—)}—(1—;)(t—T)_ﬁ—a(a_é)Hu(T)”LPHU(T)HLqS dr

t P
e A [ ) (R D

7 |lu(r)l
t q
2

J

x 3T (L4 Q) TR PR (4 (01 fu(r) | e dr

J

_(1—2)y, _J_3(1_1
< Cllullxrg (1 +[Qft) "2 27207%)
t
< [l - YD - D)y o (4.13)
: ;
Here, let us set
hQ(t) = (1 + ‘Q|t)_(l_%)t_§_§(5_§), >0

The direct calculation gives that

L

0o 67
—0zt3G-9H-7 1 1
Il o0 = [2 750020 </o GG (147705 dT)

=07t 72 < 0. (4.14)

Indeed, since s > 1/2, the assumption (1.11) on 6 implies

1<5 3+3<1 3+s
0 "8 2¢ 4 2 2¢ 2
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This yields /{1 + 2(1 — £)} < 1. Also, by 1/p < 1/q and (1.11), we have

q
1 1 1.2 3 s 1
= *-i-* cZ>2-——+-—z
0 2 27 p 2¢ 2 2

which implies 6'{1 + %(% )+ (11— )} > 1. Therefore, it follows from the Hélder inequality, (1.13) and
(4.14) that

t
(12 _1_3(1_s
/t {1+t -} "D —7)72 26 u(r g dr
3
< Hh9||L9’(0,oo)||UHL9(t/2,t;Hg)
148 _ s_1 _l+§(1_2)
< clap A O D g,
= C1072¢ 2 Jug| .. (4.15)
Hence we obtain from (4.13) to (4.15) that
t
/ le=t=DA2P div(u @ u)(7)| Lo dr
2
somr%%wwmmwﬂmf%%kﬂu+mw*kﬁ
1 B
< Sllullxzt™ #7207 o)) =0
by taking C,, < % in (4.12). This completes the proof of Lemma 4.3. O

Lemma 4.4. Suppose that the exponents s,q,0 and the initial data ug € (H® N LY)(R3)3 satisfy the asu-
umptions in Theorem 1.1, and let u € C([0, 00); H*(R?))? be the unique global solution to (1.8) constructed
in Theorem 1.1. Then, for 2 < p < oo, there exists a constant C = C(p, ||uol|r1, ||uoll2) > 0 such that

t
/2 e~ DAPY -« (@ u)(r)|| e dr < Ct~ 22073 (1 4 |Q|t) = —D)
0

for allt >0 and j =0,1.

Proof. We first consider the case j = 0. It follows from (3.10) in Lemma 3.2 that

/ * e~ t"PAPY . (u @ w)(7)|| s dr

0

< C/:(t — )R Q- )T (- V) () dr

gCt*%<1*%>(1+|sz|t)*<1*%)/ () || 22 || Vu(r) | £z dr- (4.16)
0

Then, since uy € L'(R3)3, the L? decay estimate in Lemma 4.2 (1) and the energy equality (4.6) give
that

5 i 1
/HMﬂMﬁWWNHMSC/’———ﬂWMﬂmmT
0 0 (1—|—

T)i

([ ) ([ i)

<(C <o (4.17)

with some constant C' = C(||ug||r1, ||uol|r2) > 0. Then, (4.16) and (4.17) yield the desired estimates for
j=0.
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In the case j = 1, we have by (3.10) in Lemma 3.2 and the L? decay estimate in Lemma 4.2 (1) that

IS

/ lle” (t-m)Aepy . (u®u)(7)| e dT
0
=C / (t—7) 2720 1 4 |0)t - )} [ (w @ w) (1) 1 dr
0

<ot 20D+l “_7)/w\thN@sz
0

<o D [T
o (1+7)>2
<otz 20D (14 Q)=
with some constant C' = C(p, ||ug||1, ||uo||z2) > 0. This completes the proof of Lemma 4.4. O

We are ready to give the proof of the LP-time decay estimates.

Theorem 4.5. Suppose that the exponents s,q and 0 satisfy (1.10)—(1.11), and that the exponent p satisfies

1 1/1 s - 1 < 1 (4.18)
2 2\q 3) p~ 2 '
Let ug € (H* N LY)(R3)? with V-ug = 0 and Q € R\ {0} satisfy (4.12), and let u € C(]0,00); H*(R3))3 N
L9(0,00; H3 (R?))? be the unique global solution to (1.8) constructed in Theorem 1.1.
(1) There exists a positive constant C = C(p, ||uo| L1, ||wollL2) such that
lu(®) | < Ct2072) (1 4 |QJ) =5 (4.19)

for allt > 0.
(2) Assume further that |z|ug € L*(R3)3. Then, there exists a positive constant C = C(p, |||z|uo 11,
|lwollz2) such that

u(®)||r < Ct™27 2070 (1 4 |Q[t) == D) (4.20)
for allt > 0.
Proof. (1) Let us first consider the case that the exponent p satisfies
1 1/1 1 1
e R (4.21)
2 2\qg 3 P q

Then, it follows from (3.10) in Lemmas 3.2, 4.3 and 4.4 with j = 0 that
: t
lu(@®)|zr < lle" % uglr + / +[ |e=t—MAPY . (v @ u)(7)||Lr dT
0 t

< t’i(lf’)(l + Q)™ (-3 {C’ + f||u||Xp(t/ } (4.22)

for all 0 < ¢ < ¢’ with some positive constant C' = C(p, |[uol|1, [[uol|z2). Hence we have [ul|xp ) <
2C, which yields the desired estimate (4.19). For the exponent p satisfying

1 1 1

— < < —

q 2’
we take the exponent 7 € [0, 1] so that % = g+ 17" Then, by the interpolation, Lemma 4.2 (1) and
(4.19) for ¢, we obtain for all ¢ > 0

lu(®) e < a7 lu(@)l|ze"
<t 07D (1 4 | =0,
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(2) Firstly, consider the case that the exponent p satisfies (4.21). Similarly to (4.22), we have by (3.11)
in Lemmas 3.2, 4.3 and 4.4 with 7 = 1 that

L t
lu(@®)|ze < lle” 2 ugllLr + / +/ ||6_(t_T)AQIP’V~ (u @ u)(7)|| e dT
0 %
1 z 1 2 1
S tfffg(lfﬁ)(l + ‘Q|t)7(175) {C + 2||”||Xf(t’)} (423)

for all 0 < ¢ < ' with some positive constant C' = C(p, |[|z[uo||1, [[uol|£2). This implies ||ul| xr ) <

2C, and we obtain the desired estimate (4.20). In the case % < 1% < 1, we take the exponent n € [0, 1]
so that % =2+ 17777. We obtain by the interpolation, Lemma 4.2 (2) and (4.20) for ¢ that

[u(®)l|ze < a7 ]lu@)]|;."
< Ct—%—%(l—%)(l + |Q|t)—(1—%)

for all ¢ > 0. This completes the proof of Theorem 4.5.

5. Nonlinear Asymptotics

We are now ready to give the proofs of Theorems 1.2 and 1.3. Firstly, we shall show Theorem 1.2.

Proof of Theorem 1.2. The temporal decay estimate (1.15) is already shown in Theorem 4.5. Hence it
suffices to show the asymptotic behavior (1.16).
By the Duhamel formula (1.20), we have

: t
u(t) = e~ Aoy — (/ +/ ) e~ APY . (y @ u)(r)dr
o s
=: Il —|—Ig+[3 (51)

For I, it follows from (3.13) in Theorem 3.4 that

lim 2075 (14 Q) 7|1 (8)]| » = 0. (5.2)

t—o0
Concerning I, Lemma 4.4 with j = 1 gives that
209 (14 Q)7 | L(t)| r < CE2 — 0 (5.3)
as t — oo. Hence it remains to show the estimate for I3(t). Firstly, assume that the exponent p satisfies

1 1/1 s
e [
2 2\gqg 3)°

(5.4)
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Then, the exponents p and r satisfy 2 < p <ocand 1 <r < p'. Tt follows from Lemma 2.5, the embedding
H;(R?) — L% (R?) and (4.19) in Theorem 4.5 that

t
1 Z3(t)|| o g/ e~ 42P div(u @ u)(7)| e dr
%
t 1 2 1 3
SC/ {1+1Q)t -} D (=172 20D [(we w)(r) || d7
2
¢ _(1_2) _l_é(,_ﬁ)
SO[ {1+t -7} 2 — 1) 7223 Ju(7) || e lu(T)]| Los dT
2
<R (14 o))~
t 1 2 3 s
></{1+|Ql(t—f)}’( (=) 2 u(r) g, dr (5.5)
% q
Here, similarly to (4.14) and (4.15), we have
t
[asiale-ny 0P -niies
%

1 —_s_1
SC‘Q|9+2" 2 2||UHL9(t/2tH) (5.6)

Since u belongs to L?(0, oo; H;(RS))3, we have by (5.5) and (5.6) that

20791+ 10! Pllfs()ILp<C|99+2q_2_< ()% dT) -0 (5.7)

as t — oo. This completes the proof of (1.16) when the exponent p satisfies (5.4).
Next, we shall consider the estimate for I3(t) for p = 2. We follow the argument in [7], and set

t
o(t) := —/ e~ =Py . (y @ u)(s)ds, t>T.

We see that v(t) = u(t) — e~ "7 42y(7), and v(t) should solve
Ov — Av+ QPJPy = —P(u-Vu) 2R3 t> T
(1) =0 x € R3.

Taking the L2-inner product of (5.8) with v, we have

S SO + 190Dl =~ Dyut), oDz
Since v(t) = u(t) — e~ #=7424(7), the integration by parts and the divergence-free condition give that

((w- V)u(t), v(t) 2 = =((u- V)o(t), u(t)) 2 = —((u- V)u(t), e A%(1)) s,
Hence we have

S SO + 190l = (- Delt), e 0u(r) e, (59)

Note that Lemmas 2.4 and 4.2 (1) yield
le™ @ A0u(r) [ < Ot = 7) 7% u(r) |22
<C(t—7)"T(1+7)71. (5.10)
Also, we remark that it holds

u(t)]|p2 <C(L4+4)"F <Ct T <C(t—7)"

IN[

(5.11)
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by Lemma 4.2 (1). Hence we have from (5.9), (5.10) and (5.11)

%%nv(t)niz + Vo3 < u®)llze Vo) 2 e 40u(r) ] L
< CIVo)|ga(t — )2 (L +7)77
< SIVedIEs + 0 =)+ 1),
which yields
%uvu)n%z +Vo@®)3: < Ct—7)"P(1+7)75, (5.12)

Let p > 0 be a positive parameter to be chosen later. It follows from the Plancherel theorem that

Vol = [ PR de

> P2 0(€)|? de
/KM| 259

> ()2 d

> /sw”@' ¢

= pllol2s — p / 5(6)[2 de.
[E1<y/p

This and (5.12) imply that

d 3
—[lo()[172 + pllv(@®)[|7 < p/ [P de+Ct—7) (1 +7)"2. (5.13)
dt <y
Here, since
t
6(57& = _/ ei(tis)lgleQ(gvt - S)P(f) {(7’5) : m(ﬁa 3)} dS,
we have

t —_—
B6.1)] < Cle] / (TEu() | ds
t
gcm/ I us)| 1 ds

t
< Clel / lu(s) |22 ds.

Therefore, we see that

t 2
(612 d 2.d 2d
/|g|gﬁ'“(§)' 5<C(/T lu(s)I ) /lgwm ¢

t 2
< Cp (/ ()2 ds) . (5.14)
Substituting (5.14) into (5.13) gives that
d (] ° _ s
GO + ooz < Cot ([ hute)l ds) + 0t - n)3 40 (5.15)
for 0 < 7 < t. Now, we set
7
p=pt)=mt—7)"", m> 3
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Then, the inequality (5.15) can be written as

d _
@Il +m(t =) Ho@)]72

o

<Cm?(t—7)"% (/: u(s)||2 ds)2 +C(t-7)(147)"5.

It follows from (5.16) that
d m
LR TN

= =77 { @ + it - 1O

<Cm(t—7)" (/ llu(s ||L2ds) + Ot —7)"3(141)75.

Hence we have
(t—7)"[lo(t)]Z2

I /\

IN

omt =1 [ ([ luteisdr) ds 40073 -

which yields

(ol < ce-nF | t ([ wes dr)2 ds+C(1+7) H(t—m)2.

Now, we put 7 = t/2, then
t
v(t) == 7/ e~ (=APY . (4 @ u)(s) ds = I3(t)
%

and we have by (5.17) that

2
t S
11502, gcr%[ (/ () dr) ds+C(1+1) 42

Here, it follows from Lemma 4.2 (1) that

/ (/ Jutr) d) <§<ﬁ|u<r>n%zdr)2

2

§0t</2 7(1—1—7")% dr)

<07t < (C < 0.

o+

Hence by (5.18) and (5.19), we obtain
1I5(8)]%, < Ct™% + C(1 4+ 1)~ 272,
which yields
£ | Is(8)] 2 < C1 =0
as t — oo. This gives the proof of (1.16) for p = 2.

) Birkhauser
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Finally, for the exponent p satisfying

<-<

Q| =
AR

we take 7 € [0, 1] such that % =14+ =, - Interpolating

Py l\D\»—

5.7) and (5.20), we obtain

3(1-1) _2
207w (14 \Qlt)1 P [ Z3(8)| e
3(1_1 _2 -
< {B1B@Ie ) {00+ 0 B0} -0
as t — oo. This completes the proof of Theorem 1.2. O
We finally present the proof of Theorem 1.3.

Proof of Theorem 1.3. We have already shown the time decay estimate (1.24) in Theorem 4.5. Hence it
remains to prove the asymptotic behavior (1.25).
Let us decompose

t
- / e~ (=) 4Py . (y @ u)(s)ds =: J, + Ja, (5.21)
0

where

Jy = — /2 e~ (t=s)dapy . (u®u)(s)ds,
0

t
T R

We first consider the estimate for J,. Let us treat the case that the exponent p satisfies

1 1/1 11
N A (5.22)
2 2\q 3 P q

Note that (5.22) is the same assumption as (4.11) in Lemma 4.3. Setting
1 1 s 1 1 1

s g 3 v p g
we see that there hold 2 <p <ocoand 1 <r < p’. Hence we can apply Lemma 2.5, and it follows from
the embedding H;(R?) < L% (R?), (4.20) in Theorem 4.5 and (5.6) that

t
PAGIIT g/ e~ *"742P div(u ® u)(7)]|| v dT

t

2
¢ _(1_2) _l_,(l_l)

SC/{HIQI(t—T)} Pt —7) 272 T [(u @ u)(7)||Lr dT

t
2

t
<0C / {110l =)} P (= 7)7 272G D () | o () | pas dr
t
-3-3a-5 1-2)
<Ct 2 2 (14 |9Qt)”
/{1+\Q| (L= OB =) E D ), dr

<cjoprta im0 141007 P ull o s e (5.23)
g

Since u € LY(0, 00; H3(R?))?, we have by (5.23) that

-

t 0
BT 101)! 7 (0| < ClOF TR ( / |u<¢>||gsd7> —0 (5.24)
5] q

as t — oo.
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Next, let us consider the L? estimate for J5. Set
t
v(t) == —/ e~ (=9 pY . (y @ u)(s)ds, t>T.

Note that we now assume (1 + |z|)up € L' (R?)3, and then it follows from Lemmas 2.4 and 4.2 (2) that
le= =D A0 u(r) | e < C(t—7) 74 u(r) g2 < CE—7)"F(1+7)74 (5.25)
and
u(®)|pe <CA+t)"F<Ct™i<C(t—7)% (5.26)

We apply the same argument as in the proof of Theorem 1.2 by using (5.25) and (5.26) instead of (5.10)
and (5.11), respectively. Then, similarly to (5.15), we have

¢ 2
IO + o0l < Ot ([ Tz ds) + 0t - 1)) (5.27)

for 0 <7 <t and p > 0. Here we set
p=pt)=mt—1)"", m>4

Substituting this p(t) into (5.27) gives
d 2 ~1 2
Sl @Iz +m(t =) o)l
¢ 2
<Cmi(t—r1)"2 (/ u(s)|%2 ds) + Ot —7)"Y14+7)72. (5.28)

Then, it follows from (5.28) that

d 2
A=) o)]3:)

= = {0 + it =) o0
t 2
<cmbe- ([ Il as) + 0 -t

which yields

/Tt(s — 7)™ tds

IA
Q
3
[SE]
—
w
\
2
i
(M
VR
ﬁ
I
—
.
=
N
U
=3
~——,
U
v
+
2
—
+
2
|
(S

Hence we have
. t s 2 _
||v(t)H2L2 <C(t—-7)"2 / (/ ||u(7”)\|%2 dr) ds+C(1+71)"2(t—7)73 (5.29)
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Here, we see by Lemma 4.2 (2) that

‘[<lmmnﬁﬂ¢f@§@ﬂ([wwwmémf

<C(t—7)</TOO(1+1T)gdr)2

t—T1

<Carp (5.30)

Thus, substituting (5.30) into (5.29) gives

o2 <Ct—71)"2(1+7) 2 +C(t—7) 31 +7)%. (5.31)

Now, let us set 7 = t/2. Then,

v(t) == — /t e~ (=) APY . (4@ u)(s)ds = Ja(t).

5
Hence we have by (5.31) that
[ J2(t)]|22 < Ct3(Q+8) 72 + Ct3(1+ )75,
which yields

ti )2 <CA+) "2 +Ct5(1+1)"1 -0 (5.32)
as t — oo.
For the case that the exponent p satisfying

<-<

)

| =
"=
DO =

we take 1 € [0,1] such that % =74 1_7". Interpolating (5.24) and (5.32) gives

20D (14 Q)7 L) 2

5 M, 1y3q_1 _2 n
< {1 n@le} {33000+ 100 R0l ) =0

as t — oo. Hence we obtain that for p satisfying % — % (% — %) < % < %, there holds

lim ¢2+2073) (1 4 (Q[6) 5 |1 ()| o = 0. (5.33)

t—oo

Next, let us consider the estimates for J;. Let us rewrite

3 T
h= _Z/ 0 Ka(x —y,t — s)(uju)(y, s) dy ds.
=Jo Jrs
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Then, we decompose J; as

ne Y oFaten [ [ wwisdyas
= iajf{ﬁ(%t) /;O /Rg(uju)(y,s) dy ds
‘Z/ [ {0Rat =t =9 - 0,Ralest =)} tusuly.s) s

_ ji:l /05 /R3 {8jf~(sz(:c,t —5)— @-I?sz(ﬂc,t)} (uju)(y,s) dyds

=:Ji1 + Jig + Ji3. (5.34)

Let us firstly consider the estimate for Ji;. Similarly to Lemma 3.1, we see that for 2 < p < oo and
a € (NU{0})? there exists a positive constant C' = C(p, «) such that it holds

for all Q € R and for all ¢ > 0. Then, we have by (5.35) and Lemma 4.2 (2) that for 2 < p < co

Lo /;O /R3 |(wju)(y, 5)| dy ds

o0

< Ot~ 2% 1*%)(1 + |Q|t)7(17%) [ llu(s)|32 ds

agffg(.,t)‘

e e (R (5.35)
P

ajf(g(-,t)‘

3
EROIP S
j=1

2

(oo}
gCt*%*%“*%)(l+|Q|t)*(1*%)/ s,
t (IT+s)2
which yields
220D (1 Q) S (D] < CA+H7F =0 (t— ). (5.36)

Next, we consider the estimate for Jio. Similarly to (3.4), (3.5) and (3.21), we see that

03K (w.t) = 72 F 1 9,61 (&) Hal&, )] (j%)

1
:it_2 > Go(Qt) [(P+ 0R)D; G
oce{+}

(5.37)

VRS
<
N———
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for j =1,2,3. Hence we have

H(‘?jIN(Q(- —y,t—s) — ajffg(-,t - s)’

1 —2
< §(t—s) >

oce{t}

G (Ut — ) [(B + oR)O;C] (

Lp

Go (Ut — ) [(B + oR)D,C] (\/t;y)

=)

Gy (Ut — 5)) [(P+ 0R)D,G1] ( = 5>

Lp

(t—s) 27203

oe{t}

= Go (2t — ) [(P+ oR)0;G1] ()

Lp

>

oce{+}

Go (Ut — 5)) [(P +0oR) {ajal ( - wyfs) - ajalc)H

Lr

For p satisfying  — 1 (l - i)

Go (At — 5)) {(P +oR) {ajal ( - ﬁyis) - ajal(.)H
< c\

Lr

Go (At — 5)) [(]P’ +0oR) {ajc;l ( - \/ty_is> - ajal(-)}]

50
Bp,2

<C{1+Q|(t—s)} )

2
.3(1— 2
3(1-2)
p’,2

N )
<Oty 0 ()

G1()

N

()
G

G
o ()
2 t—s

<C{1+|Qt—s)) )

Hence we have by (5.38) and (5.39)
[[J12()]| Lo

5.k
>
=170 JR®
t
3

<o [" ] =D gl - )P
0 R3
Gy~ 2 >—Gé(-)

(9jl~(g(- —y,t—s)— 8jl~(g(-,t — S)HLP |(uju)(y, s)| dy ds

luly, s)|* dy ds
L

“ ( ty—s>G5(')

[u(y, s)|* dy ds.

’

Lpr
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(5.38)

< % < 1, similarly to (3.17) and (3.18), it follows from the embedding
3

50
BP’,2

(5.39)
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Here, let R > 0 be a positive parameter to be chosen later, and let ¢ satisfy ¢ > 2R. We decompose

0D (14 Q[0 F [ T1a () 10

§C</O +/;>/Ra

Since |u(y, s)|* € L'(R? x (0, R)s) by Lemma 4.2 (2), it follows from the dominated convergence theorem

that
. Y
tlggo/ /Rs < t—s) _G%(')

For the second term in (5.40), we have by Lemma 4.2 (2) that

//R < ty—s)G%(')

lu(y, s)|?* dy ds. (5.40)

’

Lr

lu(y, s)|* dy ds = 0. (5.41)
Le

luly, s)|* dy ds

Ly
<2|a, ||Lp/ lu(s)|22 ds
<C/2 : ° (5.42)
(1+s)2 (1—|—R)§

Then, for any € > 0, take a large R = R. > 0 so that (1 + R)~2 < e. Then, it follows from (5.41) to
(5.42) that

limsup 22075 (1 4+ Q)7 || J12(8)]|1r < Ce,

t—o00

which yields
lim ¢273(=5) (14 |Q[0) % || Jia(8)][ e = 0. (5.43)

t—o0

Finally, we consider the estimate for Ji3 in (5.34). We firstly remark that there hold

&3
i

~ P©)JIP() {cos ( o ) P(E) +sin ( " ) R(E)}

_ % {—sin ( |§§| ) P(€) + cos (Qﬂt> R(S)} :

8, Kqo(z,t) = AKqg(z,t) — QOPJPKq(z, t). (5.44)

—P(§)JP(&) = 5 R(E), PORE) =REPE) =R(6), R(©)*=-P(

and then

Hence we have

) Birkhauser
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Then it follows from the mean value theorem and (5.44) that
3. 13 ~ ~
Jis = — Z/ /3 {8jKQ(x,t —5)— @Kg(&:,lf)} (uju)(y, s)dyds
=iJo Jr
3.3 gt ~
:Z/ / 0;0;Ka(x,t —75) dT/ s(uju)(y, s) dy ds
j=1 0 0 R3
3. 7% gt -
= Z/ / 0;AKq(x,t —Ts) dT/ s(uju)(y, s) dy ds
=iJo Jo R3
3.3 1 ~
—QZ/ / O;PJPKq(-,t — Ts) dT/ s(uju)(y, s) dy ds
=iJo Jo R?
= K1 — KQ. (545)
By (5.35) and Lemma 4.2 (2), we have
3.5 1 ~
15 (8]0 gZ/ / |osaRa(.t —rs) dT/ sl(uu)(y, )| dy ds
=170 Jo Ly RS
Lol
<c [ [t ro 0D (1 0t - ro)} 0D sluts) [ dr s
o Jo
t
<o ii0-Hq 4 |Q|t)*<1*%)/2 " ds
0 (1)
<Ct 30D (14 gy O, (5.46)
Hence (5.45) and (5.46) yield
_z C
0D (L4 100177 () + Kol < 7 =0 (> o). (5.47)

Now, the Duhamel formula (1.20) and the decompositions (5.21), (5.34), (5.45) gives

3 3 o]
u(t) +j2::13jK52(~7t) /R3 yiuo(y) dy—i—jz_:lajf(g(-,t)/o /Rs(uju)(%s) dy ds

5.3 ! -
JrQZ/ / 0;,PJPKq(-,t — Ts) dT/ s(uju)(y, s) dy ds
=iJo Jo R3

3
e+ 0K (- t) /3 yiuo(y) dy o + J2 + Ji1 + Ji2 + (i3 + Ka).
R

j=1

Therefore, we obtain the desired asymptotic behavior (1.25) by (3.14) in Theorem 3.4, (5.33), (5.36),

(5.43) and (5.47). This completes the proof of Theorem 1.3.

O
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